
Yadav et al. Biol Res  (2018) 51:23  
https://doi.org/10.1186/s40659-018-0173-8

REVIEW

A Nexus model of cellular transition 
in cancer
Mukesh Yadav1*, Payal Chatterjee1,2, Simran Tolani1, Jaya Kulkarni1, Meenakshi Mulye1, Namrata Chauhan1, 
Aditi Sakhi1 and Sakshi Gorey1

Abstract 

The exact cause of cancer is one of the most immutable medical questions of the century. Cancer as an evolution-
ary disease must have a purpose and understanding the purpose is more important than decoding the cause. The 
model of cancer proposed herein, provides a link between the cellular biochemistry and cellular genetics of cancer 
evolution. We thus call this model as the “Nexus model” of cancer. The Nexus model is an effort to identify the most 
apparent route to the disease. We have tried to utilize existing cancer literature to identify the most plausible causes 
of cellular transition in cancer, where the primary cancer-causing agents (physical, chemical or biological) act as 
inducing factors to produce cellular impeders. These cellular impeders are further linked to the Nexus. The Nexus then 
generates codes for epigenetics and genetics in cancer development.
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Background
Cancer research has made an outstanding progress to 
identify and tackle the probable causes of the disease, 
which stands to be unique with respect to the organs 
affected and the genetic makeup of the individuals. The 
disease has been explored for its exact mechanism from 
all possible scales of molecular biology to deep insights 
of genetics. Various theories have covered long range 
of possible causes of cancer viz. cellular fluids, cellu-
lar events, tissue level modifications and even genetic 
aberrations [1–9]. Despite the fact that, different types 
of cancer differ in their primary causes, linked tissues, 
progression patterns and converging pathophysiology, 
there appears many overlapping features in common. 
These common features are accelerated cell division, 
altered, rewired and escalated metabolic pathways, [10, 
11] distorted shape, abnormal nucleus, [12] inefficient 
mitochondria, acidic intracellular environment, contact 
inhibition, loss of apoptosis, angiogenesis, metastasis and 
many others. These common and overlapping features 

indicate an unidentified underlying common cause, 
which is although obvious, need some reflection.

In the last decade, carcinogenesis has been consistently 
proven to be an evolutionary process and thus it must 
have a purposeful cause [13]. This evolutionary paradigm 
begins with cellular environment, travels through bio-
chemistry and finally codes out in terms of its genetics. 
Here, cellular biochemistry plays an amalgamating role 
between environment and genetics. In order to identify 
the exact cause and mechanism of cancer, the purpose 
(why) is more important than the cause (how). Present 
work connects the well-known and lesser known findings 
in cancer research to highlight the underlying transition 
route through which a normal and healthy cell suppos-
edly transforms to its cancerous phenotype.

Methodology
Cancer research has been exploring all possible dimen-
sions to identify the exact causes of cancer. Present can-
cer hypothesis, the Nexus model, is an effort to encircle 
primary cancer causes, cellular biochemistry, epigenetics 
and genetics in a single model where each of them acts as 
a node in transition route. The Nexus model explains the 
purpose behind cancer evolution and so as the cause.
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The Nexus model
This model proposes that the probable transition route 
opens with the primary inducers (established primary 
causes) such as physical, chemical, biological and life-
style related causes (Fig. 1). Such primary inducers then 
interact with the cellular biochemical pathways and gen-
erate reactive oxygen and nitrogen species (RONS) along 
with other free radicals, also known as cellular imped-
ers (Fig. 1). The RONS, free radicals and viruses can also 
bring random genetic aberrations, which then generates 
structurally and functionally altered regulatory molecules 
(biomolecules) involved in metabolic pathways [14–16]. 
The interference of the cellular impeders thus results 
in the accumulation of initial substrates, intermediates 
or partial pathway products. Such an accumulation of 
the biologically insignificant metabolites congest cellu-
lar traffic thereby leading to a cellular environment that 
hampers the breakdown of normal metabolic pathways. 
This further develops an overload of residual metabolites 
in the cellular environment. Such a scenario results in the 
loss of intercellular signaling in a tissue and ultimately 
cause prolonged cellular biochemical stress that contin-
ues through many cell cycles, and eventually alters the 
cellular microenvironment. Such a complete alteration 
of the cellular microenvironment and the loss of inter-
cellular signaling then creates perfect platform to initi-
ate chain of events responsible for epigenetic and genetic 
changes [17]. Such events cause prolonged biochemical 
stress, thereby inducing considerable changes in stressed 
cells and marking the beginning of cellular events leading 
to cancer. Such events are hereby called as the Nexus. Ini-
tially, such mutations are random and result into expres-
sion of biomolecules which may either add to or reduce 

