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Abstract. We consider a family of rational functions which is given by

fλ(z) = zn(z2n − λn+1)

z2n − λ3n−1 ,

where n ≥ 2 and λ ∈ C
∗ − {λ : λ2n−2 = 1}. When λ �= 0 is small, fλ can be seen

as a perturbation of the unicritical polynomial z �→ zn . It was known that in this case
the Julia set J ( fλ) of fλ is a Cantor set of circles on which the dynamics of fλ is not
topologically conjugate to that of any McMullen maps. In this paper, we prove that this
is the unique case such that J ( fλ) is disconnected.
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1. Introduction

The connectivity of the Julia sets of the polynomials has been studied thoroughly. It was
known that the Julia set of a polynomial is connected if and only if all the critical points
have bounded orbits (see [2]). The completely invariance of the immediate super-attracting
basin centered at infinity plays a key role since the Julia set is equal to the boundary of
it. For rational maps, there exists no general criterion to determine when the Julia sets are
connected or not. Hence it is natural to consider this problem for some special families of
rational maps. For example, the family of rational maps which has exactly one free critical
orbit.

In this paper, we are interested in the following family which was studied in [4]:

fλ(z) = zn(z2n − λn+1)

z2n − λ3n−1 , (1.1)
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where n ≥ 2 and λ ∈ � := C
∗ −{λ : λ2n−2 = 1}. We would like to mention that if n = 1,

λ = 0 or λ2n−2 = 1, then fλ degenerates to the polynomial z �→ zn . The motivation of the
study of this family is to construct a one-dimensional family of rational maps, such that
the Julia sets are Cantor set of circles (if λ �= 0 is small enough) and the dynamics on the
Julia sets are not topologically conjugate to that of any McMullen maps.

It was known that the Julia set J ( fλ) of fλ is either a quasicircle, a Cantor set of circles,
a Sierpiński carpet or a degenerated Sierpiński carpet, provided one of the free critical
points of fλ escapes to the origin or to infinity (see Lemma 2.2). The aim of this paper is
to study the connectivity of the Julia sets of this family, not only considering the escaping
case but also including the non-escaping situation. Our main result is the following.

Theorem 1.1. For any n ≥ 2 and λ ∈ �, the Julia set of fλ is connected if and only if it
is not a Cantor set of circles.

Shishikura studied the connectivity of the Julia sets of the rational maps by considering
the weak repelling fixed points [10]. His result can be applied to the rational functions
arising from Newton’s method for polynomials. In [14], Yin studied the connectivity of
the Julia set of the quadratic rational maps. On the other hand, the connectivity of the
Julia sets of one-dimensional family of rational maps has been studied extensively. Qiao
and Li studied the family of renormalization transformation functions and obtained the
connectivity of the Julia sets for all real parameter [7] and this result has been generalized
to all complex parameter by Yang and Zeng in [15]. The connectivity of the Julia set of
the McMullen maps has been studied in [12] and [3].

By Lemma 2.2(b), the Julia set of fλ is a Cantor set of circles if and only if there
is a critical value which lies in the immediate super-attracting basin of the origin or the
infinity but the corresponding critical point does not. Comparing with the conclusions in
Lemma 2.2, one can obtain a comparison between the connectivity of the Julia sets of fλ
and the classical quadratic polynomial Pc(z) = z2 + c with c ∈ C. On the one hand, when
the free critical orbit is not attracted to the fixed super-attracting basin, the Julia sets of
fλ and Pc are both connected. On the other hand, if it is attracted, the differences of the
connectivity of the Julia sets of fλ and Pc are presented by Lemma 2.2.

2. Preliminaries

Let f : Ĉ → Ĉ be a rational map with degree d ≥ 2. We use f ◦n to denote the n-th iterate
of f , where n ∈ N. The Fatou set of f is defined as

F( f ) :={z∈ Ĉ : { f ◦n}n∈N forms a normal family in some neighborhood of z}.
Equivalently, F( f ) is also the maximal open subset of Ĉ on which { f ◦n}n∈N is equi-
continuous under the chordal metric. The complement of F( f ) is called Julia set J ( f ).
Each connected component of Fatou set is called a Fatou component. A Fatou component
U is called p-periodic if there is an integer p ≥ 1 such that f ◦p(U ) = U . It was known that
there were only five types of periodic Fatou components: attracting basin, super-attracting
basin, parabolic basin, Siegel disk and Herman ring. Moreover, all the Fatou components
were iterated to one of these five types of periodic Fatou components eventually. For more
details on the dynamics of holomorphic functions, the reader can refer to [1,2,6].
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Now we review the property of dynamical symmetry of fλ which has been shown in
[4]. In the rest of this paper, we fix the integer n ≥ 2 in the formula of fλ in (1.1). Denote

ω0 = e
iπ
n and let ω be a complex number satisfying ω2n = 1. For λ ∈ �, define

τ(z) := λ2/z.

