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Abstract
Accurately forecasted reservoir water level is among the most vital data for efficient reservoir structure design and

management. In this study, the group method of data handling is combined with the minimum description length method to

develop a very practical and functional model for predicting reservoir water levels. The models’ performance is evaluated

using two groups of input combinations based on recent days and recent weeks. Four different input combinations are

considered in total. The data collected from Chahnimeh#1 Reservoir in eastern Iran are used for model training and

validation. To assess the models’ applicability in practical situations, the models are made to predict a non-observed dataset

for the nearby Chahnimeh#4 Reservoir. According to the results, input combinations (L, L-1) and (L, L-1, L-12) for recent

days with root-mean-squared error (RMSE) of 0.3478 and 0.3767, respectively, outperform input combinations (L, L-7)

and (L, L-7, L-14) for recent weeks with RMSE of 0.3866 and 0.4378, respectively, with the dataset from https://www.

typingclub.com/st. Accordingly, (L, L-1) is selected as the best input combination for making 7-day ahead predictions of

reservoir water levels.

Keywords Daily reservoir water level forecasting � Group method of data handling � Input combination �
Soft computing � Time-series prediction

Introduction

Among the most significant aspects of reservoir structures

and reservoir management for industrial, agricultural and

drinking water supply is the ability to predict reservoir

water levels accurately. Various environmental parameters

influence reservoir water levels, such as water consumption

for agriculture, air and water temperature, wind speed,

rainfall amount, etc. Two major approaches can be applied

to predict reservoir water levels. First is to evaluate the

models using the environmental variables that affect

reservoir water levels. The second approach is to accept

that the environmental variables affect previous reservoir

water levels and use past data to predict future levels.

Actually, using past reservoir water level data can

significantly decrease the discrepancy between variables in

a model.

Several studies have been conducted on the topic of

simulating reservoir water levels in relation to the design

and construction of reservoir hydraulic structures as well as

the management of agricultural, industrial and drinking

water supplies. Koppula (1980) used two univariate pre-

diction methods, namely the Box–Jenkins (BJ) time-series

technique and harmonic analysis, to model monthly

reservoir water level prediction. Guganesharajah and Shaw

(1984) developed a model for predicting low-level varia-

tions for different periods ahead. Gladkov et al. (1991)

investigated the relation between seepage and reservoir

water levels. Crapper et al. (1996) used water balance

models to predict reservoir water level variations.

In recent years, researchers have successfully employed

artificial intelligence (AI) techniques to model various

multivariable complex problems (Zaji and Bonakdari 2014;

Gholami et al. 2017; Zaji and Bonakdari 2018; Gholami

et al. 2018). Due to the nonlinearity and complexity of

hydrology problems, AI has become an accepted modeling

and simulation method in this context. Khan and Coulibaly

(2006) used support vector machines (SVMs) to predict
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mean monthly reservoir water levels and compared the

results with the multilayer perceptron (MLP) and seasonal

autoregressive (SAR). Altunkaynak (2007) developed an

MLP model for reservoir water level prediction and com-

pared the MLP results with autoregressive (AR), moving

average (MA) and autoregressive moving average with

eXogenous input (ARMAX) models. Ondimu and Murase

(2007) developed an MLP method to forecast reservoir

water levels by using rainfall, evaporation, discharge and

water levels of nearby rivers. Güldal and Tongal (2010)

used the recurrent neural network (RNN) and adaptive

network-based fuzzy inference system (ANFIS) methods to

predict reservoir water level changes and compared the

results with the AR and autoregressive moving average

(ARMA) methods. Kisi et al. (2012) used artificial neural

networks (ANNs), ANFIS and gene expression program-

ming (GEP) to predict the daily reservoir water levels up to

3 days ahead. Kakahaji et al. (2013) applied the MLP and

local linear neuro-fuzzy (LLNF) methods to the reservoir

water level forecasting problem and compared the results

with the autoregressive with exogenous input (ARX) and

BJ methods. Mahdi Hadi et al. (2013) compared the pre-

dictability of the genetic programming (GP), ANN, ANFIS

and ARIMA methods to identify the most appropriate

method of predicting reservoir water levels. Lan (2014)

developed different SVM methods with various kernel

functions (linear, polynomial and radial basis functions) for

the complex problem of forecasting reservoir water levels.