the biochemical stress (the Nexus) [18], better known as 
positive or negative cellular feedback. While the “posi-
tive feedback” refers to the survival of the mutations that 
reduces cellular stress, “negative feedback” refers to the 
mutations that might contribute to the increase of sub-
strates, intermediates and partial products. The positive 
feedback is evidently repeated in the forthcoming cycles 
featuring mutational selection, resulting into newly 
evolved genetic machinery powered by such selective 
mutations [13, 18, 19]. On the other hand, such muta-
tions are also capable of consuming residual metabolites 
via rewired metabolic pathways and have high rates of 
proliferation and turn out to be cancerous [20–27]. Over 
time, survival and accumulation of selective mutations 
which aid to positive feedback result in cancer phenotype 
(cancer evolution) of a healthy cell. The word ‘Nexus’ jus-
tifies the role of biochemical stress as the junction where 
strings originated from primary inducers further travel to 
epigenetics and genetics in cancer evolution.

In order to substantiate the Nexus Model, experimen-
tal and established evidences have been composed below 
under Phase I, Phase II and Phase III.

Phase I: primary inducers and cellular impeders
Oxidative stress is a condition which results due to the 
production of oxidative radicals, mostly reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) that 
exceeds the quenching limit of cells [28]. RONS can be 
generated by a number of inflammatory reactions, physi-
cal and chemical factors [28–30] (Fig.  2). It is an estab-
lished fact that lifestyle factors, which include cigarette 
smoking, sun exposure, workplace, diet etc., affect the 
chances of acquiring cancer [31, 32].

Fig. 1  The overall diagram for the Nexus model representing the most probable transition route in cancer evolution
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According to the National Cancer Institute, obesity has 
been found to be prominently associated with the risk of 
cancer, wherein the United States alone, in 2012, 28,000 
newer cancer cases in men and 72,000 newer cases in 
women were linked to obesity and being overweight [33]. 
Various factors released by the adipose tissues result in 
insulin resistance and consequent production of pro-
inflammatory factors like tumor necrosis factor-α (TNF-
α), interleukin-6 (IL-6) and cytokines which end up in 
unusual production of ROS [34, 35]. Another factor is UV 
radiation that has a prominent role in causing skin can-
cer [36]. Most of the Ultra Violet (UVA) energy is taken 
by the photosensitizers in the cells which are believed 
to generate ROS [37]. Tobacco, cigarette smoke, alco-
hol, naturally occurring fibrous substance-asbestos and 
metal toxicity are some chemical factors which are found 
to be responsible for the production of RONS. Tobacco 
contains nicotine and structurally similar alkaloids con-
sisting of secondary and tertiary amines which react with 
nitrite forming nitrosamines [38]. In case of secondary 
amines, nitrosation is an exceptionally fast process, in 
which –H atom attached to nitrogen is replaced by –NO 
[39, 40]. The –NO group being a potential reactive spe-
cies causes oxidative stress [41]. Exposures to smoke pro-
duced by cigarettes can be blamed for the oxidative stress 
as it persuades the aggregation of misfolded proteins 
and endoplasmic reticulum (ER) stress and consequently 
enhances the production of ROS [42–46]. Ethyl alcohol is 

converted into acetaldehyde in the body which is a bud-
ding cause of ROS production in the cells [47, 48]. Asbes-
tos fibers are known to induce the cells to produce ROS 
due to the iron present on the fibrous silicates [49, 50]. 
Exposure to lethal waste sites, mines and construction 
sites may also subject the workers to high intensity metal 
toxicity of mercury, lead, arsenic etc. [51, 52]. Accumu-
lation of these metals can then lead to the generation of 
ROS in cells.