For any A ⊂ Ĉ and a ∈ C, we denote aA := {az : z ∈ A}.

Lemma 2.1. Let A be a Fatou (or Julia) component of fλ. Then

(a) f ◦k
λ (ωz) = ωnk f ◦k

λ (z) for all k ≥ 1 and all z ∈ Ĉ. In particular, fλ(ω2k
0 z) = fλ(z)

and fλ(ω
2k−1
0 z) = − fλ(z) for all 1 ≤ k ≤ n and all z ∈ Ĉ;

(b) τ ◦ fλ(z) = fλ ◦ τ(z) for all z ∈ Ĉ;
(c) For i ∈ Z, both ωi

0A and τ(A) are Fatou (or Julia) components of fλ;
(d) Either the Fatou (or Julia) component A of fλ surrounds the origin and satisfies

ωi
0A = A for all i ∈ Z, or A does not surround the origin and there are 2n such Fatou

(or Julia) components ωi
0A (1 ≤ i ≤ 2n) such that ωi

0A ∩ ω
j
0 A = ∅ for all i �= j

(mod 2n).

The above symmetry is very useful in the proof of the connectivity of the Julia set of
fλ. First of all, a direct observation shows that the points 0 and ∞ are two super-attracting
fixed points of fλ. We denote by B0 and B∞ the immediate attracting basins of 0 and
∞ respectively. Then the above symmetry shows that ωi

0B0 = B0, ωi
0B∞ = B∞ for all

i ∈ Z, τ(B0) = B∞ and τ(B∞) = B0.
Now let us locate the positions of the critical orbits of fλ which determine the dynamics

of fλ essentially. Since the degree of fλ is 3n, fλ has 6n − 2 critical points (counted with
multiplicity). Since the local degrees of 0 and ∞ are both n, fλ leaves 4n free critical
points. The forward orbits of 0 and ∞ are trivial since they are fixed by fλ. The dynamical
symmetry in Lemma 2.1 implies that the remaining 4n critical points have the following
form:

Crit( fλ) = {ω j
0cλ, ω

j
0λ2/cλ : 0 ≤ j ≤ 2n − 1}, (2.1)

where cλ is a free critical point of fλ. Therefore, the points in Crit( fλ)behave symmetrically
by the iterates of fλ. This means that fλ has exactly one free critical orbit essentially.

The following lemma gives a dynamical classification in the case that the free critical
orbits are attracted by 0 and ∞.

Lemma 2.2 (The escape quartation [4]). Suppose that the orbit of one free critical point
cλ of fλ is attracted by ∞ (resp. 0). Then

(a) If cλ ∈ B∞ (resp. B0), then J ( fλ) is a quasicircle;
(b) If fλ(cλ) ∈ B∞ (resp. B0) but cλ /∈ B∞ (resp. B0), then J ( fλ) is a Cantor set of

circles;
(c) If f ◦k

λ (cλ) ∈ B∞ (resp. B0) for k ≥ 2 and f j
λ (cλ) /∈ B∞ (resp. B0) for 0 ≤ j < k,

and further,
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(c1) If ∂B0 ∩ ∂B∞ = ∅, then J ( fλ) is a Sierpiński carpet;
(c2) If ∂B0 ∩ ∂B∞ �= ∅, then J ( fλ) is a degenerated Sierpiński carpet.

A set is called a Cantor set of circles (or Cantor circles in short) if it is homeomorphic to
C×S

1, where C is the Cantor middle third set and S1 is the unit circle. The Sierpiński carpet
is defined to be a connected, locally connected, nowhere dense compact set which has the
property that any two complementary domains are bounded by disjoint Jordan curves [11].
In [4], a compact set in C is called a degenerated Sierpiński carpet if it satisfies all the
conditions of the Sierpiński carpet except it allows that the intersection of the boundaries
of complementary domains can be non-empty.

According to Lemma 2.2, if the free critical orbits are attracted by 0 and ∞, then case
(b) is the unique case such that J ( fλ) is disconnected. In this case, the Julia set is a Cantor
set of circles and there is a critical value which lies in B∞ or B0 but the corresponding
critical point does not. The Julia sets which are Cantor set of circles was first found in the
McMullen [5]. For a comprehensive study of the rational maps whose Julia sets are Cantor
circles, see [8] and [9].