Kisi et al. (2015) predicted the daily reservoir water levels

for three prediction horizons using a hybrid method of

SVM with the firefly (FF) algorithm and compared the

results of the proposed method with GP and MLP results.

Shiri et al. (2016) forecasted the daily Urmia Reservoir

water levels using the extreme learning machine (ELM)

approach and compared the results with the GP and MLP

methods. Yadav and Eliza (2017) utilized a hybrid method

of wavelet transformation with SVM to forecast the daily

Loktak Reservoir water fluctuations. The researchers uti-

lized past reservoir water levels and other hydrometeoro-

logical data to predict 20-day ahead reservoir water levels.

The group method of data handling (GMDH) method is

a robust subset of AI techniques, and it is used in various

hydrology and hydraulics problems, such as sediment

transport (Ebtehaj et al. 2016; Najafzadeh and Bonakdari

2017), rainfall–runoff modeling (Tsai et al. 2010; Zhang

et al. 2013), scour modeling (Najafzadeh and Azamathulla

2013; Najafzadeh et al. 2014; Najafzadeh and Lim 2015),

side weir discharge coefficient prediction (Ebtehaj et al.

2015, 2018), soil water characteristics (Neyshaburi et al.

2015) and simulating river characteristics (Najafzadeh and

Tafarojnoruz 2016; Shaghaghi et al. 2017).

The goal of the present study is to develop MDL based

on GMDH and identify the best model to predict reservoir

water levels 1 week ahead. Two groups of input combi-

nations are considered: reservoir water levels from the

previous days [L, L-1] and [L, L-1, L-2] and the previous

weeks [L, L-7] and [L, L-7, L-14]. To estimate the GMDH-

MDL models’ usability in practical situations, the devel-

oped models are applied to predict the daily water levels of

another reservoir.

Materials and method

Data collection

The Chahnimeh reservoirs are found in Zabol and are

among the largest cavities in the south of Sistan and

Baluchestan Province in southeastern Iran. These reser-

voirs cover over 50 million m2, and the water is used for

drinking and irrigation in Zabol and Zahedan.

In this study, the performance of GMDH-MDL is

evaluated in two stages. First, the dataset collected for

Chahnimeh#1 Reservoir is used for model training and

testing. Then to determine the usability of the proposed

models for other reservoirs in the same geographical

region, the most appropriate model found in the first stage

is used to forecast the daily water level of another reservoir

(Chahnimeh#4), which is near the base reservoir. The

reservoirs under investigation are described subsequently.

The locations of Chahnimeh#1 and Chahnimeh#4 are

shown in Fig. 1.

Chahnimeh#1 Reservoir

Chahnimeh#1 is in eastern Iran at a longitude of 30�460 to
30�510 and latitude of 61�390 to 61�430. Information col-

lected from Chahnimeh#1 was used to train and test the

GMDH-MDL models. Measurements were taken over

4 years. In the present study, the first 2 years’ data were

used to train the models and the next 2 years’ data were

used for testing. The properties and water level fluctuations

of Chahnimeh#1 are represented in Fig. 2 and Table 1,

respectively.

Chahnimeh#4 Reservoir

One of the most noteworthy characteristics of numerical

models is their usability in practical situations. In this

study, information from Chahnimeh#4 served as a non-

observed dataset to evaluate the models’ performance in

forecasting the daily water levels of another reservoir

located in the same geographical region. Chahnimeh#4

Reservoir is situated in eastern Iran, near Chahnimeh#1.

The longitude and latitude intervals of Chahnimeh#4 are

30�440 to 30�490 and 61�310 to 61�370, respectively. The
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daily reservoir water levels of Chahnimeh#4 were mea-

sured for 3 years. The entire dataset for Chahnimeh#4

served as a non-observed dataset for numerical model

testing. The properties and water level fluctuations of

Chahnimeh#4 are represented in Fig. 3 and Table 2,

respectively.