Red meat, high salt consumption, viral infections and 
physical inactivity encompass the biological factors. 
Antibodies are produced in response to Glycolylneu-
raminic acid [Neu5Gc], which acts as an antigen to the 
body, present in red meat. This interaction results in igni-
tion of inflammatory cells thus producing ROS [53]. High 
salt consumption is also found to be a potential cause of 
ROS production [54]. The increased salt concentrations 
alter the expression of virulence factor CagA (cytotoxin-
associated gene A) in Helicobacter pylori strain 26695, 
which is a highly acknowledged factor for cancer [55]. 
The infections due to Human papillomavirus (HPV) 
cause oxidative stress which in turn damage the cell DNA 
[56, 57]. Exercise is found to decrease the ROS produc-
tion in body [58].

The above discussed factors summarize how physical, 
chemical, biological and lifestyle related factors, termed 
as primary inducers (primary causes) generate RONS and 
other cellular impeders that hamper cellular metabolic 

Fig. 2  Phase I (The Nexus model): Primary cancer causes (physical, chemical, biological and lifestyle) and their sequential products to end up in 
form of RONS
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pathways. Such interference then causes accumulation 
of cellular substrates that eventually converge to forcibly 
induce biochemical stress thereby facilitating the evolu-
tion of cancer. The diagrammatic illustration of the same 
has been provided in Fig. 2.

Phase II: development of biochemical stress (The Nexus)
Generation of reactive oxygen and nitrogen species 
(RONS) in the cells cause havoc in the normal function-
ing of enzymes and other biomolecules participating 
in various metabolic pathways [32]. At normal levels of 
RONS, the combat mechanisms are capable enough to 
maintain homeostasis inside cells, but when their con-
centration exceeds the threshold level, they impede 
the normal functioning inside the cell. High concentra-
tion of RONS interferes or reacts to cause delay, halt 
or even total loss in integrated framework of metabolic 
pathways [59, 60]. As in glycolysis, the elevated concen-
tration of RONS oxidizes and thus inactivates pyruvate 
kinase monomer 2 (PKM2) which is responsible for the 
conversion of phosphoenol pyruvate (PEP) to pyruvate 
[54]. Similarly, high levels of RONS regulate the Hypoxia-
Inducible Factor-1 (HIF1) to create hypoxic conditions, 
which is one of the most common features recorded in 
almost all type of cancer cells [61]. The HIF modulates 
the activity of pyruvate dehydrogenase kinase 1 (PDK1) 
thereby restricting the activity of pyruvate dehydroge-
nase (PDH) which prevents the conversion of pyruvate 
into acetyl CoA, hence cause hindrance in the tricarbo-
xylic acid cycle (TCA) [62–64]. Obstruction in the TCA 
cycle greatly reduces the production of ATP via electron 
transport chain (ETC) [62]. To maintain the redox home-
ostasis, glycolysis adopts to pentose phosphate pathway 
(PPP) which is the principal pathway for de novo syn-
thesis of nucleotides and this shunting of pathway gen-
erates excess of nucleotides [63]. Generation of excess 
nucleotides through PPP pathway causes substrate accu-
mulation in cytoplasm. Generation of excess nucleotides 
through PPP pathway causes substrate accumulation in 
cytoplasm. Partial or complete obstruction of glycolysis 
[65] leads to the accumulation of substrates which were 
supposed to be consumed under normal conditions [66]. 
As all the metabolic pathways are interdependent [67], it 
is safe to say that hindrance in a single pathway leads to 
the upheaval in the other linked or parallel pathways.

The HIF-1 also triggers the activity of hypoxia induc-
ible factor 2 (HIF-2) which causes amassing of lipids 
in the form of droplets [68] and simultaneous loss of 
expression of Von Hippel-Lindau gene (VHL) [69]. The 
loss of VHL expression further leads to the reduced 
expression of β-oxidation genes causing the curtailment 
of the β-oxidation pathway [70]. The reduction in the 
pathway eventually results in the accumulation of lipids. 