3. Proof of Theorem 1.1

If one wants to prove that the Julia set is connected, it is equivalent to proving that all the
Fatou components of fλ are simply connected. According to [1, §7.5], there are only two
types of periodic Fatou components which are not simply connected. One is the Herman
ring, and the other is the infinitely connected attracting or parabolic basin.

Note that in order to prove Theorem 1.1, the case that the free critical orbits are attracted
by 0 and ∞ has been discussed. In Lemma 2.2, the Julia set J ( fλ) of fλ is always connected,
if we exclude the case that there is a critical point cλ, which satisfies fλ(cλ) ∈ B∞ (resp.
B0) but cλ /∈ B∞ (resp. B0). Hence, we only need to prove that if the free critical orbits
are not attracted by 0 and ∞, then J ( fλ) is always connected.

3.1 No infinitely connected Fatou component

In this subsection, we will prove the following result.

PROPOSITION 3.1

The rational map fλ has no infinitely connected attracting or parabolic basin.

Proof. Suppose fλ has a cycle of periodic attracting or parabolic basins other than B0 and
B∞ whose period is p ≥ 1. According to [6, §8-10], there is a component U of this cycle
which contains a free critical point cλ. Let k ≥ 1 denote the maximal number of critical
points contained in any component of this cycle of periodic attracting or parabolic basins.
The arguments will be divided into three cases:

Case I. Suppose k = 1. By using the Riemann–Hurwitz formula, a standard argument
shows thatU is simply connected. In fact, according to the local dynamics of the attracting
and parabolic periodic points, there exists a simply connected neighborhood V0 ⊂ U of
the periodic point z0 (for the parabolic case, V0 ⊂ U is chosen such that ∂V0 ∩∂U = {z0})
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such that f ◦p
λ (V0) ⊂ V0. Then we consider the preimage V1 of V0 under fλ which is

contained in the p-periodic attracting or parabolic cycle. Since k = 1, the set V1 contains
at most one critical point of fλ. If V1 does not contain any critical point of fλ, then it is
easy to see that by the Riemann–Hurwitz formula, the degree of the branched covering
from V1 to V0 is equal to 1. Hence V1 is simply connected. If V1 contains one critical point,
again by the Riemann–Hurwitz formula, the degree of the branched covering from V1 to
V0 is equal to 2. Hence V1 is also simply connected. Repeating this process, one can obtain
that U = ∪k>0 f

−pk
λ (V0) and U is also simply connected.

Case II. Suppose k = 2. This means that one component U of the p-periodic attracting or
parabolic basin contains two critical points c1 and c2 of fλ. We first claim that c2 = ω

i0
0 τ(c1)

for some i0 ∈ Z. Otherwise, by (2.1), we must have c2 = ω
j0
0 c1 for some j0 ∈ Z. According

to Lemma 2.1, the 2n critical points {ω j
0cλ : 0 ≤ j ≤ 2n − 1} are also contained in U ,

which is a contradiction.
We then claim that the degree of the restriction of fλ on the componentU is 3. On the one

hand, if the degree is greater than 3, then Lemma 2.1 guarantees that for any z ∈ fλ(U ),
the preimage of fλ(z) will be greater that 3n (counted with multiplicity). This contradicts
with the degree of fλ. On the other hand, let z0 be the periodic point inU . We can find three
preimages of fλ(z0) in U as follows (for the parabolic case, one can find three preimages
of fλ(z0) ∈ fλ(∂U ) in ∂U in a similar way). Note that ∪2n−1

j=0 ω
j
0U contains all the 4n free

critical points. Also, Lemma 2.1 implies that ω
j
0τ(U ) (0 ≤ j ≤ 2n − 1) is also a Fatou

component which contains two free critical points, ω j
0τ(c1) and ω

j
0τ(c2) = ω

j−i0
0 c1. This

means that U = ω
i0
0 τ(U ). We also have z0 = ω

i0
0 τ(z0) since points in the attracting or

parabolic basin can be only attracted by one attracting or parabolic point. Let z1 ∈ U be a
preimage of fλ(z0) and z2 = ω

i0
0 τ(z1). We claim that fλ(z2) = fλ(z0). In fact,

fλ(z2) = ω
ni0
0 τ( fλ(z1)) = ω

ni0
0 τ( fλ(z0))

= ω
ni0
0 τ( fλ(ω

i0
0 τ(z0))) = ω

ni0
0 τ(ω

ni0
0 τ( fλ(z0)))

= ω
ni0
0

λ2

ω
ni0
0 τ( fλ(z0))

= τ 2( fλ(z0)) = fλ(z0).

