
Am J Cancer Res 2018;8(10):1967-1976
www.ajcr.us /ISSN:2156-6976/ajcr0085440

Review Article 
An overview of MCT1 and MCT4 in GBM: small molecule 
transporters with large implications

Simon J Park1*, Chase P Smith1*, Ryan R Wilbur1*, Charles P Cain1, Sankeerth R Kallu1, Srijan Valasapalli1, 
Arpit Sahoo1, Maheedhara R Guda1, Andrew J Tsung1,2,4, Kiran K Velpula1,2,3

Departments of 1Cancer Biology and Pharmacology, 2Neurosurgery, 3Pediatrics, University of Illinois College of 
Medicine at Peoria, Peoria, IL, USA; 4Illinois Neurological Institute, Peoria, IL, USA. *Equal contributors.

Received September 12, 2018; Accepted September 20, 2018; Epub October 1, 2018; Published October 15, 
2018

Abstract: Monocarboxylate transporters (MCTs) represent a diverse group of transmembrane proteins encoded 
by the SLC16 gene family found ubiquitously across mammalian species. Two members of this family, MCT1 and 
MCT4, have been linked to key roles in the metabolic activity of tissues through the proton-coupled transport of 
monocarboxylates, most notably L-lactate, ketone bodies, and pyruvate. This review aims to provide an overview 
of MCT1 and MCT4, followed by the implications of their expression in a multitude of cancers and in glioblastoma 
(GBM) specifically. Further, the possible mechanisms underlying these effects will be discussed. Given the relation-
ships between MCT1 and MCT4 and cancer, they offer a unique opportunity for novel treatment strategies. We aim 
to explore current therapies focused on MCT1 and MCT4 and propose future studies to better understand their role 
in GBM to optimize future treatment regimens.
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Introduction

Glioblastoma (GBM) is one of the most difficult 
to treat and deadly cancers. In the era of radia-
tion therapy plus temozolomide, the standard 
of care for GBM, the survival after diagnosis 
remains only 14.2 months [1]. Such a progno-
sis leaves much to be desired in the treatment 
of GBM. Further investigation of the molecular 
mechanisms involved in GBM tumorigenesis 
can provide novel targets for therapy.

The SLC16 gene family consists of fourteen 
members, each of which encodes 12-trans-
membrane domain transporters. Of the four-
teen members, MCT1 and MCT4 are the only 
members that have been characterized to 
exhibit proton-coupled symport of monocarbox-
ylic acids [2]. Encoded by the genes SLC16A1 
(1p13.2) and SLC16A3 (17q25.3), MCT1 and 
MCT4 have been extensively studied and char-
acterized (https://www.ncbi.nlm.nih.gov/gene/ 
6566 https://www.ncbi.nlm.nih.gov/gene/91- 
23). The expression of MCT1 has been found 
throughout nearly all tissues in the human 
body, with the most notable exception being 

the endocrine pancreatic beta cells, whereas 
MCT4 is typically associated with glycolysis 
dependent tissues [3-5]. With regards to cellu-
lar localization, both MCT1 and MCT4 are pre-
dominantly localized to the plasma membrane, 
however, MCT1 has also been shown to localize 
to the nuclear, sarcolemmal and mitochondrial 
membranes [6-8] (Table 1). 

Characterization of MCT1 and MCT4 has dem-
onstrated that both preferentially bind to l-lac-
tate and ketone bodies, however, MCT1 has a 
higher affinity for pyruvate [9]. Additionally, 
MCT1 has generally higher affinities for its pre-
ferred substrates compared to MCT4 [6, 10]. 
Both MCT1 and MCT4 are capable of substrate 
import and export, however, MCT1 is typically 
involved in import and MCT4 in export [11, 12]. 
In fact, MCT4 was first identified as a key com-
ponent of lactate efflux in highly glycolytic white 
fiber myocytes [13], and was later demonstrat-
ed to show a high affinity for lactate over other 
monocarboxylates, as referenced by its com-
paratively lower Km for lactate [11]. These find-
ings suggest unique roles for MCT1 and MCT4 
depending upon the needs of various tissues.