Nevertheless, de novo lipogenesis continues by using 
other carbon sources such as acetate and glutamine. The 
de novo synthesis is mediated by an increased level of 
fatty acid synthase (FASN) [71, 72].

Apart from the discussed routes that affect the bio-
chemical pathways, RONS can cause direct damage to 
the DNA thereby causing random mutations [73]. These 
random mutations may occur in the genes that code the 
enzymes involved in the cellular metabolism and again 
lead to the disruption of these pathways, ultimately 
causing accumulation and biochemical stress. One such 
example is of isocitrate dehydrogenase (IDH) muta-
tion. IDH is an enzyme which catalyzes conversion of 
isocitrate into α-ketoglutarate [74] and provides defense 
against oxidative insults. Genetic alteration in the IDH 
gene results in the alteration of its enzymatic activity. 
This mutated form of the enzyme catalyzes the conver-
sion of α-ketoglutarate into 2 hydroxyglutarate (2-HG) 
which is a well-known oncometabolite [75, 76]. High 
concentration of the 2-HG thereby results in abnormal 
DNA hypermethylation in cells [77].

Another metabolite that is involved in creating the bio-
chemical stress (Nexus) is the enzyme fumarate hydratase 
(FH). The RONS guided mutations inactivate FH, which 
leads to the blockage of TCA cycle [78, 79]. It has two 
possible consequences; first, it causes accumulation of 
fumarate and succinate leading to biochemical stress; 
second, the accumulated fumarate reacts with reduced 
glutathione (GSH) producing succinated glutathione 
which is considered to be an oncometabolite [78]. This 
oncometabolite is further degraded by glutathione reduc-
tase releasing GSH which then combines with fumarate 
in an aborting manner consuming NADPH, ultimately 
obstructing RONS detoxifying potential of the mitochon-
dria and thereby increasing the RONS generation [79]. 
Eventually, it leads to substrate accumulation and hence 
elevated biochemical stress (The Nexus) [80].

It can be deduced from the above-discussed facts that 
high RONS concentration resulting from primary induc-
ers can, directly and indirectly, affect the normal cel-
lular metabolic pathways. Any type of delays, layoffs or 
outright loss in any of the metabolic pathways results 
in the accumulation of substrates, intermediates and 
partial products. Accumulation of these components 
then enhances cellular traffic resulting into an overflow-
ing abundance of such products inside the cytoplasm. 
Under such a condition where nutrients are no more 
consumed efficiently, the machinery of bioenergetics 
(ATP) starts to shutdown and the futile intermediates 
and partial products simultaneously increase the cellular 
traffic to generate biochemical stress (The Nexus). The 
prolonged biochemical stress cuts off the intercellular 
signaling in the affected tissues thereby bringing the cells 
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into isolation. Cellular isolation and long term biochemi-
cal stress can be considered as the perfect conditions to 
stimulate epigenetics followed by genetic evolution. The 
above enlisted events can be considered as phase II of 
cellular transition in cancer described in Fig. 3.

Phase III: epigenetics to genetic evolution
Biochemical stress to epigenetics
Long term biochemical stress and interrupted intercellu-
lar signals in linked tissues create a new microenviron-
ment which further acts as a driving signal that prepares 
cells for genetic evolution for biochemical negotiation. 
These driving signals are epigenetic changes which result 
in abnormal gene functions and aberrant patterns of gene 
expression and are usually observed in all types of cancer. 
Growing evidences suggest that the acquired epigenetic 
abnormalities interact with genetic alterations over time 
to cause dysregulation in the routine functioning of cells 
[81]. Few of the supportive findings have been produced 
and discussed below which collectively explain direct 
or indirect effect of RONS and consequent biochemical 
stress on cellular epigenetics and genetics.

Epigenetics involves endowment of instructions based 
on the expression of genes. The major modifications that 
basically comprise epigenetic changes are methylation, 
acetylation and phosphorylation which results in post 
translational histone modifications [82].