Suppose z1 �= z0. We claim that z1 �= z2. For otherwise, if z1 = z2, it is easy to see that
z1 = ±z0. Combining with the Lemma 2.1, we can exclude the case z1 = −z0, since
this implies that U surrounds the origin and satisfies ωi

0U = U for any i ∈ Z, which is a
contradiction. Hence, we get z1 �= z2 and it is easy to see that the points z0, z1 and z2 are
all distinct. The fact that U = ω

i0
0 τ(U ) implies z2 ∈ U . This means the degree of fλ on

U is 3. Now, suppose z1 = z0 and then z2 = z0. This implies that the free critical point
equals to z0 and its local degree is at least 3, thus equals to 3. In both cases, we get the
degree of fλ on U is 3.

Similar to Case I, by using the Riemann–Hurwitz formula, one can use a standard process
to show that the periodic attracting or parabolic basin is simply connected. Note that in
this process, one can take V0 such that it satisfies V0 = ω

i0
0 τ(V0). This guarantees that the

two critical points c1 and c2 = ω
j0
0 c1 of fλ are contained in V1 at the same time.

Case III. Suppose 2 < k ≤ 4n. Then Lemma 2.1 implies that there is a component of the
p-periodic attracting or parabolic basin U which satisfies ωi

0U = U for any i ∈ Z and
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contains exactly 2n or 4n critical points. These critical points have the form {ω j
0cλ : 0 ≤

j ≤ 2n − 1} for some free critical point cλ. Let γ ⊂ U be a Jordan curve surrounding the
origin, which satisfies ωi

0γ = γ for any i ∈ Z. Then Lemma 2.1 guarantees that f ◦np
λ (γ )

always surrounds the origin for any positive integer n. Note that U is disjoint with the
immediate attracting basins of 0 and ∞. This contradicts the fact that γ will converge
uniformly to z0( �= 0,∞) under the iteration of f ◦p

λ .
The proof is finished if we notice that all the components of the p-periodic attracting or

parabolic basin have the same connectivity. �

3.2 No Herman rings

Let A ⊂ C be an annulus. Recall that the core curve of A is defined as ψ−1(
√
r), where

ψ : A → Ar := {z ∈ C : 0 < r < |z| < 1} is a conformal isomorphism and denoted by
∂+A and ∂−A, the outer and inner boundaries of A, respectively. For any z ∈ Ĉ, denoted
by O f (z) := { f ◦n(z) : z ∈ N}, the forward orbit of z under f . We call the two forward
orbits O f (z1) and O f (z2) as disjoint if the intersection of them are empty. We need the
following lemma which has been proved in [13, Corollary 2.2].

Lemma 3.2. Suppose that a rational map f has p ≥ 1 fixed Herman rings A0, . . . , Ap−1.

Denote by γi ⊂ Ai the core curve whose union divides Ĉ into p+1 connected components
V0, V1, . . . , Vp, where 0 ≤ i ≤ p − 1. Then f has at least p + 1 disjoint infinite critical
orbits O f (ci ) in J ( f ) such that O f (ci ) ⊆ Vi ∩ J ( f ), where ci , 0 ≤ i ≤ p is the critical
point of f .

Now we prove as follows.

PROPOSITION 3.3

The rational map fλ has no Herman rings.

Proof. Suppose that fλ has a p′-periodic Herman ring, where p′ ≥ 1. Let U0 be a com-
ponent of the cycle of these Herman rings. Since fλ has the symmetric properties in
Lemma 2.1, we consider a new rational map obtained by semiconjugacy. Specifically, let
ϕ(z) = z2n and define

gλ(z) = zn
( z − λn+1

z − λ3n−1

)2n
.

Then ϕ is a semiconjugacy between fλ and gλ, i.e. ϕ ◦ fλ = gλ ◦ ϕ. Hence it is easy to
verify that gλ has also a cycle of Herman rings. Indeed, by Lemma 2.1(d) the component
U0 can not surround the origin since fλ is injective in U0. Again by Lemma 2.1(d), there
are 2n Fatou components ωi

0U0 (1 ≤ i ≤ 2n) satisfying ωi
0U ∩ ω

j
0U = ∅ for any i �= j

(mod 2n). Hence the restriction of ϕ onU0 is injective and then ϕ(U0) is a periodic Herman
ring of gλ. We assume that the period of ϕ(U0) is p (note that p is not necessarily equal
to p′ but p is a divisor of p′). We hope to obtain a contradiction by using Lemma 3.2.