Group method of data handling (GMDH)

Artificial intelligence techniques have a significant impact

on complex problem modeling. In order to simulate a

system with an analytical or theoretical structure, it is

necessary to simulate all system components. Therefore,

regardless of model complexity or simplicity, the entire

system set must be modeled. Numerical models have the

advantage that only the input and output variables of the

respective model are considered, and the complexity of

Fig. 1 Locations of Chahnimeh#1 and Chahnimeh#4 Reservoirs

Fig. 2 Chahnimeh#1 water

level fluctuations

Table 1 Chahnimeh#1 reservoir properties for the considered period

Reservoir name Variable Unit Statistical parameters

Min Max Mean SD

Chahnimeh#1 L m 484.83 492.50 488.57 1.90
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other system variables does not affect the complexity of the

numerical model. Reservoir water level is a multivariable

system that cannot be modeled with analytical or theoret-

ical models. In the present study, one of the most powerful

numerical simulation methods is employed to model future

reservoir water levels by using past information about a

reservoir. The GMDH method (used in the current study)

with its subsets is frequently applied in modeling complex

engineering problems. However, this method has rarely

been used to model the present study topic.

GMDH (Ivakhnenko 1970, 1971) is a mathematical-

based self-organizing learning machine that attempts to

find the most appropriate relation between the model inputs

and outputs. GMDH can be used successfully in cases

where there is no background on the theoretical relation-

ship between the input variables and the results.

The GMDH method can be applied from two perspec-

tives: (1) the mathematical basis of GMDH and (2) the

theoretical aspect of GMDH with algorithm implementa-

tion. Volterra’s function is used according to the mathe-

matical basis of GMDH. A discrete form of the Volterra

series is used to establish a connection between the input

variables and the results. The Volterra series have been

used extensively to develop nonlinear models (Ivakhnenko

1971; Iba et al. 1994; Nikolaev and Iba 2001). This func-

tion is defined as follows:

y ¼ a0 þ
Xn

i¼1

aixi þ
Xn

i¼1

Xn

j¼1

aijxixj þ
Xn

i¼1

Xn

j¼1

Xn

k¼1

aijkxixjxk

þ . . .

ð1Þ

Equation (1) is a Kolmogorov–Gabor polynomial that is

used in certain backward equations. In Eq. (1), x represents

the model input variables and a represents coefficients that

are calculated during model training.

The GMDH algorithm is deemed a neural network with

a neural network structure. Therefore, the GMDH neural

network consists of one input layer, one or more hidden

layers and one output layer. Each layer consists of neurons.

The input layer contains the input variables, and the output

layer contains the output variable. In the present study, the

input variables are previous reservoir water levels, and the

output variable is the 7-day ahead reservoir water level.

The hidden layers consist of neurons that serve to establish

an interpolation between the input and output layers. The

GMDH neural network relies on the feedforward approach

with the quadratic form of Eq. (1) (Nariman-zadeh et al.

2002, 2005; Najafzadeh and Barani 2011). In the GMDH

neural network, different pairs of neurons from each layer

are selected to compute a new neuron in the next layer. In

case of m observations and for given inputs (x1, x2, …, xn),

the results are represented as follows:

yi ¼ f ðxi1; xi2; . . .; xinÞ where ði ¼ 1; 2; . . .;mÞ ð2Þ

The principal purpose of GMDH is to find a predicted

output (Ypred) according to Eq. (3) that has the least square

difference from the observed output (yi) according to

Eq. (4).

yPred i ¼ fpredðxi1; xi2; . . .; xinÞ where ði ¼ 1; 2; . . .;mÞ
ð3Þ

Difference2 ¼
Xm

i¼1

½yPred i � yi�2 ð4Þ

The full form of the Volterra series needs to be sim-

plified before use with the GMDH algorithm; therefore, the

two-variable quadratic form of Eq. (1) is used as follows

Gðxi; xjÞ ¼ a0 þ a1xi þ a2xj þ a3x
2
i þ a4x

2
j þ a5xixj ð5Þ

Equation (5) indicates that the GMDH neural network

considers two neurons together to build a new neuron. In

calculating the a0 to a5 coefficients, the regression method

is applied to minimize e according to Eq. (6). Here, least

squares minimization is used to determine the unknown

coefficients.

