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Abstract: Electrical distribution network is constantly ageing worldwide. Therefore, probability of cable faults is increasing over
time. Fast recovering of damaged networks is of vital importance and a quick and automatic identification of the failure source
may help to promptly recover the functionality of the network. The scenario we are taking into consideration is a vast number of
recording devices spread across a network that constantly monitor low voltage cables. When the current of a cable reaches a
very high value, data is sent to a central server which analyses it through a variant of a Variational Auto Encoder (VAE), a deep
neural network. This VAE has been trained by using historical data collected from several hundreds of faults recorded, but in
which only a handful of them has been labelled by an on-site analysis of the fault. Data used for training is simply the recorded
levels of voltages and currents, after a simple pre-processing step. The final goal is to let the network distinguish if the fault
occurred in a point of the cable, on a joint, or at the pot-end located at the termination. A preliminary evaluation of its ability to
generalise over the non-labelled samples shows encouraging results.

1 Introduction
Electrical distribution network is constantly ageing worldwide. The
power system currently installed in many countries has been
mostly developed during the 1950s and 1960s. In the UK, some of
the oldest low voltage (LV) assets are almost 100 years old and the
weighted average age of the existing network is 40 years. It is
estimated that in the in 2050, the annual electricity demand in the
UK will raise >50% [1]. Considering also other sources of stress,
like the increasing use of heat pumps and electric vehicles, the
probability of cable faults is increasing over time.

Fast recovering of damaged networks is therefore of vital
importance. A quick and automatic identification of the failure
source may help to promptly recover the functionality of the
network. This can bring great benefits to distribution network
operators, as well as to connected clients.

Machine learning (ML) is the field of computer science that
allows computer to learn without being explicitly taught. In the last
years, the spread of this set of techniques has covered all possible
field of applications. The analysis of electrical distribution network
is no exception.

According to a study presented in 2016 by SAS [2], the
majority of utilities interviewed agree that ML is an important
technology trend and that will be critical for their company's future
success but only 20% are already using it and even less have a
specific and comprehensive strategy.

Nevertheless, applications of ML techniques in the utility
sector, in particular in tasks like fault detection, diagnosis and
localisation, started during the nineties [3] and their usage
increased since then. A quick overview of publications of the last
10 years shows ML applications on fields that vary from the
analysis of non-technical loss [4], improvement of the reliability of
the network [5], smart grid management [6], fault localisation [7],
fault prediction [8] and fault type classification [9].

In this paper, we developed and employed a novel variant of a
deep neural network to analyse the data associated with a fault over
a power network. In particular, this network receives in input a few
cycles of currents and voltages before and after a fault and tries to
estimate if the fault occurred in a point of the cable, on a joint, or at
the pot-end located at the termination.

This paper is structured in this way: the Sapient architecture
that collects the data used in the experiments is presented, as well
as the ML technique we have used. The following chapters treat
the experimental set-up, followed by results and a brief discussion
of them.

2 Sapient architecture
Sapient (https://www.camlingroup.com/sapient) is an intelligent
and integrated system able to assist customers’ needs, from asset
monitoring, health reporting and fleet ranking, to failure analysis,
overload evaluation and design review.

It is based on a large number of recording devices spread across
the UK grid which constantly monitor electrical currents and
voltages of low-voltage cables. When, for example, the current of a
cable exceeds a pre-set value, data is recorded and sent to a central
server.

These devices are placed in the LV protection fuse position.
They are internally developed and use various techniques (smart
fuses, vacuum circuit breakers etc.) to close the power line and re-
energise cables after a pre-determined time to reduce the customer
minutes lost. They are designed to let the network be autonomously
restored drastically reducing the duration of interruption for the
customers. At the same time, they collect diagnostic information
used for the many purposes of Sapient [10].

