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Information geometry-based action
decision-making for target tracking
by fixed-wing unmanned aerial vehicle:
From algorithm design to theory
analysis
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Abstract
In this article, we study the ground moving target tracking problem for a fixed-wing unmanned aerial vehicle equipped with
a radar. This problem is formulated in a partially observable Markov process framework, which contains the following two
parts: in the first part, the unmanned aerial vehicle utilizes the measurements from its radar and employs a Kalman filter to
estimate the target’s real-time location; in the second part, the unmanned aerial vehicle optimizes its trajectory in a real-
time manner so that the radar’s measurements can include more useful information. To solve the trajectory optimization
problem, we proposed an information geometry-based partially observable Markov decision process method. Specifically,
the cumulative amount of information in the observation is represented by Fisher information of information geometry,
and acts as the criterion of the partially observable Markov decision process problem. Furthermore, to guarantee the real-
time performance, an important trade-off between the optimality and computation cost is made by an approximate
receding horizon approach. Finally, simulation results corroborate the accuracy and time-efficiency of our proposed
method and also show our advantage in computation time compared to existing methods.

Keywords
Fixed-wing UAV, information geometry, action decision-making, partially observable Markov decision process, three-
dimensional observation, target tracking

Date received: 3 January 2018; accepted: 3 June 2018

Topic: Mobile Robots and Multi-Robot Systems
Topic Editor: Nak-Young Chong
Associate Editor: Euntai Kim

Introduction

Guiding unmanned aerial vehicle (UAV) to detect and

track a suspicious ground target is an important require-

ment in many intelligence, surveillance, target acquisition,

and reconnaissance (ISTAR)1 problems. Different from

predefined trajectory tracking problems, tracking a moving

target is more challenging, since it requires the UAV to

respond promptly to the random movement of the target.

Our article focuses on the problem of a UAV tracking a

moving ground target in an uncertain environment. In many

College of Mechatronic Engineering and Automation, National University

of Defense Technology, Changsha, People’s Republic of China

Corresponding author:

Xiangke Wang, College of Mechatronic Engineering and Automation,

National University of Defense Technology, Changsha 410073, People’s

Republic of China.

Email: xkwang@nudt.edu.cn

International Journal of Advanced
Robotic Systems

July-August 2018: 1–13
ª The Author(s) 2018

DOI: 10.1177/1729881418787061
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

http://orcid.org/0000-0003-2666-1360
http://orcid.org/0000-0003-2666-1360
http://orcid.org/0000-0003-0621-6331
http://orcid.org/0000-0003-0621-6331
mailto:xkwang@nudt.edu.cn
https://doi.org/10.1177/1729881418787061
http://journals.sagepub.com/home/arx
http://www.creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881418787061&domain=pdf&date_stamp=2018-07-17


practical scenarios, the accurate observation and tracking

of a target is achieved through adequate maneuver of the

UAV equipped with a sensor. Therefore, the UAV needs

to make a movement strategy based on the state of the

target. However, the information of the target location

obtained by the UAV sensor is usually incomplete or

imperfect. In this regard, the task of target tracking mainly

consists of two aspects2: one is the estimation of the state

of the target based on the measurements obtained by the

sensor, and the other is the adjustment of the position/pose

of the UAV based on the prediction of the target state to

obtain better measurements.

For target state estimation, different strategies have

been developed in the past decade. In order to estimate

and predict the target state more accurately, the classical

methods such as Kalman filter (KF),3–7 particle filter,8–11

and their modifications were widely used. For instance, an

unscented KF was utilized to track an underwater submar-

ine target/moving ship.6,12 Tang and Ozguner proposed

the particle-filter-and-hospitability-map algorithm

(PF-HMap)8 to deal with the general target tracking main-

tenance problem with regional and intermittent measure-

ments. In these abovementioned methods, the classical

KF is one of the most widely used methods for estima-

tion and tracking, due to its optimality, simplicity, and

tractability.

For position/pose adjustment, one possible method is to

track the estimated location of the target. A novel algo-

rithm combining the tangent vector field guidance

(TVFG) path-planning approach and the Lyapunov vector

field guidance (LVFG) algorithm13 was developed. Given

the target position and current UAV dynamic state, this

method is theoretically possible to obtain the shortest path

with UAV operational constraints. In addition, based on

the division of two kinds of possible path parttens, that is,

the z type (sinusoidal type) and the whirling type, the

ground target pursuit algorithm14,15 generates waypoints

step by step and steers the UAV to the latest waypoint.

Most of these planning methods are based on precom-

puted vector fields or alternative paths, which do not

respond well to system uncertainties.

The other method for position/pose adjustment is based

on the decision-making framework, which can better han-

dle the system uncertainties. In this framework, the transi-

tion model of the tracking system is usually assumed to be

Markovian. Then, the tracking policy selection problem

can be formulated as a partially observed Markov decision

process (POMDP), in which the state is only partially

observed and one seeks to design a control policy which

maps the state probability distributions to actions and

maximizes the accuracy of target location. With its

decision-making ability in an uncertain environment,16,17

the POMDP framework has been widely used in a variety

of real-world scenarios. Prentice and Roy18 addressed the

problem of trajectory planning with imperfect state infor-

mation, and model it as a linear-Guassian POMDP.

Assuming that the UAV’s state and kinematics are known,

Ragi and Chong3,4 employed the POMDP, combining

with the motion constraints of the UAV, to design the

guidance algorithm of UAV tracking a ground target.