Fig. 3 Chahnimeh#4 water

level fluctuations

Table 2 Chahnimeh#4 Reservoir properties for the considered period

Reservoir name Variable Unit Statistical parameters

Min Max Mean SD

Chahnimeh#4 L m 483.06 490.43 486.90 2.06
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e ¼
Pm

i ðyi � GiÞ2

m
ð6Þ

where i represents the sample indices.

A flowchart of the GMDH neural network algorithm

used in this study is presented in Fig. 4. According to this

figure, the GMDH algorithm changes the number of layers

in the biggest loop. Subsequently, the number of neurons

represents the changes in the middle loop, and finally, the

number of possible combinations represents the changes in

the smallest loop. In order to establish a new combination

in the current GMDH, each neuron is permitted to input

two independent variables. According to the given flow-

chart, the independent variables are selected from the first

layer neurons (input variables) and the previous layer

neurons. The number of possible choices is calculated with

Eq. (7).

n

2

� �
¼ n ðn� 1Þ=2 ð7Þ

After evaluating each neuron and adding it to the present

layer, all combinations are considered again and the com-

binations not used by any preceding layers are deleted.

Figure 4 indicates that GMDH requires a defined crite-

rion for the process to stop or add a new layer, neuron or

combination to the model structure. In this study, the

minimum description length (MDL) method is used toge-

ther with the GMDH algorithm as the criterion function.

MDL was described by Grünwald et al. (2005), who used

MDL as a genetic programming (GP) criterion. MDL is

added to a numerical procedure for two primary reasons: it

increases model accuracy and prevents excessive model

expansion. Model performance with numerical methods

can be improved by increasing the model size. However,

greater model size has two significant disadvantages. First,

increasing the number of layers and neurons in the model

reduces the possibility of using the results in practical sit-

uations due to model complexity. Second, increasing the

number of layers and neurons may trap the model in

overtraining. Overtraining occurs when a model performs

very well with the training dataset and very badly with the

testing and validation datasets. The MDL method estab-

lishes a trade-off between model performance and com-

plexity. The MDL criterion is calculated with the following

equation:

Criterion ¼ n� logðyPred � yÞ2 þ Complexity� logðnÞ
ð8Þ

where n is the number of input samples. The first term in

this equation controls the model’s prediction accuracy, and

the second term controls the model size. The complexity is

calculated as follows:

Complexity ¼ Number of layers

þ Number of total neurons ð9Þ

According to Eqs. (8) and (9), the criterion estimated by

GMDH-MDL is a combination of model error and com-

plexity, because increasing each raises the criterion coef-

ficient and vice versa.

Performance evaluation statistics

Several statistical methods can be applied to evaluate

forecasting ability. In the present study, the statistical

indices RMSE, mean absolute error (MAE), standard error

prediction percent (SEP%) and absolute deviation percent

(d%) are used. In addition, the residual, standard deviation

(SD) and coefficient of determination (R2) concepts are

also utilized. The residual represents the difference

between forecasted and observed samples (Eq. 10). RMSE

calculates the standard deviation of the residuals (Eq. 11).

MAE is the average of absolute residuals and represents the

closeness between forecasted and actual values (Eq. 12).

The primary advantage of SEP% and d% (Eqs. 13 and 14)

is the non-dimensionality. Therefore, these indices can help

compare the different variables, and the models are not

scale dependent. SD represents the deviation from the

average. If the sample tends to be close to the mean, the SD

is small; otherwise, if the sample disperses from the

average, the SD is high. R2 denotes how well the model

replicated the actual samples.