One of the main tasks Sapient performs is the precise
localisation of intermittent and permanent faults for a fast recovery
of the network. Currently, an algorithm named single-ended
location of faults (SELF) uses the voltages and currents recorded
around the fault event in conjunction with information on the cable
parameters (type, length, shape, etc.) to localise its source.

The work presented in this paper describes a decision support
system for SELF based on deep neural networks (DNNs). The goal
is not to directly understand in which location the fault has
happened but to provide an answer to which type of asset has been
involved:

• A fault that occurred within the cable itself (e.g. deterioration of
insulation, mechanical accidents etc.)
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• A fault that occurred in a joint of two or more cables (e.g. due to
joint deterioration or human errors done at the time when these
operations have been performed etc.)

• A fault that occurred at the pot-end (or termination) of the cable.

3 Neural networks
In this section, we are going to introduce the computational tools
we have used in the experiments, trying to avoid, when it is
possible, a too technical language.

3.1 Artificial neural networks (ANNs)

An ANN is a computational model inspired from structure and
functions of biological neural networks.

They undergo a training phase in which they try to learn a
function that maps an output Y from an input X. This function
exploits the complex structure of an ANN in which there are many
interconnected non-linear functions whose parameters are learnt
during this training phase

Y ≃ F(X)

Once the training phase is completed, the network can receive an
input and computing the corresponding output.

When a network's structure is composed of different layers, it is
commonly called DNN.

3.2 Variational autoencoders (AEs)

An AE is a type of DNN mostly used for unsupervised learning or
dimensionality reduction. In other words, it exploits the
interdependence and redundancies in highly dimensional data so to
learn a low-dimensional simpler structure containing the same
information.

The AE is the composition of two different ANNs: an encoder
and a decoder, which are trained together. The goal of the encoder
is to learn this low-dimensional representation Z, while the encoder
does the opposite and reconstructs a lossy approximation (X′) of
the original data from Z. By doing this, the low-dimensional
representation is forced to represent the original set of data as
closely as possible

Z ≃ Fencoder(X)

X′ ≃ Fdecoder(Z)

If we consider the whole sequence of encoder and decoder, the
entire AE mimics a function that re-creates the input:

X′ ≃ F(X)

A variational autoencoder (VAE) [11] is an AE variant in which
there is a further layer placed between the encoder and the decoder.

The job of this layer is to learn low-dimensional probability
distribution that can approximate the high-dimensional data. In this
way, the original data can be seen as a series of functions in a low-
dimensional domain, making the problem easier to tackle.

3.3 Recurrent neural networks (RNNs)

RNNs are a family of ANN that has the ability to process temporal
sequences. They are able to do so by keeping an internal state S
that models the past values of the input sequence. Therefore,
following the previous notation, the output is obtained as follows:

Y ≃ F(X, S)

During the years, several problems have been noticed with classic
RNNs, especially their inability to remember events that happen in
a ‘distant time’ due to mathematical reasons. For this reason, new
paradigms have been proposed (LSTM, GRU [12]). They save the
state by means of memory blocks, like it happens in a computer. In
this way, they are more effective in remembering events that have
happened in the past which will have an effect in the future.

3.4 Recurrent VAEs

Combining the two paradigms hereby presented, it is possible to
obtain an AE that is able to process temporal sequences, such as, in
our case, time series of current and voltages.

The first implementation of a recurrent VAE (RVAE) has been
presented in [13] for noise reduction in speech recognition.

In this case, the encoder is composed of a combination of RNNs
(or one of their variants) and takes in input the temporal series one
instant at a time. The low-dimensional representation Z is the
output of these RNNs throughout the entire input sequence. The
decoder recreates the sequence X taking as input a series whose
values are Z for the entire time. So, from a logical point of view,
the behaviour is roughly the same as standard AEs.