However, solving POMDP optimally is proven to be

PSPACE-hard.19 A large number of literature focuses on

various heuristic or approximate solution techniques.20

Some literature use the receding horizon theory to approx-

imate a POMDP. Sunberg et al.21 proposed a receding

horizon control approach to solve the information space

dynamic programming of POMDPs. In the POMDP

framework, the tracking decision problem was trans-

formed into an optimization problem, and the choice of

the optimization criterion plays a crucial role,22 which

directly determines the speed and performance of the

solution. Different from the approach3,4 that used the trace

of covariance matrix, we use the cumulative quantity of

information from information geometry (IG) as the

reward criterion of POMDP to evaluate the performance

of the tracking strategy in essence and simplify the

calculation.

IG is proposed by Rao,23 and axiomatized by

Chentsov.24 It constructs a distance representation between

statistical distributions. It deals with families of parameter-

ized probability densities which carry a metric structure.

This structure is derived via the well-known Fisher infor-

mation metric. Recently, significant attention has been

drawn in the area of IG. Costa et al.25 presented the Fisher

information distance as a measure of difference between

two probability distribution functions. The Fisher informa-

tion distance is related to the information of the target

estimation. Therefore, the target tracking problem is trans-

formed into searching for the strategy that maximizes the

accuracy of the target estimation. There have been many

works on how IG methodology can be applied to the track-

ing process as it does in the signal processing.26–29 In their

study, Akselrod et al.27 proposed a MDP model to formu-

late the collaborative sensor management for multi-target

tracking decision processes, where the objective function is

based on the Fisher information measure. However, in that

study, the Fisher information is merely approximated by

the posterior covariance matrix from the KF, which is not

an exact derivation. Actually, it did not analyze the source

and significance of the Fisher information in essence. In

target tracking, the noise covariance depends on the per-

formance of the sensor. That means the covariance matrix

of noise matches to the Riemannian manifold of positive

definite matrix. Wang et al.29 derived a complete form of

relationship between the accuracy of the target location and

the optimal sensor position, based on the maximum deter-

minant of the Fisher information matrix (FIM) criterion,

where the theory of IG to study the problem of bearing-

only tracking was employed.

The above summarizes the research results about the

construction of the tracking decision-making framework,

the selection of the evaluation function, and the solution
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of the optimal decision. However, even though IG is a

power tool in analyzing the statistics of the moving target,

few studies provide rigorous analysis and design of the

IG-based UAV ground target tracking problem. Previous

work by Zhao et al.30 has shown the effectiveness of the IG

method in the target tracking decision in two-dimensional

(2-D) space by simulation results. In this article, we extend

the problem of target tracking with an airborne radar to

general three dimensions with new simulation results and

more detailed analysis. The iterative form of FIM about

the 3-D bearing-and-range radar, which takes into account

the uncertainties of predicted target states, is derived. Then,

the Fisher information distance on the Riemann manifold is

regarded as the basis for POMDP, and the convergence of

the POMDP approximate solution algorithm is proved the-

oretically. The detailed contributions of the proposed algo-

rithm are as follows:

1. A novel IG-based POMDP frame is provided for the

UAV to track a moving ground target in a 3-D

uncertain environment. In this frame, the state of

the target is observed by the 3-D bearing-and-

range radar.

2. The optimization criterion based on the 3-D obser-

vation model in the POMDP is derived based on

Fisher information in the view of the IG, which is

the key to optimize the action polices in the UAV-

to-target problem.

3. An approximate receding horizon control is devel-

oped to obtain an acceptable control strategy in the

trade-off between the optimization and the compu-

tation cost. We also prove the convergence of

approximation algorithm theoretically.

The rest of this article is organized as follows. In the

“Problem formulation” section, the system model is

given and the target tracking problem is formulated. The

framework of the POMDP and its criterion of accumu-

lative information are presented in “Target tracking

decision-making based on IG” section, where the FIM

is derived by iterative calculation via the predicted tar-

get state. In “Approximate receding horizon approach

for POMDP” section, we introduce our proposed

approximate receding horizon approach for the POMDP,

and analyze the performance of the algorithm.

“Simulation results” section presents the simulation and

results, which is followed by the conclusion.

Problem formulation

In this article, the target tracking system is composed of a

UAV and a target vehicle. The mission of the UAV is to

observe and track the moving target on the ground. The

UAV is equipped with a radar that can obtain the bearing

and range measurements of the tracked object with limited

precision and reliability.

Fixed-wing UAV model

The fixed-wing UAV dynamics augmented by the autopilot

is a high dimensional, highly nonlinear, and extremely

complex system. In our work, the UAV is supposed to fly

at a constant altitude h, and the unicycle model is adopted

to describe kinematics of fixed-wing UAV.

The UAV autopilot controls bank angle f and forward

acceleration a directly. The UAV state, which is a part of

the world states, is su ¼ ðxu; yu; vu; quÞT
, where ðxu; yuÞ

denotes the position of the UAV in the inertial coordinate

system (CS) and ðvu; quÞ represents the UAV’s speed and

course angle. The UAV is assumed to be fully observable,

and the discrete kinematic model of the UAV is as follows

xu
kþ1 ¼ xu

k þ vu
kT cosqu

k ;

yu
kþ1 ¼ yu

k þ vu
kT sinqu

k ;

vu
kþ1 ¼ ½vu

k þ akT �V max

V min
;

qu
kþ1 ¼ qu

k þ
�

gT tanðfkÞ=vu
k

�

8>>>>><
>>>>>:

ð1Þ

where ½v�V max

V min
¼ maxfV min; minðV max; vÞg, V max and V min

are the upper and lower bounds of the ground speed of the

fixed-wing UAV, g is the acceleration of gravity, and T is

time step.