Residuali ¼ ðei � oiÞ ð10Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðei � oiÞ2

N

s

ð11Þ

MAE ¼ 1

N

XN

i¼1

ei � oij j ð12Þ

SEP% ¼ 100

�o
� RMSE ð13Þ

d% ¼
PN

i¼1 ðei � oiÞj j
PN

i¼1 ei
� 100 ð14Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

i¼1

si � �sð Þ2
vuut ð15Þ

R2 ¼
Pn

i¼1 oi � �oð Þ ei � �eð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 oi � �oð Þ2

Pn
i¼1 ei � �eð Þ2

q

2

64

3

75

2

ð16Þ

where oi is the ith observed sample, ei is the ith estimated

sample, �o is the average of observed samples, �e is the

average of estimated samples, N is the number of samples
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in the dataset, si is the ith sample and �s is the average of the

samples studied.

Results

In this study, GMDH-MDL was used to model daily

reservoir water levels. The first part of this section explains

the input combinations considered and the goal of the

numerical model. The second and third parts investigate

the efficiency of the first and second input combination

groups. The fourth part comprises the study results. Finally,

the last part examines the accuracy of the best input

combinations determined previously with the non-observed

dataset in predicting reservoir water levels.

GMDH-MDL model input combinations

The purpose of the numerical models in the current study is

to forecast 7-day ahead reservoir water levels (L?7). It

should be mentioned that the entire dataset for Chahn-

imeh#1 contains 1392 samples. The first 730 samples from

this dataset were considered for model training, and the

remaining 662 samples were considered for model testing.

Two suitable input combination groups entail recent-days

input combinations (i.e., L, L-1, L-2) and recent-weeks

input combinations (i.e., L, L-7, L-14). Four input combi-

nations were used in this study: two in the first group and

two in the second group. The GMDH-MDL models

developed with each input combination are given in

Table 3.

Figure 5 illustrates the GMDH-MDL Model#1 structure.

This model has a two-neuron input layer, one hidden layer

and one output layer. Equation (17) is used by Model#1 to

predict 7-day ahead reservoir water levels. This model

converges rapidly and has a simple structure.

Lþ7 ¼ 921:94� 39:18� N#1þ 36:39� Lþ 1:51� L

� N#1� 0:71� N#1� N#1� 0:79� L� L

ð17Þ

N#1 ¼ �302:09 þ 441:50� L� 439:23� L�1 � 17:73
� L�1 � Lþ 8:42� L� Lþ 9:31� L�1 � L�1

ð17� 1Þ

Increasing the number input variables raises the model

complexity. Thus, according to Fig. 6, the structure size of

Model#2 is greater than Model#1, and the model has three

hidden layers and six hidden neurons in total. The equa-

tions for predicting 7-day ahead reservoir water levels

based on the six hidden neurons in the model are denoted

by Eqs. (18).

Lþ7 ¼ 66:44 þ 11:89� N#6 � 11:16� L�1 � 0:21
� L�1 � N#6 þ 0:09� N#6� N#6 þ 0:11
� L�1 � L�1

ð18Þ

N#1 ¼ �316:73 þ 570:89� L�1 � 568:56� L�2

� 27:41� L�2 � L�1 þ 13:12� L�1 � L�1

þ 14:28� L�2 � L�2

ð18� 1Þ

N#2 ¼ �75:32 þ 254:10� L� 252:76� L�2 � 3:55
� L�2 � Lþ 1:51� L� Lþ 2:03� L�2 � L�2

ð18� 2Þ

N#3 ¼ �302:09 þ 441:50� L� 439:23� L�1 � 17:73
� L�1 � Lþ 8:42� L� Lþ 9:31� L�1 � L�1

ð18� 3Þ

N#4 ¼ 921:94 � 39:18� N#3 þ 36:39� Lþ 1:51
� L� N#3 � 0:71� N#3� N#3 � 0:79� L

� L

ð18� 4Þ

N#5 ¼ �67:35 � 71:99� N#2 þ 73:27� N#1

þ 0:08� N#1� N#2 þ 0:03� N#2� N#2

� 0:11� N#1� N#1

ð18� 5Þ

bFig. 4 GMDH neural network flowchart

Table 3 Input combinations considered

Model name Group name Input combinations Forecasting target

Model#1 Group#1 L, L-1 L?7

Model#2 Group#1 L, L-1, L-2 L?7

Model#3 Group#2 L, L-7 L?7

Model#4 Group#2 L, L-7, L-14 L?7

Fig. 5 GMDH-MDL Model#1 structure
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N#6 ¼ 68:92 þ 5:08� N#5 � 4:36� N#4 þ 0:75
� N#4� N#5 � 0:38� N#5� N#5 � 0:37
� N#4� N#4

ð18� 6Þ

Similar to Model#1, due to the simple input layer of

Model#3 that uses L and L-7 water levels as input neurons,

the GMDH-MDL structure of this model is very simple.