The prolonged exposure of the tissues to this RONS 
driven biochemical stress (The Nexus) and other envi-
ronmental factors bring about epigenetic changes which 
marks the initiation of phase III in cellular transition. 
The stressful environment then generates several types 
of responses to combat the stress, most of which lead to 
epigenetic alterations. It is known that oxidative stress 
causes accumulation of unfolded proteins in ER, acti-
vating unfolded protein response (UFR) by altering the 
levels of molecular chaperone GRP78/BiP (78  kDa glu-
cose-regulated protein/binding immunoglobulin pro-
tein), a master regulator of ER functions and contributor 
of tumor cell survival and growth [83, 84].

Stress proteins like heat shock proteins mediate an 
increase in chaperone protein activity which enhances 
protein folding capacity, thus counteracting stress and 
promoting cell survival [85]. DNA lesions caused as a 
result of oxidative stress are genotoxic and also prompt 
genetic mutations [86]. RONS have also found to be 
interfering with the cell death mechanisms, either act-
ing as an anti-senescence agent or through the specific 
stimulation of AIF (apoptosis-inducing factor). It helps 
in suppressing apoptosis and therefore maintains the 
phenotypic transformation of cancer cells [87]. A recent 
study has showed that various oxidized products (dime-
thyl and methionine sulfoxide) may accumulate in the 
cytosol during the initial stages of carcinogenesis and 

Fig. 3  Phase II (The Nexus model): RONS and their interference leading to development of biochemical stress i.e. The Nexus 
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react with nearby nucleotides, leading to aberrant meth-
ylation-induced gene silencing [88]. All these reports 
confirm that biochemical stress as the Nexus creates 
necessity and acts as a source code for epigenetic makeup 
during cellular transition in cancer.

Cancer epigenetics
Cellular transition further continues when these epige-
netic abnormalities lead to disturbances in the cellular 
genetic makeup [89]. Epidermal growth factor receptor 
(EGFR) is one such example which governs the signaling 
pathways involved in the regulation of growth, metabo-
lism, differentiation and apoptosis under stressed condi-
tions through its tyrosine kinase (TK) activity. Mutation 
in the epidermal growth factor receptor-tyrosine kinase 
(EGFR-TK) domain in ovarian cancer has resulted in 
the over production of EGFR [90, 91]. This overproduc-
tion in turn alters the activity of DNA methyltransferase, 
an enzyme which is responsible for DNA methylation 
[92–95]. DNA methylation is the most widely investi-
gated epigenetic modulation in cancer. In normal condi-
tions, it regulates gene expression and inactivation. The 
methyl group covalently attaches to the cytosine residues 
in the CpG dinucleotides [96, 97]. These CpG sites are 
not randomly distributed in the genome; instead the CpG 
rich regions are known as CpG islands and they gener-
ally cluster at the 5′ end of the regulatory region (gener-
ally the promoter region) of many genes [89, 96]. These 
islands are not methylated in normal cells [98]. Hyper-
methylation of CpG islands in the promoter region of 
tumor suppressor genes is a major event in the origin 
of many types of cancer. Hypermethylation of promoter 
region of CpG-islands out-turns into complete or partial 
loss of genes involved in the normal functioning of cell 
including those involved in cell cycle, DNA repair, and 
metabolism of carcinogens, cell to cell interaction, apop-
tosis and angiogenesis [96]. The methylated CpG islands 
are not capable of initiating transcription and hence there 
is an altered gene function. Thus, hypermethylation at 
the promoter region favors the mechanism of mutation 
and helps to accelerate random mutations during cellu-
lar transformation [99]. As a result of hypermethylation 

in the promoter region, the tumor suppressor gene p16, 
which regulates the proliferation rate of the cell is not 
transcribed and thus gets inactivated. Inactivation of 
gene p16 leads to the uncontrolled proliferation of tumor 
cells [100]. Mutations take place in the mTOR (mamma-
lian Target of Rapamycin) signaling pathway due to the 
loss of tumor suppressors or activation of oncogenes pro-
motes tumor growth and survival. Activation of mTOR 
pathway is also reported to take place under stressed 
conditions such as nutrient deprivation [10, 101]. Reports 
which have identified hypermethylation of many genes in 
various cancers are collectively presented in Table 1.