Target model

In this system, the target is on the ground and its exact state

is not available. The state is given by st ¼ ðxt; yt; _xt; _ytÞT
,

including the location ðxt; ytÞ and velocity ð _xt; _ytÞ. The

mobility of the ground target is modeled as follows, which

is commonly used in the literature

st
kþ1 ¼ Ast

k þ νk ; νk*Nð0;QkÞ ð2Þ

where A is the state transition matrix with the following

form

A ¼

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

2
6664

3
7775 ð3Þ

and Qk represents the process noise covariance matrix at

time k.

The states of the target are measured by the active radar

mounted on the UAV. The radar can measure the range

and bearing information determined by relative state

so ¼ ðx; y; _x; _yÞT
, which is represented by ðx; yÞ ¼ ðxt � xu;

yt � yu; _xt � _xu; _yt � _yuÞ. Next, it is necessary to illustrate the

observation model.

Observation model

In this work, the UAV only installs one radar as the mea-

suring sensor. The airborne radar for target tracking

Zhao et al. 3



provides measurement of the target in the sensor CS, which

is a polar CS with range r and bearing ’. The measurement

model with noise at time k is

ok ¼
rk

’k

� �
¼ hðso

kÞ þvk ð4Þ

where hð�Þ is the observation function. Then, hð so
kÞ indi-

cates the true position of the target in the polar CS of the

sensor and vk is the measurement error. It is usually

assumed that the measurement error follows a zero-mean

normal distribution in the sensor CS, that is

ok jsok :*NðhðsokÞ;CðsokÞÞ

For the radar, the error-free target position in the sensor

polar CS is represented as

h ðsokÞ ¼
h1ðsokÞ
h2ðsokÞ

" #
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

k þ y2
k þ h2

q
arctanðyk=xkÞ

2
4

3
5 ð5Þ

As for an active sensor, the measurement error is depen-

dent on the signal-to-noise ratio which is proportional to the

fourth power of distance. Then the covariance matrix of the

measurement is

CðsokÞ ¼
r4

ks
2
r 0

0 s2
’

" #
ð6Þ

where sr and s’ are the standard deviations of the range

and bearing measurements, respectively. In equation (6),

r4
k indicates the effect of the fourth power decay of the

echo signal strength on the variance of the distance mea-

surement. Strictly speaking, the power decay should be

related to the actual distance rather than the distance mea-

surement. Since the actual distance is not available at the

UAV, we use distance measurement rk instead.

This study considers a UAV decision-making problem,

in which the goal is to design an algorithm to control a

UAV for target tracking. Specifically, the UAV motion

model is simplified as equation (1). It is mounted with a

sensor that measures the relative position of the target. The

observation model (equation (4)), combined with the

assumed target model (equation (2)), is used to estimate

and predict the states of the target. Based on these states

the UAV makes action decision. The values of actions are

limited to the maximum and minimum range. The objective

is to obtain better observation for a more accurate estima-

tion of the target state.

Tracking in Cartesian coordinate

In the target tracking problem, the target’s movement is

described in Cartesian coordinate, while the measurement

is available physically in the sensor polar CS. Thus, it is

necessary to convert the measurements from the polar CS

to the Cartesian coordinate. Specifically, in the Cartesian

CS (selecting the UAV as the origin), the measurement

model is converted to the following form

o0k ¼ Hsok þv0k ð7Þ

where the measurement matrix is

H ¼
1 0 0 0

0 1 0 0

� �
ð8Þ

In equation (7), o0k is the relative target position mea-

sured by the sensor, and v0k stands for the resulting mea-

surement error.

Defining wð�Þ as the transition function from polar CS to

Cartesian CS, that is

x

y

� �
¼ w

r

’

� �� �
¼

r cos’

r sin’

� �
where ðx; yÞ and ðr; ’Þ are the coordinates in the polar CS

and the Cartesian CS, respectively. Then, the relative posi-

tion from the target to the UAV in Cartesian coordinate,

defined as Hsok , has the following form

Hsok ¼ wðok �vkÞ ð9Þ

By Taylor series expansion of wðok �vkÞ around the

noisy measurement ok , we obtain

Hsok ¼ wðokÞ � JðokÞvk þ OðvkÞ ð10Þ

where OðvkÞ stands for the higher order ð� 2Þ terms, and

the Jacobian matrix JðokÞ is evaluated at the noisy mea-

surement ok

JðokÞ ¼
qw
qok

¼ h

rk

cosð’kÞ �rk sinð’kÞ
sinð’kÞ rk cosð’kÞ

� �
ð11Þ

Considering wðokÞ ¼ o0k and the equation (10), the

exactly converted measurement model (equation (7)) can

be written as

o0k ¼ Hsok þ JðokÞvk �Oðvk|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}Þ
v 0