According to Fig. 7, the current GMDH-MDL has no

hidden layers, and therefore, the equation that represents

the model is very simple (Eq. 19).

Lþ7 ¼ 716:10 þ 69:36� L� 71:26� L�7 þ 0:03� L�7

� L� 0:08� L� Lþ 0:05� L�7 � L�7

ð19Þ

The GMDH-MDL structure of Model#4 is shown in

Fig. 8. This model has two hidden layers and three hidden

neurons in total. Comparing Figs. 5, 6, 7 and 8 signifies

that increasing the number of input variables can signifi-

cantly affect GMDH-MDL model complexity, i.e.,

Model#1 and Model#3 with two input variables are much

simpler than Model#2 and Model#4 with three input vari-

ables. The performance of each model is addressed in the

subsequent sections.

Lþ7 ¼ �59:90 � 1:18� N#3 þ 2:42� L�14 þ 0:057
� L�14 � N#3 � 0:02� N#3� N#3 � 0:03
� L�14 � L�14

ð20Þ

N#1 ¼ 3124:45 þ 117:13� L�7 � 128:84� L�14

þ 0:71� L�14 � L�7 � 0:47� L�7 � L�7

� 0:22� L�14 � L�14

ð20� 1Þ

N#2 ¼ 716:10 þ 69:36� L� 71:26� L�7 þ 0:031
� L�7 � L� 0:08� L� Lþ 0:05� L�7 � L�7

ð20� 2Þ

N#3 ¼ �246:64 þ 30:67� N#2� 28:66� N#1� 0:27
� N#1� N#2þ 0:10� N#2� N#2þ 0:16
� N#1� N#1

ð20� 3Þ

Group#1 input combinations

In this section, the input combinations in Group#1 are used

to evaluate the GMDH-MDL models. Table 4 lists the

statistic errors of Model#1 and Model#2. It can be con-

cluded that both Model#1 and Model#2 with %d of 0.0421

and 0.0424, respectively, performed very well with the

testing dataset. However, Model#1 with RMSE of 0.3478

for the testing dataset slightly outperformed Model#2 with

RMSE of 0.3767. The lower RMSE (0.1845) for Model#2

in training compared with Model#1 (0.1971) and the higher

RMSE (0.3767) for Model#2 in testing compared with

Model#1 (0.3478) signify that Model#2 exhibited slight

overtraining.

Fig. 6 GMDH-MDL Model#2

structure

Fig. 7 GMDH-MDL Model#3 structure

Fig. 8 GMDH-MDL Model#4 structure
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The residual scatterplots of the input combinations for

Model#1 and Model#2 during training and testing are

shown in Fig. 9. The horizontal axis indicates the sample

numbers, and the vertical axis denotes the residual of each

sample predicted by GMDH compared with each sample

observed with Eq. (10). The residuals are analyzed by

using SD (Eq. 15). By definition, 95% of all samples are

located between 2 9 SD and - 2 9 SD. Therefore, 95%

of samples in Fig. 9 are delimited by two gray lines.

According to Fig. 9, both Model#1 and Model#2 were

reasonably accurate during testing and training. However,

Model#1 seemed to perform better in testing. As mentioned

before, the closeness between testing and training datasets

is an advantage for a model. Thus, although Model#2

performed better in training, Model#1 seemed to predict

7-day ahead reservoir water levels better.

Scatterplots of Model#1 and Model#2 during testing are

illustrated in Fig. 10. Here, the y = ax ? b trendline is

denoted by a black line. If a is closer to 1 and b is closer to

0, the scatter is closer to the exact line with equation

y = x. In Fig. 10, it is clear that the trend lines of Model#1

and Model#2 fit almost completely to the exact lines; thus,

the models performed similarly. Nonetheless, the greater

R2 indicates that Model#1 performed slightly better.