http://www.ajcr.us
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Both MCT1 and MCT4 exhibit two unique con-
formations in the unbound state, so-called 
“inside-open” and “outside-open” in reference 
to the orientation of the substrate binding site 
to the cytoplasm, i.e. “inside-open” has the 
substrate binding site open to the cytoplasm 
and may participate in export, and “outside-
open” to the extracellular space and import 
[14]. The mechanism has been extensively 
studied in MCT1 and has been shown to be 
homologous to the action of MCT4 as well. The 
first step in the translocation cycle is the pro-
tonation of a lysine residue, followed by binding 
of the substrate. A translocation event then 
occurs through the transfer of proton and sub-
strate to aspartate and arginine, respectively, 
followed by their release and subsequent return 
to the original transporter conformation [15].

Proper cellular localization of MCT1 and MCT4 
is dependent upon an accessory protein, 
CD147 (also known as basigin, HT7, EMMPRIN, 
and OX-47), as first described by Kirk et al. 
2000 [16]. The authors demonstrated that 
plasma membrane localization was dependent 
upon the CD147-MCT1/MCT4 interaction, and 
without functional CD147 both MCT1 and MCT4 
remained in the golgi apparatus or endoplas-
mic reticulum. This interaction was further vali-
dated through CD147 knock-out mice, which 
demonstrated substantially limited plasma 
membrane localization of MCT1 and MCT4 [17]. 
Interestingly, CD147 is also a key for distribut-
ing MCT1 to the apical membrane in polarized 
cells, but MCT4 is able to distribute to the baso-
lateral membrane independent of CD147 due 
to a C-terminal signaling sequence [18, 19].

MCTs and cancer

The significance of MCTs is known to extend 
beyond the regulation of normal physiology. 

Much as MCTs are nearly ubiquitously found in 
the body, overexpression of MCT1 and MCT4 
are found in many different cancer types [20-
25]. Increased relative expression of MCT1 and 
MCT4 has also been linked to a worsened prog-
nosis in several cancers (Table 2). 

MCT1 and MCT4 in glioblastoma

GBM is a highly aggressive form of primary CNS 
malignancy that is largely unresponsive to cur-
rent treatment modalities and corresponds to a 
very poor overall prognosis. Although the cur-
rent understanding of the role MCTs play in 
GBM is limited, its many implications have war-
ranted the necessity for further investigation. 
GBM exhibits increased expression levels of 
SLC16A1 and SLC16A3 when compared to nor-
mal brain parenchyma, as well as oligodendro-
gliomas and astrocytomas (Figure 1A and 1B). 
Kaplan-Meier plots of their expression in a sub-
set of gliomas (GBM, oligodendrogliomas, and 
astrocytomas) shows a significantly worsened 
prognosis for high SLC16A1 and SLC16A3 
tumors, as defined by the median of the expres-
sion dataset of 275 total patient samples 
(Figure 1C and 1D). Together, these suggest 
that SLC16A1 and SLC16A3 expression offers 
poor discriminatory prognostic value in GBM 
but is correlated with a far poorer prognosis 
amongst gliomas collectively. 

Role in tumor metabolism and metabolic 
symbiosis

As seen in many other cancers, glioblastoma 
often displays a glycolytic phenotype conferred 
by the upregulation of the Warburg effect, a 
phenomenon in which glycolysis is preferential-
ly utilized even under aerobic conditions [33]. 
ATP production is less efficient through this 
metabolic behavior but is thought to result in a 

Table 1. Summary of MCT1 and MCT4 biochemistry
Transporter Gene Locus Membrane Localization Preferred Substrates Typical Role
MCT1 SLC16A1 1p13.2 Plasma (mostly), Mitochondrial, Sarcolemmal, Nuclear L-Lactate, Pyruvate, Ketone bodies Lactate Import

