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The propagation of waves in thin-film ferroelectric materials
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Abstract. The nonlinear evolution equation describing the propagation of waves in thin-film ferrroelectric
materials is investigated in detail. The modified extended tanh method is used for the purpose and, as a result, novel
soliton solutions are derived analytically which show the shape and the width of the waves. In the construction of the
solutions obtained, it appears that bright and singular waves can be propagated in thin-film ferroelectric materials.
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1. Introduction

Wave phenomena exist in many areas of our environ-
ment, including wind, water and sound, just to name a
few. Looking for materials that will improve the exist-
ing technological devices, researchers have investigated
numerous materials and metamaterials in domains that
encompass electric line, optical fibres and electronic
devices [1,2]. While investigating these materials, math-
ematical equations are often derived, modelling the
dynamics of wave moving in the considered material.
In the case of optical fibres [3–5], scalar and vector
short pulse equations have been derived, in the case of
ferrites [2,6] and also in the case of thin-film ferroelec-
tric materials [7], one-dimensional and two-dimensional
equations have been derived. On having these equa-
tions at hand, the question of their integrability is posed,
because their solutions are more expressive in describ-
ing the dynamics of waves in the material of interest.

To answer these questions, a number of mathematical
techniques are put forward, including the prolongation
structure [8] and Painlevé analysis [9]. In the winding
of these commonly handled methods, there are mathe-
matical tools that are more direct in providing analytical
expressions of the solution to nonlinear equations cov-
ering Hirota’s bilinear method, Kudryashov’s method,
first integral approach, sub-equation technique, simple
hyperbolic function ansatzes, hyperbolic tangent meth-
ods etc. [10–27].

With regard to thin-film ferroelctric materials, solu-
tion of nonlinear equation has been derived in [7] when
considering the idealised model of a one-dimensional
array of N identical ferroelectric domains [7,28,29].
While considering the Landau–Ginzburg–Devonshire
mean-field theory, a nonlinear evolution equation has
been derived, describing the propagation of polarisa-
tion in thin-film materials, which is shown to possess
periodical soliton solutions. To provide the richness
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of the solution of such nonlinear equations, it is
necessary to investigate its solution using alternative
methods, including inverse scattering transform [30],
Darboux [31] transform and tanh method just to name
a few.

In the present study, we take into consideration the
one-dimensional form of the well-known thin-film fer-
roelectric model:

md

Q2
d

∂2 p

∂t2 − [
(g2 − 2β)p + g4 p3 + g6 p5]− k�p = 0,

(1)

where md represents the mass density of the material,
Qd is the charge density and gi , i = 2, 4, 6, are the
parameters that are generally used to denote temperature
and pressure [28,32].

Looking for a new soliton structure to the thin-film
polarisation equation, we pay particular attention to the
modified tanh method throughout this paper. Then, we
present briefly the modified tanh method while apply-
ing it directly to the thin-film polarisation equation.
We derive analytical expressions of the different solu-
tions alongside the corresponding constraint and depict
the solutions obtained. We end this paper with a brief
conclusion.

2. Method and solutions

To explain the principal idea of the method, consider
the following partial differential equation with nonlinear
terms of the form:

F(p, pt , px , ptt , pxt , . . .) = 0. (2)

The simple wave transformation

p(x, t) = p(ξ), ξ = x − ct,

where c is a non-zero constant and generally represents
the velocity of the wave, reduces eq. (2) into an ordinary
differential equation with integer orders as

H(p, p′, p′′, p′′′, . . .) = 0, (3)

where the derivatives are with respect to ξ .
Without any delay, the wave transform defined above

reduces the governing equation (1) to give

(
mdc2

Q2
d

− k

)
p′′ − [

(g2 − 2β)p + g4 p3 + g6 p5] = 0.

(4)

Assume that the solution of eq. (4) is presented in a finite
series:

p(ξ) = a0 +
N∑

n=1

(
anφ

n(ξ) + bnφ
−n(ξ)

)
, (5)

where an and bn , n = 0, 1, 2, . . . , N , are constants with
at least one of an or bn being non-zero, which will be
evaluated in the following steps, and φ(ξ) satisfies the
following Riccati equation:

φ′ = w + φ2, (6)

where w is a constant. The Riccati equation (6) has the
following general solutions:

(i) If w < 0, then

φ = −√−w tanh
(√−w ξ

)
or

φ = −√−w coth
(√−wξ

)
.