Group#2 input combinations

This section evaluates the performance of the input com-

binations in Group#2. The performance of Model#3 and

Model#4 is presented in Table 5. According to this table,

Model#3 with %d of 0.0464 in testing outperformed

Model#4 with %d of 0.0519.

The residual scatterplots for Model#3 and Model#4 are

represented in Fig. 11. Similar to Fig. 9, the 2 9 SD

appears here as a gray line. The results demonstrate that

95% of Model#3 residuals were limited between 0.774 and

Table 4 Statistics for Group#1

input combinations
Model name Dataset Input variables RMSE MAE SEP %d

Model#1 Training L, L-1 0.1971 0.0944 0.0404 0.0193

Testing L, L-1 0.3478 0.2058 0.0712 0.0421

Model#2 Training L, L-1, L-2 0.1845 0.0869 0.0378 0.0178

Testing L, L-1, L-2 0.3767 0.2069 0.0771 0.0424

Fig. 9 Residual scatterplots of

Model#1 and Model#2 during

training and testing
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Fig. 10 Scatterplots of Model#1 and Model#2 during testing

Table 5 Statistics for Group#2

input combinations
Model name Dataset Input variables RMSE MAE SEP %d

Model#3 Training L, L-7 0.2011 0.0971 0.0412 0.0199

Testing L, L-7 0.3866 0.2269 0.0791 0.0464

Model#4 Training L, L-7, L-14 0.1908 0.0933 0.0391 0.0191

Testing L, L-7, L-14 0.4378 0.2534 0.0896 0.0519

Fig. 11 Residual scatterplots of

Model#3 and Model#4 during

training and testing
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- 0.774. Hence, this model outperformed Model#4 where

95% of residuals were limited between 0.874 and - 0.874.

In addition, the similar training and testing values for

Model#3 signify it was not trapped in overtraining.

The scatterplots of Model#3 and Model#4 during testing

are illustrated in Fig. 12. In terms of the trendline equation

y = ax ? b, Model#4 with a close to 1 (0.9885) and b close

to 0 (5.6097) exhibited scattering near the exact line.

Comparison of the input combinations

The results of the input combinations in Group#1 are

compared with those in Group#2. Evidently, the model that

used previous days’ reservoir water levels (Group#1) as an

input combination performed significantly better than with

previous weeks’ water levels (Group#2). An overview of

the RMSE statistics for Model#1 to Model#4 is shown in

Fig. 13. During testing, Model#1 performed significantly

better than the other models. During training, Model#2

performed the best. Overall, it can be concluded that the

models in Group#1 outperformed the models in Group#2,

and it is better to use recent days in the input combination

than recent weeks to forecast 7-day ahead reservoir water

levels.

Evaluation of model performance with the non-
observed dataset

One of the most common ways to examine the trustwor-

thiness of numerical models in practical situations is to

model a non-observed dataset and calculate the models’

accuracy. The performance of the best group of GMDH-

MDL models developed is evaluated in this section using

the Chahnimeh#4 dataset. Model#1 and Model#2 were

employed to forecast Chahnimeh#4 reservoir water levels

7 days ahead. The statistics of these two models are given

in Table 6, which indicates that Model#2 with RMSE of

0.1239 performed much better than Model#1 with RMSE

of 0.1309. Scatterplots of Model#1 and Model#2 for

Chahnimeh#4 Reservoir water level forecasting are repre-

sented in Fig. 14. The trendline equation in this fig-

ure (y = ax ? b) signifies that Model#2 with a of 0.9761

and b of 11.662 performed better than Model#1 with a of

0.9717 and b of 13.804.