k

ð12Þ

The standard approach usually ignores OðvkÞ in the

exact model (equation (12)), and treats v0k approximately

as zero-mean with covariance

RðsokÞ ¼ JðokÞCðsokÞJðokÞT ð13Þ

Target tracking decision-making based
on IG

The decision-making problem of UAV under uncertain

environment is modeled as a POMDP. In the POMDP

framework, the decision-making program obtains measure-

ments from the airborne radar and makes the action deci-

sions for the UAV. For more measurement information of

the target, we should predict the states of the target and

make appropriate action decisions based on a certain

4 International Journal of Advanced Robotic Systems



criterion. In this article, we represent the reward criterion

by the accumulative information, which is derived from the

FIM in the IG. This section introduces the POMDP-based

target tracking algorithm, especially the calculation of the

decision-making criterion. In the second part of this sec-

tion, we describe the traditional criterion and analyze its

shortcomings. Then we propose the decision-making cri-

terion based on the IG in the last part of this section. The

key point is that we use the iterative calculation form of the

FIM for the range-and-bearing radar to redefine the

decision-making criterion in essence.

The framework of POMDP-based decision-making

POMDP is a stochastic process controlled by a decision-

maker. In the target tracking problem, since the system

state transition is a random process with the Markov prop-

erty, and the states of the target cannot be obtained

directly, we use the POMDP to select a sequence of

actions for the UAV to reduce the uncertainty of target

localization. In general, an infinite horizon POMDP is

defined by a tuple M ¼ hS;U;T;� ;O;R; b0i. The fol-

lowing defines the key components of the POMDP with

respect to a target tracking problem.

� States. The state set S is a discrete Borel space and

the state at time k, including the state of the UAV su
k

and the state of the target st
k , and the calculated

relative state of the target to the UAV sok .

� Actions. In this system, the action of the UAV is the

control quantity uk 2 U. Specifically, the action

decision at time k is given by uk ¼ ½ak ;fk �T.

� State transition probabilities. T is a set of condi-

tional transition probabilities between states. The

UAV state transition function is the kinematic equa-

tion (equation (1)). The target state is unknown and

approximated by a constant velocity model (equa-

tion (2)).

� Observations and observation probabilities. � is

the set of possible observation, and O is the set of

conditional probabilities of the observation when an

action is performed. In the tracking system, the UAV

is assumed to be fully observable. We use a radar to

measure the target state. The observation law in the

sensor CS is equation (4) and the linearized conver-

sion in the Cartesian CS is equation (7). We use the

latter, when we estimate the current target state

based on historical data. However, when we predict

the accuracy of target location, we use the former,

which is the research subject of this article.

� Belief state. Belief state is the distribution of the real

state. Specially, the state distribution at time k ¼ 0 is

b0. Since the UAV states are fully observable, the

belief state is bkðsuÞ ¼ dðsu � sukÞ. At the same time,

the probability distribution of target positions is

assumed to be Gaussian, and can be expressed

approximately as bkðstÞ*Nð�k ;PkÞ, where �k and

Pk are derived from the standard KF. If an optimal

action policy exists in POMDP, there is an optimal

action sequence that only depends on the belief state

feedback.31 Then we can make decision according to

the belief state.

� Reward function. The real-valued reward function R

defines the reward of the action. It is used to com-

pare different alternative action policies. In the tar-

get tracking problem, the core of evaluation is the

accuracy of the target location. Some literatures

describe it as the trace of covariance. In our work,

for the purpose of better reflecting the essential char-

acteristics of radar measurement, we propose the IG

method to represent the reward function.

Remark 1. Partially observable Markov process. At each

time period, the system is in some state s 2 S. The agent

takes an action u 2 U , which causes the transition of the

system to state s0 with probability Tðs0js; uÞ. At the same

time, the agent receives an observation o 2 � which

depends on the new state of the system with probability

Oðojs0; uÞ. Finally, the agent receives a reward equal to

Rðs; uÞ. Then the process repeats.

The goal of the POMDP for the agent is to choose

actions at each time step that maximize its long-run average

expected reward

Jp1ðsÞ ¼ lim inf
H!1

1

H
E
XH�1

k¼0

Rðsk ; ukÞjs0 ¼ s

" #
ð14Þ

where H is the time horizon. In our target tracking system,

the aim of decision-making is to find the optimal control

policies for the UAV. This strategy is to make the UAV

better able to observe and track the target, so as to max-

imize the accuracy of the target position estimation.

A policy is a sequence p ¼ fpkg of probability pk on the

action space given the state (belief state) and action history

satisfying the constraint. We denote by D the set of all pol-

icies. Once we have a POMDP model and a set D of admis-

sible policies, we need to express a performance index or

objective function. It is a function to assess the system’s

performance when a given policy p 2 D is used and the

initial state (or belief state) of the system is s (or b). Then

we are able to select the optimal strategy. Unlike the actual

state, the belief state is completely observable. It is necessary

to represent the expected reward based on the belief state b

R0ðb; uÞ ¼
ð

Rðs; uÞbðsÞ ds ð15Þ

This reward R0ðb; uÞ then represents the expected reward

function of POMDP. The objective is transformed into

Jp1ðbÞ ¼ lim inf
H!1

1

H

XH�1

k¼0

R0ðbk ; ukÞjb0 ¼ b

" #
ð16Þ

Zhao et al. 5



according to the nominal belief state optimization.4 The

objective function is approximated as follows

Jp1ðbÞ � lim inf
H!1

1

H

XH�1

k¼0

Rðŝk ; ukÞ




ŝo ¼

ð
sbðsÞ ds

" #
ð17Þ

where ŝ1; ŝ2 ; ::: is a nominal belief state sequence. The

nominal target belief state sequence can be obtained from

the target state transfer law (equation (2)) with exactly

zero-noise sequence.