3.5 Semi-supervised RVAE

Although AEs and all their variants have been created for
unsupervised learning (no label associated to the input and no
ability to perform classification tasks), we can easily extend this by
taking into account the labels L together with data:

Z ≃ Fencoder(X, L)

X′, L′ ≃ Fdecoder(Z)

In our case (for a more precise description of the dataset used, see
Section 4), we have labels only for a subset of the data. This
scenario is called semi-supervised learning.

There are many ways to include this information into an RVAE.
We decided to use the low-dimensional representation as input to
an ANN that works as a classifier. Obviously, it considers only data
with a label associated and ignores data without it.

Fig. 1 shows the final architecture used. Data is passed to the
encoder of the RVAE to create the low-dimensional representation.
This representation is passed to another ANN followed by a simple
classifier which gives the final answer. 

With this kind of architectures, the representation of data is well
separated from the classification task. This modular structure helps
in highlighting the relevant features within data regardless the final
task, thus mitigating the natural over-fitting risk that there can be
with a low number of available labels.

The authors thank the semi-supervised paradigm, it is possible
to infer the missing labels by propagating the known ones. The
goal we want to achieve is to quantify the ability of such a network
in performing this task.

Fig. 1  Representation of the network. The 2D representation shown in
Fig. 3 is taken from an intermediate layer of the network that feeds the
classifier
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4 Experimental set-up
4.1 Description of the dataset

The dataset we use in our experiments is composed of data
acquired by Sapient over the last few years in several areas of the
United Kingdom.

As we previously said, data is collected on-site by a device
which sends data to a central server when current reaches a pre-
determined threshold. Therefore the data collected is a recording
(not less than 0.2 s at a frequency of 12.8 kHz) of three-phase cable
voltages and currents before and after a possible fault has occurred.

In some of the historical data, when the fault actually has
interrupted the current flow and a manual intervention was
necessary to recover the power line, the element responsible of the
fault has been recorded. This represents the label that will be
associated to the data.

Fig. 2 shows an example of data. Each column represents some
examples of a label. Top rows are voltages, bottom rows are
currents. The first third of data (easily recognisable by lower
current values) is the pre-fault data. It can be seen that no clear
label distinction can be made by looking at raw data. The
complexity of the problem is confirmed by experiments in which
we applied classical ML techniques, all of them leading to results
without a significant level of robustness. This is the reason that
brought us to tackle the problem by employing deep learning
techniques. 

4.2 Data format and processing

Data is analysed by the network as it arrives from the devices. A
few pre-processing operations are done. The first one is to cut all
sequences with the same length centred on the actual fault start.
This is known method to simplify the learning task of sequences by
means of neural networks. The sequences start 0.02 s before the
first zero-crossing before the fault happened and end 0.04 s
afterwards. So, a piece of datum is generally composed of three full
cycles of currents and voltages.

All acquisitions are re-aligned to start with the zero-crossing of
phase 1 to simplify the task of the network.

The second step is to compute the absolute value of the signals
to reduce the variability and enhance the regularities of data.

Data is normalised before being passed to the network so to
have values bounded between 0 and 1.

Labels are passed to the network following a one-hot encoding.
When there is no label is available, all entries associated to labels
are set to zero.

Table 1 shows the cardinality of the dataset. Note that for each
cable there can be several dumps. 

The network input is a 768 × 6 entries matrix. The encoder
reduces it to 768 values, which are then processed by the classifier,
which has two hidden layers with 32 and 2 neurons, respectively.
The output of the classifier is a ‘soft’ classification, i.e. a
probability distribution over the labels. The last branch of the
network is the decoder, which outputs the reconstructed input,
which obviously has 786 × 6 entries.

5 Results
Considering the low amount of labels currently available, the
presented results are mainly qualitative.

The first way we present the results is to show how data is
displaced in the low-dimensional space (see Fig. 1). Each point in
Fig. 3 shows the two-dimensional representation of data from a
single fault; in other words each fault event is represented by a
single point. The colour represents the LV asset associated with the
fault. If it is unknown, the dot is black. 