Proposed method compared with other well-
known prediction methods

As mentioned before, GMDH is a powerful regression-

based method that is utilized to predict complex problems

in a vast range of fields. However, there are additional

powerful regression methods that can be used to solve the

problem in the present study. Thus, the current section

compares the GMDH results with three well-known pre-

diction methods, namely MLP (Haykin and Network

2004), ELM (Huang et al. 2006, 2012) and RBF (Poggio

and Girosi 1990). MLP, ELM and RBF are very popular

Fig. 12 Scatterplots of Model#3 and Model#4 during testing

Fig. 13 Overview of model RMSE during testing and training

Acta Geophysica (2018) 66:717–730 727

123



and have been used extensively in different areas of

hydrology (Barzegar et al. 2018; Liu et al. 2018; Roush-

angar et al. 2018).

In the modeling procedure, all prediction models are run

several times with adjustments in the number of hidden

layer neurons and other modeling variables. The best

modeling result denotes the best performance in predicting

with both the testing and training datasets. The modeling

input variables were selected according to Model#2

(Table 3), which exhibited superior performance in mod-

eling with the non-observed dataset.

The modeling results are presented in Table 7 for both

training and testing datasets. The scatterplots for the testing

dataset modeling results are presented in Fig. 15. Accord-

ing to Table 7, it is obvious that all three models performed

very similarly in training and testing. Overtraining did not

occur in the modeling procedures. In addition, the testing

dataset statistical indices for ELM, MLP and RBF (RMSE

of 1.011, 0.3767 and 0.4588, respectively) in Table 7 are

compared with the testing dataset statistical index of

Model#2 (RMSE of 0.3767) in Table 4. Evidently, the

proposed GMDH method outperformed ELM and RBF.

Comparing Table 4 with 7 indicates that GMDH performed

almost the same as MLP. However, modeling in the field of

hydrology should be applicable in practical situations.

Hence, although MLP and GMDH were very close in terms

of performance, GMDH has priority for use in practical

situations owing to the explicit solution and equation this

method offers. The results of GMDH Model#2 can be

calculated easily with Eq. (18), but the MLP method lacks

this feature.

Comparing the results in Fig. 15 with the Model#2 plot

results in Fig. 10 shows that according to R2, GMDH

outperformed the ELM, MLP and RBF models. Moreover,

Fig. 15 shows that MLP and RBF performed much better

than ELM in the case study considered.

Table 6 Statistics for Group#1

input combinations in predicting

Chahnimeh#4 Reservoir water

levels

Model name Dataset Input variables RMSE MAE SEP %d

Model#1 Chahnimeh#4 L, L-1 0.1309 0.0898 0.0269 0.0184

Model#2 Chahnimeh#4 L, L-1, L-2 0.1239 0.0787 0.0255 0.0162

Fig. 14 Scatterplots of Group#1 input combinations in predicting

Chahnimeh#4 Reservoir water levels

Table 7 Statistics for the ELM,

MLP and RBF models
Method Dataset Input variables RMSE MAE SEP %d

ELM Training L, L-1, L-2 0.7862 0.5001 0.1610 0.1024

Testing L, L-1, L-2 1.0115 0.6249 0.2070 0.1279

MLP Training L, L-1, L-2 0.2157 0.1077 0.0442 0.0221

Testing L, L-1, L-2 0.3767 0.2145 0.0771 0.0439

RBF Training L, L-1, L-2 0.1906 0.0970 0.0390 0.0199

Testing L, L-1, L-2 0.4588 0.2317 0.0939 0.0474
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Conclusion

Optimizing multi-purpose reservoir management opera-

tions for hydropower generation, and agricultural, indus-

trial and drinking water supplies necessitates the ability to

predict reservoir water levels accurately. In this study, the

GMDH-MDL method was used to forecast reservoir water

levels 7 days ahead. Data from the Chahnimeh#1 Reservoir

was used to test and train the models. Four input combi-

nations were considered in two major groups. The first

group included reservoir water levels from recent days,

while the second group comprised water levels from recent

weeks. The results demonstrated that GMDH-MDL can

predict daily reservoir water levels very well, and the first

group of input combinations outperformed the second

group. Subsequently, to identify the model reliability, the

first input group was employed with the non-observed

dataset from Chahnimeh#4 Reservoir. The most accurate

model contained the (L, L-1, L-2) input combination and

had RMSE of 0.12 in forecasting the non-observed dataset

for Chahnimeh#4 Reservoir.
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