Covariance-based conventional criterion function

In some literatures,3,4 the belief of the target mentioned

above can be identified with the state of the tracker

ð�k ;PkÞ, which are the posteriori state estimation and the

posteriori error covariance matrix, and are given by

�kþ1 ¼ A�k

Pkþ1jk ¼ APkA T þQk

Pkþ1 ¼ P�1
kþ1jk þH T

kþ1Rkþ1
�1Hkþ1

h i�1

8>><
>>: ð18Þ

The reward function is defined to represent the uncer-

tainty of the target location, which is usually represented by

the mean-squared error between the tracker and the target.

Then, the objective function is as follows

Jp1ðbÞ � lim inf
H!1

1

H

XH�1

k¼0

ð� trPkþ1Þ
" #

ð19Þ

The Kalman filtering equation is a linearized conver-

sion of the actual system model. The measurement

model in the sensor CS is equation (4), and the observa-

tion model in the Cartesian CS is in the form of equation

(7). In contrast with the long-run reward from the trace

of the Kalman filtering error covariance matrix (equa-

tion (19)), the FIM in the IG processes the original

measurement data of the radar. It is derived from the

measurement model in the natural sensor CS directly

and has a clearly physical meaning, which reflects the

volume of information from the measurement data. The

greater the cumulative information is, the more accurate

the measurement would be. Hence the Fisher informa-

tion from the IG can better evaluate the accuracy of the

predicted states. We use the Fisher information distance

(which will be explained later) on the statistical mani-

fold as the basis of the POMDP.

Cumulative information in IG

IG23 offers a comprehensive result about statistical models

by regarding them as geometrical objects. From the per-

spective of IG, the set of belief states forms the statistical

manifold of a particular geometric structure. The informa-

tion is defined on the Fisher information divergence

between the current belief state and the belief state after a

measurement has been made. The cumulative information

which the sensor may acquire from the target is character-

ized by the Fisher information distance. In a discrete mea-

surement sampling scenario, the sum of the determinant of

FIM is used to approximate the information distance.32

In this article, the determinant of the FIM is used to

characterize the volume of information obtained by mea-

surements. The performance index is the expected long-run

average reward, therefore, it is a feasible way to predict the

information each time through iterations. The following

introduces the iteration process of the discrete FIM of the

radar measurements.

We define Gk to express the FIM at time k, then the

reward of the POMDP is Rðsk ; ukÞ ¼ jGkþ1j, where j � j
denote the determinant of the matrix. When we predict the

volume of information in the coming period of time, the

FIM at time k is defined5,23 by

Gk ¼ E ðrs ln pðo1:k jskÞÞðrs ln pðo1:k jskÞÞT
h i

ð20Þ

where pðo1:k jskÞ is the batch measurement likelihood. In

this tracking scenario, the batch measurement likelihood

is defined as equation (21)

pðo1:k jskÞ ¼
Yk

m¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjCðsk ;mÞj

p
exp

�
� 1

2
ðom � hðsk ;mÞÞTC�1ðsk ;mÞðom � hðsk ;mÞÞ

�
ð21Þ

where hðsk ;mÞ denotes error-free target position of the

sensor polar, evaluated at time m in terms of the state sk

at k. That is to say, hðsk ;mÞ;m ¼ 1; 2; . . . ; k is given by

h ðsk ;mÞ ¼
h1ðsk ;mÞ
h2ðsk ;mÞ

" #
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxk;m

2 þ Dyk;m
2 þ h2

p
arctan

Dxk;m

Dyk;m

0
@

1
A

2
6664

3
7775
ð22Þ

Besides, Cðsk ;mÞ is the measurement noise covariance

evaluated at time m in terms of the state sk at k, which is

given by

Cðsk ;mÞ ¼
r4

k;ms
2
r 0

0 s2
’

" #
ð23Þ

and

r2
k;m ¼ Dxk;m

2 þ Dyk;m
2 þ h2

In the above equations, considering the linear motion

target model described previously, we have

Dxk;m ¼ xt
k � ðk � mÞT _xt

k � xum

Dyk;m ¼ yt
k � ðk � mÞT _yt

k � yum

�
ð24Þ
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Then the FIM at time k can be calculated in a recursive

form as follows

Gk ¼ Gk�1 þ DGk ð25Þ

where

½DGk �ij ¼
qhðsk ; kÞ

qsi

2
4

3
5T

C�1ðsk ; kÞ qhðsk ; kÞ
qsj

2
4

3
5

þ 1

2
tr

�
C�1ðsk ; kÞ

qCðsk ; kÞ
qsi

C�1ðsk ; kÞ
qCðsk ; kÞ

qsj

�
ð26Þ

In equation (26), ½DGk �ij represents the i th row and the j

th column of elements in the matrix. The specific derivation

process is given in the Online Supplementary material.