(ii) If w > 0, then

φ=√
w tan

(√
wξ
)

or φ=−√
wcot

(√
wξ
)
.

(iii) If w = 0, then

φ = −1

ξ
.

The index limit positive integer N is found by the stan-
dard balance procedure between the linear highest order
and nonlinear highest degree terms in (4). Substituting
the assumed solution (5) and its derivatives

p′ =
N∑

n=1

(
annφn−1(w + φ2)− bnnφ−n−1(w + φ2)),

p′′ =
N∑

n=1

(
an n(n − 1)φn−2(w + φ2)2

+2nanφ
n(w+φ2)+ bnn(n+1)φ−n−2(w+φ2)2

−2bnnφ−n(w + φ2)),
into (4) yields

H(φ(ξ)) = 0, (7)

where H(φ(ξ)) is a polynomial in φ(ξ). Equating the
coefficients of each power of φ(ξ) in eq. (7) to zero leads
to a system of algebraic equations.

The balance procedure p′′ and p5 in (4) results in
N + 2 = 5N , and so N = 1/2. But we know that N
must be a positive integer. Choosing the transformation
function p(ξ) = √

ψ(ξ) and substituting into (4), we
get(

mdc2

Q2
d

− k

)(
−1

4
ψ ′2 + 1

2
ψψ ′′

)
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−(g2 − 2β)ψ2 − g4ψ
3 − g6ψ

4 = 0. (8)

Now, we balance ψ ψ ′′ and ψ4 in (8) which results in
N + N + 2 = 4N , and so N = 1. Thus, the solution
takes the form

ψ(ξ) = a0 + a1φ(ξ) + b1φ
−1(ξ). (9)

Substituting eq. (9) into (8) and setting the coefficients
of each power of φ(ξ) to zero, we obtain the following
system of algebraic equations:

2βa2
0 + 1

4
kw2a2

1 −3kwa1b1 + 4βa1b1 + kb2
1

4
− a2

0 g2

− 2a1b1g2 − a3
0 g4 − 6a0a1b1g4 − a4

0 g6

−12a2
0a1b1g6 − 6a2

1b2
1g6 − c2w2a2

1md

4Q2
d

+3c2wa1b1md

Q2
d

− c2b2
1md

4Q2
d

= 0,

−3kw2b2
1

4
− b4

1g6 + 3c2w2b2
1md

4Q2
d

= 0,

−kw2a0b1 − b3
1g4 − 4a0b3

1g6 + c2w2a0b1md

Q2
d

= 0,

−3kw2a1b1

2
− kwb2

1

2
+ 2βb2

1 − b2
1g2

− 3a0b2
1g4 − 6a2

0b2
1g6

− 4a1b3
1g6 + 3c2w2a1b1md

2Q2
d

+ c2wb2
1md

2Q2
d

= 0,

− kwa0b1+4βa0b1−2a0b1g2−3a2
0b1g4−3a1b2

1g4

− 4a3
0b1g6 − 12a0a1b2

1g6 + c2wa0b1md

Q2
d

= 0,

− kwa0a1 + 4βa0a1 − 2a0a1g2 − 3a2
0a1g4

−3a2
1b1g4− 4a3

0a1g6−12a0a2
1b1g6

+c2wa0a1md

Q2
d

= 0,

−1

2
kwa2

1 +2βa2
1 − 3

2
ka1b1−a2

1 g2− 3a0a2
1 g4

−6a2
0a2

1 g6− 4a3
1b1g6+ c2wa2

1md

2Q2
d

+ 3c2a1b1md

2Q2
d

=0,

− ka0a1−a3
1 g4−4a0a3

1 g6+ c2a0a1md

Q2
d

= 0,

−3

4
ka2

1 −a4
1 g6+ 3c2a2

1md

4Q2
d

= 0.

Solving the above system (see figure 1), gives:

Case 1

β = 1

128

(
64g2 − 15g2

4

g6

)
,

k = 1

3

(
− 9g2

4

64wg6
+ 3c2md

Q2
d

)
,

b1 = ∓3
√

wg4

16g6
, a1 = ∓ 3g4

16
√

wg6
, a0 = −3g4

8g6
.

Hence

p1(x, t)

=
√

a0+a1
√

w tan(
√

wξ)+ b1√
ω

cot
(√

bξ
)
, w>0,

p2(x, t)

=
√

a0−a1
√

w cot(
√

wξ)− b1√
ω

tan
(√

bξ
)
, w>0,

p3(x, t)

=
√

a0−a1
√−w tanh(

√−wξ)− b1√−ω
coth

(√−wξ
)
,

w < 0,

p4(x, t)

=
√

a0−a1
√−w coth(

√−wξ)− b1√−w
tanh

(√−wξ
)
,

w < 0,

where ξ = x−ct.