Several interesting conclusions can be drawn from these, in
particular:

• If we consider labelled data, there are some areas only covered
by a single kind of fault (most evident, the lower left part only
covered by the ‘joint’ label). This is an evidence of some
specific characteristics of this kind of fault.

• If we consider also unlabelled data, there are some areas only
covered by them. It means that the labels available to us are not
covering the entire possible fault variations that can happen.

• There is an area in which different labels coexist. This may be
the symptom that the data representation we are using is not rich
enough to capture all the complexity of the problem at hand. For
instance, among the missing information we can mention the
frequency and duration of the fault activity, the cable topology
and all cable structural information in general.

We set-up the next experiment with the main goal of testing the
ability of such a network to correctly propagate the known labels
over the unknown samples of data. To do so, by exploiting the
semi-supervised capability of the network, we hid some known
labels during the training of the network and see its ability to
retrieve them.

Fig. 4 shows the confusion matrix of the entries with a known
label that were left out from the training phase as a test set. It can

Fig. 2  Data samples divided by label. First column represents faults that
happened on a joint, second within the cable itself, and last at the
termination of the cable. Lines in red, yellow and blue correspond to phases
1, 2 and 3, respectively

 
Table 1 Composition of the training set
Label No. of Cables No. of Dumps
joint 58 1029
termination 9 252
mid cable 14 245
no label 426 8521
total 507 10,047

 

Fig. 3  Low-dimensional encoding obtained by the network. The first
scatter plot shows the disposition of the entire dataset, while the other three
show only the disposition of labelled data (in clockwise order, joint, mid-
cable and termination)
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be seen that the overall accuracy is 61%. However, if we merge
events that happen outside the cable (therefore, in connections or
terminations, which share many physical properties), the
classification accuracy raises up to 92%. As already explained, this
is not intended as a classification analysis mainly due to the lack of
labels. Nevertheless, this exploration highlights the ability of this
kind of networks to cope with the phenomena involved in cable
faults. 

The map shown in Fig. 5 depicts the soft classification of the
network. Each vertex of the triangle corresponds to a label type,
while the position of the points is obtained by averaging the
triangle vertices positions with the soft classifications gained by the
network on the test set data, the colour is the known label.
Therefore, the closest the point is to a vertex the more confident the
network is about the label being the one on the vertex; when the
colour of the point is the same of the closest vertex the network
guess is correct. 

The ability of the network to distinguish between faults that
happened on the cable from the others (terminations and joints) is
clearly evident by looking at the dashed grey line that separates the
receptive areas of the two sources.

6 Discussion and future works
In this paper, we presented an ML-based method that may help to
understand which kind of asset is the cause of a fault. This
indication may be of very high value for a fast recover of a
damaged power line since it directs the repair team intervention to
the correct faulty asset.

The network we built receives in input three cycles of the three
voltages and current recorded when the fault occurs and, although a
proper classification has not been provided, proved its ability to
preliminary distinguish if the fault happened in a joint, at a
termination, or in the cable itself.

We are currently enriching our database. When enough labels
will be available, we will re-train the very same network and see its
actual ability to give a classification result. Moreover, we will be
able to have better insights on what properties of data the network
has used to separate labels.

Another interesting development will be to enrich the
representation of the data given in input to the network; in fact the
current format ignores many information that are used by experts
of the field such as the duration of a fault, the kind of cables used

(or, more in general, the structure of the network in which the fault
happens) etc. The goal of this approach is to let the NN ‘think’ in
the same way as experts usually do.
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Fig. 4  Confusion matrix on data with known labels in the test set. Entries
of the matrix represent the actual number of dumps

 

Fig. 5  Soft classification of the network on the test set. When the network
is sure about a label, the corresponding point lies within one of the
hexagons at the vertices of the triangle; when in doubt between two classes,
on the edges connecting the vertices. When in doubt among the three
classes, the point lies within the triangle
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