Since the sensor collects measurements only at discrete

points, the accumulative information should only consider

those points when the sensor takes measurements. It is

assumed that the decision-making points are consistent

with the measurement points. Therefore, the sum of deter-

minant of the FIM29 is used to approximate the accumula-

tive information ðsu1; su2; :::Þ, that is

Dðs1; s2 ; :::Þ �
X1
k¼1

jGk j ð27Þ

The reward function based on the IG is

Jp1ðbÞ � lim inf
H!1

1

H

XH�1

k¼0

jGkþ1j
" #

ð28Þ

The larger the volume of information is, the more accu-

rate the estimation of the target state will be and the better

the tracking performance the algorithm will have. Our

decision-making algorithm aims to find the optimal

sequence of actions which maximizes the predicted cumu-

lative information. From equation (20), we obtain that the

FIM is determined by the relative position between the

UAV and the target. However, the states of the target are

unobservable. Thus, when we make decision, we use the

predicted belief states to present the reward of the POMDP,

that is, the predicted determinant of the FIM. That is to say,

we use

�kþ1 ¼ A�k

to predict the belief state of the target, and � ¼
ð
sbðsÞ ds is

used to replace the real state.

Approximate receding horizon approach
for POMDP

Since it is intractable to solve the policy for maximizing the

objective function (equation (17)) exactly, we use an fixed

finite-horizon POMDP to create a policy to solve the

infinite-horizon POMDP approximatively in this article,

which is called “approximate receding horizon approach.”

Algorithm design

The idea of the approximate receding horizon approach is

that at the current time t, we obtain the optimal policy

sequence of the POMDP over a finite horizon ½t; t þ H �,
and at each time t, we predict the future states over the

horizon length H based on the current state of the system.

The finite horizon H indicates the number of predicted

steps. Once an optimal sequence is found, the first action

is applied as a control command to the UAV and the whole

process repeats. We can take the process at time 0 as an

example for analysis. That is, the current state is assumed to

be s0. Then the problem boils down to find the sequence of

actions over a time horizon H to maximize the expected

cumulative reward.

The specific algorithm is as follows.

Algorithm analysis

In this section, we analyze the performance of the approx-

imate receding horizon approach for infinite-horizon aver-

age reward.

When we say the algorithm is stable, we mean that the

difference between the value function and the optimal

value function is bounded. Then the proposed algorithm

is stable and the following theorem can be obtained.

Theorem 1. By defining the receding H-horizon control

policy as pH 2 D with H <1, we have

sup
b

jVpH

1 � V �1j 	
jjR0jj
1� a � a

n ð29Þ

Algorithm 1. The approximate receding horizon algorithm
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Proof. Recall that the state of the UAV is observable and

controllable, and the state of the target obeys normal

distribution.

The expectation of the system state at time k is

EðskÞ ¼ ðsuk ; �kÞ ð30Þ

Then we have EðskÞ 2 S, since the real state space S is a

Borel space.

Define ŝ ¼ EðsÞ, K ¼ fðŝ; uðŝÞÞjŝ 2 S; u 2 Ug. Since

the state space is continuous and compact, the system satis-

fies the ergodicity conditions. In other words, there exists a

state expectation ŝ� 2 S such that the transition probability

pðŝ�jkÞ ¼ 1 for all k 2 K.

The ergodicity condition can be expressed in another

way.33 That is, there exists a constant a < 1 such that

sup
k;k0
jjpð�jkÞ � pð�jk0Þjj 	 2a

where the sup is over all k and k0 in K, and k � k denotes the

variation norm for signed measures.

Recall the one-step reward R0ðbk ; ukÞ of the POMDP

based on the IG. The reward is the accumulative informa-

tion when the system state transforms from sk to skþ1.

Thus we have

R0ðbk ; ukÞ ¼ jGkþ1j ð31Þ

where Gkþ1 is deduced from equation (25). The determi-

nant of the FIM is:

jGkþ1j ¼
8r2

kþ1s
2
r þ 1

r6
kþ1s

2
rs2

’

ð32Þ

The smallest distance between the target and the UAV is

the height of the UAV which is h. From this it can be seen

that the reward is bounded, that is

jR0j 	 8h2s2
r þ 1

h6s2
rs2

’

The above specification shows that the system satisfies

the condition under which Hernández-Lerma33 show that

0 	 V �1 � VpH

1 	
jjR0jj
1� a � a

n ð33Þ

We can see that the receding horizon approach provides

a good approximation for the optimal infinite-horizon aver-

age reward and the error approaches zero geometrically

with a.

The decision-making of UAV needs high real-time per-

formance, so we tend to choose algorithm which is lower in

the complexity of computation time. Next, the article ana-

lyzes the complexity of the computation time of the objec-

tive function in our algorithm (equation (28)), and

compares it with that based on KF (equation (19)).

Using the reward derived from the IG to calculate the

objective function, we should obtain Gk from iterative

computations of equations (39) to (41) in the Online

Supplementary material. In the same way, using the reward

derived from the KF to compute the objective function, we

need to obtain Pk from equation (18) and compute the

measurement covariance Rk in the Cartesian CS. Accord-

ing to the above analysis, the required operations for the

IG-based objective function and the KF-based objective

function during time horizon H are listed in Table 1. In

these operations, we ignore the calculation of state transi-

tions of the UAV and the target, which are the same in both

algorithms.

It is clearly shown in Table 1 that the required oper-

ations, either addition and multiplication or other opera-

tions of the IG-based objective function (equation (28)),

are much less than those of the KF-based objective func-

tion (equation (19)), in other words, it can greatly

improve computational efficiency to use information

accumulation as the objective function of the optimal

decision-making.