Apart from DNA methylation, there are other cova-
lent modifications like histone modifications which 
control gene activity and play a major role in cancer 
development [100]. Post translational histone modifica-
tions have direct influence on chromatin structure and 
function. It usually results in rewired gene regulation; it 
includes histone deacetylation and histone acetylation 
[102]. Histone acetylation mediated by histone acetyl-
transferase (HAT) and histone deacetylation mediated 
by histone deacetylase (HDAC) plays a crucial role in 
gene expression and silencing. HDAC is found to be 
related with tumor development as it induces transcrip-
tional inactivation [10, 103]. The deacetylation of lysine 
residues of histone 3 and histone 4 largely increases the 
ionic contact between positively charged DNA pack-
aging proteins (histone) and negatively charged DNA 
which condenses the chromatin and makes transcrip-
tional gene inert [104, 105].

Transcriptional blockage of tumor suppressor gene by 
upregulation or bizarre recruitment of HDACs to their 
promoter site is a common feature for emergence and 
tumor development [106]. The acetylation status of his-
tones H3 and H4 seem to largely dictate the fate of chro-
matin assembly, transcription, and gene expression [107, 
108]. Histone acetylation is governed by the opposing 
activities of HATs and HDACs [109, 110]. Thus the loss 
of normal functioning of gene opens a divergent pathway 
to escape early senescence, leading to genetic changes, 
which results in the escape of cancer cells from apoptosis 
[111].

Table 1  Hypermethylation of various genes investigated in different types of cancers

S. N. Site of hypermethylation Type of cancer

1 Glutathione S transferase gene (GSTPI, also known as GST3) Prostate and breast cancer [91]

2 Promoter region of Liver Kinase B1 (LKB1) Papillary breast cancer [92]

3 Promoter region of cyclin-dependent Kinase inhibitor p15INK4B Leukemia and glioma [93]

4 Promoter CpG island of the O6-MGMT gene Brain, colon and lung cancer [94]

5 CpG island of death-associated protein Kinase DAP-Kinase Lymphomas [95]

6 Promoter region of p73 gene Lymphoma cancer [96]



Page 7 of 11Yadav et al. Biol Res  (2018) 51:23 

The above evidences conclude that biochemical stress 
(the Nexus) induces epigenetic events which helps cell to 
rule out normal gene expression and create a demand of 
improved genetic makeup which could off load the pro-
longed biochemical stress. Once these epigenetic altera-
tions mediate genetic changes, the last step in the phase 
of cellular transition of selection, adaptation and evolu-
tion comes into play. These events are depicted in Fig. 4.

Cancer genetics
The loss of functional genes by epigenetic silencing has 
been shown to mediate genetic mutations leading to the 
development of tumor cells [112]. The epigenetic altera-
tions initiate a cascade of reactions which may not only 
shut a single pathway but also affect other important 
signaling pathways. Further these abnormalities con-
duct linked distortion of metabolic pathways to promote 
tumorigenesis [113]. Loss of intercellular signals resulted 
from biochemical stress acts as a catalyst in genetic evo-
lution. Initially, the genetic mutations are random and 
may occur as a genetic response to epigenetic codes 
developed from prolonged biochemical stress. Progres-
sively, mutations which help the cell to overcome residual 
content, promote the errant growth and help to relieve 
the cellular stress are selected naturally. Stress inducible 
mutagenesis mechanism can potentially accelerate adap-
tive evolution of cancerous cells. A few examples sup-
porting the selective adaptation and evolution have been 
collected here.

In many colon cancers, a mutation that inactivates the 
tumor-suppressor gene called APC (adenomatous poly-
posis coli) is the first or at least a very early, step in can-
cer progression. APC mutations can be detected in small 
benign polyps at the same high frequency as in large 
malignant tumors, suggesting that they occur early in the 
process. The loss of APC activity gives the affected cell 
a growth advantage, allowing it to form a colony of cells 
that divide more rapidly than they die. The increased pro-
liferation leads to the growth of a polyp [114], pointing 
out the possibility of the fact that a particular mutation 
gets selected only when proved beneficial in evolution 
inside the cell. Once cells lose their ability to repair these 
replication errors, mutations can accumulate in many 
genes, including tumor suppressor genes and oncogenes. 
Patients with this genetic defect develop one or two 
tumors that then progress rapidly to a full-blown cancer 
[115].