MCT4 SLC16A3 17q25.3 Plasma L-Lactate, Ketone bodies Lactate Export

Table 2. Cancer associations with MCT1 and MCT4
Transporter Overexpressed Worsened Prognosis
MCT1 Breast, brain, colorectal, gynecological, head and neck, lung, pros-

tate, pancreatic, stomach, bone, oral, renal cancers [24, 26, 27] 
Bladder, endometrial cancer, clear cell renal cell carcinoma 
[24, 26, 27] 

MCT4 Prostate, ovarian, cervical, lung, breast, colon, bone, oral, renal 
cancers [22-25, 28]

Oral, colorectal, prostate, lung cancer, clear cell renal cell 
carcinoma [24, 25, 29-32]
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Figure 1. A, B. Boxplot representation of SLC16A1 (MCT1) and SLC16A3 (MCT4) gene expression in glioma and normal brain tissue (n=524). C, D. Kaplan-Meier 
curves for three glioma subtypes (GBM, oligodendroglioma, and astrocytoma; n=275) stratified into high and low expression of SLC16A1 and SLC16A3 relative to 
the median expression of the group. Generated by analysis of REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT), accessed through betastasis.com.
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greater production of substrates necessary to 
satisfy the high anabolic demand of cancer 
cells. A consequence of this metabolic repro-
gramming is the elevated fermentation of  
pyruvate into lactate [34]. This characteristic 
metabolism subsequently lowers the intracel-
lular pH to conditions suboptimal to the func-
tion of intracellular machinery including glyco-
lytic enzymes. As the maintenance of a slightly 
alkaline pH is essential to glioblastoma metab-
olism, the role MCTs serve in the maintenance 
of Warburg metabolism is substantial, irrespec-
tive to the availability of oxygen [28, 35]. Of the 
SLC16 family, MCT1 and MCT4 have been impli-
cated in multiple facets of GBM pathogenesis 
including angiogenesis, cellular proliferation, 
and immune modulation [28, 36, 37]. Although 
the current understanding of the MCTs in glio-
blastoma remains limited, several pathophysi-
ologic mechanisms have been proposed as to 
the function of MCT1 and MCT4 in the patho-
genesis of GBM.

Many different tumor types are reported to 
maintain a phenotypically heterogeneous pop-
ulation of cancer cells [38]. As demonstrated 
by Soeda et al., GBM is no exception to this 
characteristic as the presence of GBM stem 
cells (GSCs) that proliferate indefinitely are 
thought to replenish a pool of indefinitely prolif-
erating GSCs and also generate subpopula-
tions of differentiated GBM cells [39]. Two nota-
ble subtypes of differentiated GBM cells include 
those that demonstrate a propensity towards 
either a glycolytic or oxidative metabolic pheno-
type. Adaptations to hypoxic conditions are 
associated with the glycolytic phenotype while 
GBM cells able to obtain adequate levels of oxy-
gen are thought to participate in oxidative phos-
phorylation more readily [20]. As discussed pre-
viously, the glycolytic phenotype demonstrated 
by many GBM cells causes an accumulation of 
lactate problematic in the maintenance of GBM 
homeostasis. The current understanding of 
cancer tumor cells appears to suggest that 
MCT1 and MCT4 are responsible for the import 
and export of lactate, respectively. MCT4 has 
been described to hold a major role in the 
export of monocarboxylic acids such as lactate, 
whereas MCT1 has been reciprocally character-
ized to function in the intracellular influx of 
monocarboxylic acids [40]. Glycolytic cancer 
tumor cells have been described to upregulate 
export of lactate by increasing expression of 
MCT4 to better accommodate the lactate accu-