Remark 2. Several notes on operations. (1) The operations

of matrix inversion in equation (18) are counted based on

the adjoint matrix inversion method. (2) In the following

simulation, the MATLAB command fmincon is used to

minimize the objective function. (3) Due to the randomness

of the tracking system, the difference of initial conditions,

and the limitation of iteration steps, the computation time

of optimal strategy is not linear with the computational

complexity of the objective function and the tracking error

also has a certain randomness.

Simulation results

This section presents the simulations to verify the perfor-

mance of the proposed algorithm, and compares the simu-

lation results with other method. In the comparative

algorithm, the trace of the covariance in the KF is used

as the objective function.

The simulation is implemented in MATLAB R2016b

(maci64), where the action decision is obtained from the

MATLAB command f mincon. The speed of the UAV is

limited between 25 m=s and 35 m=s, and the fixed flight

height is set to 100 m. To corroborate the effectiveness

of our algorithm for different target movements and

sensor parameters, we design four groups of typical

simulations first.

In these four experiments, the time horizon H is set to

6,3 which means that in every time step, the UAV plans 6

future time steps in advance, but only the first action is

Table 1. Required operations for the IG-based objective function
and the KF-based objective function.

Addition Multiplication Other operations

IG 30H�2 59H 0
KF 273H�1 635H 1H sin, 1H cos

IG: information geometry; KF: Kalman filter.
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implemented. In each simulation group, we carry out 200

Monte Carlo simulation experiments. Each experiment per-

forms 100 steps and takes 0:5 s per step. In the simulations,

the root-mean-square error (RMSE) between the target and

the tracker is employed to measure the location estimation

accuracy for different algorithms (our algorithm and a KF-

based algorithm; the KF-based algorithm means the perfor-

mance criterion is based on the trace of the corresponding

covariance matrix). Additionally, the computation time is

taken into account for comparing the real-time perfor-

mance of different algorithms.

In the first two groups of simulation experiments, the

target is subjected to rectilinear motion, and the average

linear velocity of the target is 15 m=s. The initial position of

the UAV is ð0; 50Þ, and the initial position of the target is

ð0; 0Þ. Figure 1 shows the trajectories of the UAV for target

tracking.

In the first simulation group, the sensor measurement

standard deviation parameters are sr¼ 10�4=m,

s’ ¼ 5
 10�3p rad. Figure 2(a) and (b) compares the two

algorithms in RMSE and computation time, respectively.

From Figure 2, we can see that our algorithm has a very

close performance compared to the KF-based algorithm in

the sense of location RMSE. Nevertheless, our algorithm is

much faster than the KF-based algorithm, and the compu-

tation time of our algorithm is usually half than that in the

KF-based algorithm.

In the second simulation group, the sensor measurement

standard deviation parameters are sr ¼ 8
 10�4=m,

s’¼ 10�2p rad. Figure 3 shows the performance of the

tracking. From Figure 3(a), we can see that our algorithm

gradually has a better RMSE performance; and after the

80th step, our algorithm outperforms the KF-based algo-

rithm. From Figure 3(b), we can see that the computation

time for our algorithm is usually half of that in the

KF-based algorithm.

For the first two simulation groups, when the sensor

measurement noise is larger, our proposed method per-

forms better. Moreover, the decision-making takes only

half of the computation time which is required by the

KF-based algorithm, which is significant in the practical

application of UAVs.

In the next two simulation groups, the target moves in a

circle, and the angular velocity of the target is 0:1 rad=s,
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Figure 1. The trajectories of a UAV tracking a rectilinear motion
target. UAV: unmanned aerial vehicle.
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Figure 2. The performance of group I: (a) the RMSE of tracking
and (b) the computation time. RMSE: root-mean-square error.
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Figure 3. The performance of group II: (a) the RMSE of tracking
and (b) the computation time. RMSE: root-mean-square error.
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and the radius of motion is 200 m. The UAV’s initial posi-

tion is ð0; 100Þ, and the initial position of the target is

ð0; 200Þ. Figure 4 shows the trajectories of the UAV and

the target.

In the third group of simulations, the sensor measure-

ment standard deviation parameters are set to sr¼ 10�4 m,

s’ ¼ 5
 10�3p rad. The following also illustrates the

simulation results of tracking a target moving circularly

in Figure 5(a) and (b).

In the fourth group of simulations, the sensor measure-

ment standard deviation parameters in group III are

sr ¼ 8
 10�4 m, s’¼ 10�2p rad. Figure 6(a) and (b) com-

pares the two algorithms in RMSE of tracking and average

computation time.

As it shows in the last two scenarios, our method pro-

duces better tracking performance and is more time-

efficient in solving.

The simulations indicate that the IG-based algorithm

can obtain strategies faster in different sensor measurement

precision and target movement forms. As shown in the

previous section where the computational complexity of

the objective function is analyzed, the decision-making

algorithm based on the IG can greatly save the computation

time. Besides, when the observation error increases, the

tracking accuracy decreases.

In addition, we also present partial numerical results.