The breast cancer genes (BRCA1 and BRCA2) are 
found to mediate DNA damage control in cells and regu-
lation of transcription. Mutations in these two genes are 
profoundly associated with occurrence of breast cancer 
and ovarian cancer. It has been evaluated and confirmed 
in vitro that absence or mutations in these genes result in 
uncontrolled proliferation and tumor development [116]. 
Similarly, mutations in epidermal growth factor receptor 
(EGFR) gene have been identified in lung adenocarcino-
mas helping cancer cells in proliferation, migration and 
metastasis [117]. Many other gene mutations are strongly 

Fig. 4  Phase III—Biochemical stress (The Nexus) to epigenetics and genetics in cancer evolution
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linked to numerous cancers; these mutations support 
common features of cancer cells. The altered functions 
of these mutated genes in cancer appear to be beneficial 
in evolution. The cancer evolution has a purpose where 
selective mutations act as soldiers to fight against cellular 
biochemical stress via altering, accelerating or rewiring 
cellular processes so as to reduce nutritional metabo-
lite overload and accumulation resulted from cellular 
impeders.

Results and discussion
The ‘Nexus’ model connects primary cancer-causing fac-
tors, cellular biochemistry, epigenetics and genetics in 
cancer. By naming the epicenter of all such events as the 
‘Nexus’, we have tried to justify the purpose on which a 
healthy cell under stress persuades to transform to its 
cancer phenotype. This model may add a new dimension 
and perspective to cancer research where to understand 
the exact cause of cancer; we must first discover the pur-
pose of evolution. The questions to be addressed should 
be, why cells choose to evolve or transform to cancerous 
form and in what context the evolution is beneficial to 
the cell. The Nexus model would lead to finding new drug 
targets which are directly or indirectly involved in accu-
mulation of metabolites and add or reduce biochemical 
stress in a cell. The unfathomable queries linked to cancer 
may be answered using the Nexus model.

This model links primary causes to cancer develop-
ment but not directly. It validates usual enquiry of why all 
people exposed to primary causes of cancers (e.g. alcohol, 
tobacco) do not develop cancer whereas individuals who 
are not at all exposed to any one of the primary causes 
show linked cancer incidences. There could be ancillary 
possible reasons which may cause biochemical stress 
other than primary inducers in linked tissues. Over a 
past few centuries, many theories on cancer development 
have been proposed. The Nexus model encompasses and 
validates such major preexistent theories viz. trauma the-
ory, infectious disease theory, somatic mutation theory, 
tissue organization field theory and epigenetic theory. 
These theories and their indicated causes could be linked 
to biochemical stress in a way or other way around.

Conclusions
Common features of cancer cells imply towards a com-
mon underlying cause of cancer irrespective of their 
origin and pathophysiology. Primary causes are not 
directly linked to cancer evolution; rather, they end up 
with the production of cellular impeders (RONS). Per-
petuated biochemical stress resulted from the accumu-
lation of substrates, intermediates and partial products 
acts as ‘The Nexus’. The Nexus is the end product of 

primary inducers and cellular impeders. It develops 
altered cellular environment which acts as a key ingre-
dient of cancer epigenetics. The codes retrieved from 
‘The Nexus’ are processed by epigenetics and are finally 
forwarded to cancer genetics. At first, the mutations are 
random but become selective when they help the cell to 
overcome the biochemical stress. Selective mutations 
are found to outlaw normal cellular processes, promote 
accelerated and aberrant growth, and rewire metabolic 
pathways and many other common benefits to negoti-
ate with extended biochemical stress. The Nexus may 
act as the switch and the common cause in cancer 
evolution.
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sphosphate 3-kinase; AMPK: 5′ AMP-activated protein kinase; HAT: histone 
acetyltransfarase; HDAC: histone deacetylase; APC: adenomatous polyposis 
coli; BRCA1: breast cancer 1; BRCA2: breast cancer 2.
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