mulation. Conversely, oxidative cancers tumor 
cells are reported to upregulate expression of 
MCT1 to mediate the uptake of lactate from the 
extracellular environment to fuel metabolism 
[20, 40]. A recent hypothesis suggests that this 
dynamic may create a metabolic symbiosis 
between the two GBM subpopulations that 
maintains a favorable environment for both 
subtypes [41]. Although MCT1 has generally 
been associated as the major isotype in many 
oxidative cancer cells due to its mediation of 
lactate import, there is also evidence that 
MCT1 may serve a role in the efflux of lactate 
as inhibition may also cause the accumulation 
of lactate within GBM cells [20, 42]. It appears 
that the functional activity of MCTs may vary 
based on the pH and monocarboxylate concen-
trations present in both the intracellular and 
extracellular environment [11, 40, 43]. GSCs 
also interact with stromal cells in an MCT 
dependent manner contributing to the patho-
physiologic homeostasis of cancer cells. As 
such, GBM is known as a highly glycolytic can-
cer type that displays the capability to induce a 
favorable interaction with neighboring stromal 
cells [41]. Similar to oxidative cancer cells, vas-
cular endothelial cells also express MCT1 and 
uptake lactate exported by glycolytic cancer 
cells [40]. Notably, the lactate shuttling occur-
ring between the endothelial and GBM cells 
have been shown to upregulate signaling path-
ways responsible for the induction of angiogen-
esis [44]. The variable role of MCT1 and MCT4 
seems to demonstrate a potential alteration of 
function based on environmental conditions 
and cellular interaction.

Role in hypoxia 

A characteristic of GBM tumor growth is the 
development of necrosis within hypoxic regions 
of the tumor [45]. Hypoxic adaptation within 
these necrotic regions of GBM tumors has been 
associated with the activity of pseudo palisad-
ing GBM cells, a morphologically unique subset 
of cancer cells commonly found surrounding 
the periphery of tumor necrosis. The configura-
tion of pseudo palisades and tumor necrosis 
has been termed pseudo palisading necrosis 
and is considered a hallmark response to hyp- 
oxic tumor necrosis observed in GBM. Although 
the exact mechanism underlying the formation 
of pseudo palisading necrosis remains unclear, 
it has been hypothesized that the pseudo pali-
sading cells may represent tumor cells migrat-
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ing away from the hypoxic region following a 
thrombotic event [46-48]. 

Adaptation to hypoxia is a well-established fac-
tor involved in the pathogenesis of solid tumors. 
Interestingly, both MCT1 and MCT4 exhibit 
increased expression under hypoxia in cancer, 
suggesting that they may play a role in this 
adaptation. The mechanisms underlying these 
changes in expression vary for MCT1 and MCT4. 
Ullah et al. first demonstrated that MCT4 upreg-
ulation under hypoxia was mediated by hypox-
ia-inducible factor-alpha (HIF-1α). The authors 
showed that during hypoxia, wild-type Chinese 
hamster ovary cells exhibited increased MCT4 
expression, however, deletion of HIF-1α remo- 
ved this effect [49]. This interaction was further 
validated in GBM, wherein knockdown of MCT4 
inhibited the transcriptional response of HIF-1α 
regardless of lactate levels [36]. 

Rather than being regulated through an interac-
tion with HIF-1alpha during hypoxia, MCT1 
expression has been linked to the tumor sup-
pressor protein p53. Wild-type p53 has been 
shown to act as a transcriptional repressor of 
MCT1 while also decreasing MCT1 mRNA sta-
bility in colon cancer cells [50]. This repression 
was eliminated in p53 null cells under hypoxia 
and further investigation identified nuclear fac-
tor kappa beta (NF-Kb), specifically the p65 
subunit, as being associated with this change. 
This is an interesting finding considering that 
NF-Kb has previously been linked to increased 
MCT4 expression [51].