For each set of experiments, we calculate the average dis-

tance error and average computation time. We summate

every step distance error over the simulation runtime, and

the mean of these errors (from each Monte Carlo run) is

called the average tracking error. Similarly, for every step

of the simulation runtime, we record the average of com-

putation time, which is called the average computation

time. The data statistics are listed in Table 2, and the better

data are bolded. Obviously, our algorithm is more time-

efficient in solving in each simulation. It is clear that the

calculations of inverse matrix in KF cost more time than

our method. It is also important to emphasize that the deci-

sion time for each step is shorter than the predefined time

(0:5 s) per step. That is to say, the algorithm can meet the

requirement of real-time calculation. However, in view that

IG method takes shorter for decision-making, there is a

greater degree of pre-improvement of the performance of
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Figure 4. The trajectories of a UAV tracking a circular motion
target. UAV: unmanned aerial vehicle.
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Figure 5. The performance of group III: (a) the RMSE of tracking
and (b) the computation time. RMSE: root-mean-square error.
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Figure 6. The performance of group IV: (a) the RMSE of tracking
and (b) the computation time. RMSE: root-mean-square error.
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decision-making by the short decision period. At the same

time, we notice that the tracking error of the IG-based

algorithm does not always perform better than the KF-

based algorithm. The main reason is that, in this discrete

measurement sampling scenario, the information distance

is approximated by the sum of the determinant of FIM,

which sometimes reduces the estimation accuracy for some

scenarios. However, as shown in Figure 5(a) and (b) and

Table 2, the IG-based algorithm performs better for high-

order motion system, such as the circular motion target.

Nevertheless, the IG-based method is more time-efficient

than the KF-based method, which is more suitable for prac-

tical applications, especially when the computational

resource is limited.

In order to study the effect of different prediction hor-

izons on computation time and tracking performance, we

also carry out two groups of experiments. In these two

groups, the movement of the target is different and each

group including 200 times Monte Carlo simulations at dif-

ferent time horizons. The average computation time and the

location RMSE of tracking for these 200 experiments with

different time horizons are presented in Figures 7 and 8.

These figures reflect that the computation time reduces

and the tracking performance gets worse with the time

horizon decreasing. Therefore, when we select the time

horizon, it need to make a trade-off between the computa-

tion load and the tracking performance.

Table 2. Statistical results of average computation time and average tracking error.

Group

Computation
Time Tracking error

Group

Computation
time Tracking error

KF IG KF IG KF IG KF IG

Group I: rectilinear motion,
sr¼ 10�4=m,
s’ ¼ 5
 10�3p rad.

0.2663 0.1397 0.9396 2.1303 Group III: circular motion,
sr¼ 10�4=m,
s’ ¼ 5
 10�3p rad.

0.2772 0.1421 5.1901 5.8166
0.2502 0.1383 1.4695 1.5368 0.2536 0.1653 4.7843 5.4185
0.2461 0.1149 1.5470 1.6527 0.2524 0.1295 5.2428 4.2371
0.2377 0.1144 1.6872 1.8515 0.2386 0.1312 5.1264 4.8794
0.2237 0.1175 1.0837 2.5165 0.2471 0.1326 4.5247 5.0728
0.2258 0.1326 1.3376 1.7106 0.2642 0.1289 5.6331 5.4632
0.2329 0.1194 1.2946 1.6813 0.2613 0.1171 5.0692 5.4448
0.2264 0.1119 1.3023 2.0482 0.2497 0.1198 5.1437 4.5239
0.2314 0.1030 0.9930 1.1756 0.2338 0.0910 5.3624 5.4249
0.2310 0.1203 1.2539 1.2345 0.2273 0.1090 5.1987 5.2313

Group II: rectilinear motion,
sr ¼ 8
 10�4=m,
s’¼ 10�2p rad.

0.2758 0.1956 12.1068 20.2923 Group IV: circular motion,
sr ¼ 8
 10�4=m,
s’¼ 10�2p rad.

0.2805 0.1775 31.8603 25.7812
0.2415 0.1720 16.1810 89.6004 0.2595 0.1934 30.2535 25.0373
0.2483 0.1628 17.9907 24.6986 0.2580 0.1735 22.3440 29.4811
0.2353 0.1500 18.2345 23.9607 0.2574 0.2027 34.4343 31.0254
0.2318 0.1740 19.6474 23.1907 0.2360 0.1651 24.2302 40.2282
0.2367 0.1693 11.5808 29.1510 0.2461 0.1739 26.1126 27.7403
0.2255 0.1738 8.8416 25.7922 0.2497 0.1649 23.2740 22.4048
0.2594 0.1649 12.5577 21.2700 0.2426 0.1734 28.6919 25.3280
0.2889 0.1641 30.6833 28.5152 0.2452 0.1635 30.4491 17.5406
0.2686 0.1654 19.0282 23.3245 0.2522 0.1677 25.4797 26.2637

KF: Kalman filter; IG: information geometry.
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Figure 7. The UAV tracks the target of linear motion with dif-
ferent time horizons, (a) the RMSE of tracking and (b) the com-
putation time. RMSE: root-mean-square error; UAV: unmanned
aerial vehicle.
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Conclusion and future work

In this article, we have studied the moving ground target

tracking problem of a fixed-wing UAV. More specifically,

a POMDP-based action decision-making method has been

proposed, which gives the optimal sequence to maximize

the target information observed by the radar. In this

method, we have introduced the FIM as the criterion of the

proposed method with the aid of IG. Simulation results

corroborate the effectiveness of our proposed method; and

show that compared to the classical KF-based method, our

method has higher time-efficiency in computations. In our

future work, we would extend our method to multi-target

tracking scenarios.
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