Let W0 := ϕ(U0) and Wi = g◦i
λ (W0), where 0 < i ≤ p− 1. In particular, gλ(Wp−1) =

W0. Let τ̂ (z) = λ4n/z. By Lemma 2.1, we have
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τ̂ ◦ gλ = gλ ◦ τ̂ . (3.1)

Since the degree of gλ is 3n, gλ has 6n−2 critical points (counted with multiplicity). Note
that the local degrees of 0 and ∞ are both n. The local degrees of the zero at λn+1 and the
pole at λ3n−1 of gλ are both 2n. Hence, there leaves only two free critical points, say aλ

and τ̂ (aλ) by (3.1), and the local degrees of them are both 2.
Note that for any 0 ≤ i ≤ p − 1, Wi is bounded and does not surround the origin. Now

we consider the iteration g◦p
λ . Note that the free critical points of g◦p

λ are
⎛
⎝

p−1⋃
i=0

g−i
λ (aλ)

⎞
⎠ ∪

⎛
⎝

p−1⋃
i=0

g−i
λ (λ4n/aλ)

⎞
⎠ .

Hence there are at most 2p disjoint critical orbits of g◦p
λ , which have the following form:

{Og◦p
λ

(c0), Og◦p
λ

(τ̂ (c0)), . . . , Og◦p
λ

(cp−1), Og◦p
λ

(τ̂ (cp−1))}.

Suppose the collection of core curves {γ0, γ1, . . . , γp−1} of the p-periodic Herman rings
of gλ divides Ĉ into p+1 connected components V0, V1, . . . , Vp. We divide our arguments
into two cases:

Case I. Suppose that τ̂ (W0) = W0. This means that τ̂ (Wi ) = Wi for all 0 ≤ i ≤ p − 1
by (3.1). We first claim that τ̂ (∂+Wi ) = ∂+Wi . In fact, since Wi is bounded and does not
surround the origin, it follows that the points in Wi with the largest and smallest modulus
are contained in ∂+Wi . By noticing that τ̂ maps the point of Wi with the largest modulus
to the smallest one, we get τ̂ (∂+Wi ) �= ∂−Wi and hence τ̂ (∂+Wi ) = ∂+Wi . This implies
that Og◦p

λ
(ci ) and Og◦p

λ
(τ̂ (ci )) always belong to the same component Vi . According to

Lemma 3.2, g◦p
λ has at least p + 1 disjoint infinite critical orbits Og◦p

λ
(ci ) in J (g◦p

λ ) such

that Og◦p
λ

(ci ) ⊆ Vi ∩ J (g◦p
λ ), while the 2p critical orbits of g◦p

λ can only get into p of
p + 1 components of the collection {V0, V1, · · · , Vp}, which is a contradiction.

Case II. Suppose that τ̂ (W0) �= W0. This means that τ̂ (Wi ) �= Wi for any 0 ≤ i ≤ p − 1
by (3.1). Then there are 2p disjoint fixed Herman rings of g◦p

λ . But there are only at most
2p disjoint critical orbits, which also contradicts with Lemma 3.2.
This completes the proof that gλ and hence fλ has no Herman rings. �

Proof of Theorem 1.1. If the free critical orbits of fλ are attracted by 0 and ∞, then the
Julia set of fλ is connected if it is not a Cantor set of circles by Lemma 2.2. Suppose
that the free critical orbits are not attracted by 0 and ∞. By Propositions 3.1 and 3.3, it
follows that each of the periodic Fatou components of fλ is simply connected. Since all
the symmetric Fatou components have the same connectivity and all the other preimages
of these periodic Fatou components do not contain any critical points, this means that they
are all simply connected. This completes the proof of Theorem 1.1. �
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320–324
[12] Xiao Y and Qiu W, The rational maps Fλ(z) = zm +λ/zd have no Herman rings, Proc. lndian

Acad. Sci. (Math. Sci.) 120 (2010) 403–407
[13] Yang F, Rational maps without Herman rings, Proc. Amer. Math. Soc. (Math. Sci.) 145(4)

(2017) 1649–1659
[14] Yin Y, On the Julia sets of quadratic rational maps, Complex Variables Theory Appl. 18(3–4)

(1992) 141–147
[15] Yang F and Zeng J, On the dynamics of a family of generated renormalization transformations,

J. Math. Anal. Appl. 413(1) (2014) 361–377

Communicating Editor: Kaushal Verma


	Connectivity of the Julia sets of singularly perturbed rational maps
	1.  Introduction
	2.  Preliminaries
	3.  Proof of Theorem 1.1
	3.1.  No infinitely connected Fatou component
	3.2.  No Herman rings

	Acknowledgements
	References