Case 2

β = 1

32

(
16g2− 3g2

4

g6

)
, k = 1

3

(
9g2

4

64wg6
+ 3c2md

Q2
d

)
,

b1 = ∓3i
√

wg4

16g6
, a1 = ± 3ig4

16
√

wg6
, a0 =−3g4

8g6
.

Hence

p5(x, t)

=
√

a0+a1
√

w tan(
√

wξ)+ b1√
ω

cot
(√

wξ
)
,

w > 0,

p6(x, t)

=
√

a0−a1
√

w cot(
√

wξ)− b1√
ω

tan
(√

wξ
)
,

w > 0,
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Figure 1. (a–d) Solutions for p3(x, t), p7(x, t), p11(x, t), p14(x, t) at Qd = 2 × 105, Tc = 369, md = 6.02 ×
10−3, T = Tc + 10−8, α0 = 10.48 × 104, g2 = α0(T − Tc), c = 0.1, p0 = 1, p1 = 1.5.



Pramana – J. Phys. (2019) 93:27 Page 5 of 6 27

p7(x, t)

=
√

a0−a1
√−w tanh(

√−wξ)− b1√−ω
coth

(√−wξ
)
,

w < 0,

p8(x, t)

=
√

a0−a1
√−w coth(

√−wξ)− b1√−w
tanh

(√−wξ
)
,

w < 0,

where ξ = x−ct.

Case 3

β = 1

32

(
16g2 − 3g2

4

g6

)
,

k = 1

3

(
9g2

4

16wg6
+ 3c2md

Q2
d

)
,

b1 = 0, a1 = ∓ 3ig4

8
√

wg6
, a0 = −3g4

8g6
.

Hence

p9(x, t)

=
√

a0+a1
√

w tan(
√

wξ)+ b1√
ω

cot
(√

wξ
)
,

w > 0,

p10(x, t)

=
√

a0−a1
√

w cot(
√

wξ)− b1√
ω

tan
(√

wξ
)
,

w > 0,

p11(x, t)

=
√

a0−a1
√−w tanh(

√−wξ)− b1√−ω
coth

(√−wξ
)
,

w < 0,

p12(x, t)

=
√

a0−a1
√−w coth(

√−wξ)− b1√−w
tanh

(√−wξ
)
,

w < 0,

where ξ = x − ct.

Case 4

β = 1

32

(
16g2 − 3g2

4

g6

)
, k = 3g2

4

16wg6
+ c2md

Q2
d

,

a1 = 0, b1 = ±3i
√

wg4

8g6
, a0 = −3g4

8g6
.

Hence

p13(x, t)

=
√

a0+a1
√

w tan(
√

wξ)+ b1√
ω

cot
(√

wξ
)
,

w > 0,

p14(x, t)

=
√

a0−a1
√

w cot(
√

wξ)− b1√
ω

tan
(√

wξ
)
,

w > 0,

p15(x, t)

=
√

a0−a1
√−w tanh(

√−wξ)− b1√−ω
coth

(√−wξ
)
,

w < 0,

p16(x, t)

=
√

a0−a1
√−w coth(

√−wξ)− b1√−w
tanh

(√−wξ
)
,

w < 0,

where ξ = x − ct.

3. Conclusions

Throughout this work, we have investigated the solu-
tions of the thin-film polarisation equation, while using
the modified tanh method and, as a result, a number
of new analytical expressions of solutions have been
derived along with associated constraints. While com-
puting these solutions, it appeared that singular waves
can propagate in the medium. This singularity originates
from the hyperbolic tangent that occurs in analytical
solutions. Further investigation may allow to distinguish
which of the wave solutions can propagate in thin-film
ferroelectric materials. Such an investigation will take
into account numerical simulations. This issue deserves
much attention and needs to be investigated further.

One should also note that the solutions reported in
this study are derived with assistance from the pre-
dicted solutions. The finite series form solutions are
constructed by the Riccati equation which are differ-
ent from the solutions reported in [7] derived by some
direct integrals together with some particular choices
of the parameters used in the equation. On the other
hand, the solutions reported in this study are of the form
of tangent and hyperbolic tangent functions. This can
also be another main difference between the solutions
published in [7].
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