Immune modulation and evasion

Lactate presence in the extracellular space, 
which is mediated by MCTs, has strong immu-
nosuppressive effect in addition to inducing 
various other pathways [52]. A primary method 
through which cancer cells exert their immuno-
suppressive effect is through the lactate shut-
tle. The movement of lactate extends to stro-
mal cells which are programmed and recruited 
to help create the tumor microenvironment [46, 
53]. MCT4 couples the export of lactate with 
H+, causing the region to become highly acidic. 
Cytotoxic (CD8+) T cells primarily rely on glycol-
ysis for energy production and as such produce 
lactate. CD8+ T cells would have their lactate 
export halted by this disruption in the pH gradi-
ent and would lead to subsequent intracellular 
acidification. This acidity leads to the reduced 

cytotoxicity and cytokine production of CD8+ T 
cells, and eventually apoptosis of the cell [54]. 
Using a buffer to bring the pH levels surround-
ing tumors back to a physiological range res-
cues the cytotoxic T cell activity [46]. The pres-
ence of lactate additionally induces macro-
phages into a M-2 like state that suppresses 
the inflammatory response [53], inhibits mono-
cyte differentiation, and prevents mature den-
dritic cells from releasing cytokines [46]. Im- 
munosuppressive cells are recruited by the 
presence of lactate rather than inhibited. MCT1 
additionally facilitates the transport of bran- 
ched-chain keto acids (BCKAs) which are a 
byproduct of branched-chain amino acid (BCAA) 
metabolism taking place in glioblastoma cells. 
These BCKAs are taken up by phagocytes and 
as a result have their phagocytic activity inhib-
ited [55]. Regulatory T cells are unaffected by 
the increase in acidity and lactate presence 
adding to the immunosuppressive effect of 
MCTs and lactate [54]. It should be noted that 
contrary to most cancers, GBM has reversed 
roles of MCT1 (export) and MCT4 (import). 
Together, these effects allow GBM to evade the 
immune system and continue to proliferate 
unopposed.

Cellular proliferation

MCT1 and MCT4 serve an integral role in the 
propagation of GBM pathogenesis [28]. As dis-
cussed above, monocarboxylate transporters 
are essential in the maintenance of the GBM 
intracellular environment. By providing homeo-
static stability, MCTs are thought to help per-
petuate conditions favorable to the induction of 
cellular proliferation of glioma tumor cells [28]. 
The valuable role monocarboxylate transport-
ers hold in the viability of GBM has been dem-
onstrated in multiple studies. A past study con-
ducted by Mathupala et al. demonstrated that 
the siRNA mediated silencing of MCT1 and 
MCT2 induced cell death in the form of both 
increased necrosis and apoptosis in the GBM 
cell line U87 [42]. MCT1 seems to be especially 
significant in high grade astrocytoma cells dis-
playing the glycolytic phenotype such as GBM. 
When compared to a phenotypically oxidative 
form of high grade astrocytoma, the inhibition 
of MCT1 in glycolytic GBM appears to be much 
more detrimental. Miranda-Gonçalves et al. 
demonstrated this finding when comparing the 
effects of the MCT1 inhibitor 2-Cyano-3-(4-
hydroxyphenyl)-2-propenoic acid (CHC) on high 
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grade, oxidative and glycolytic astrocytoma cell 
lines. The study demonstrated that the CHC 
treatment caused decreased glycolytic activity 
in the glycolytic GBM cell line U251 in addition 
to an increase in cell death when treated with 
CHC. In comparison, the effects of CHC admin-
istration to the oxidative cell line SW-1088 
appeared be much less profound, only causing 
a reduction in cellular proliferation [28].

Small molecule inhibitors

Since their initial characterization, there have 
been a multitude of compounds reported which 
are capable of MCT inhibition (Table 3). Some 
of the earliest inhibitors identified were α- 
cyano-4-hydroxycinnamate (CHC) and the stil-
bene disulfonates, which include 4,4’-di-iso-
thiocyanostilbene-2,2’-disulfonate (DIDS) and 
4,4’-dibenzamidostilbene-2,2’-disulfonate (DB- 
DS). While effective at inhibiting lactate trans-
port in vitro, both inhibitors demonstrated sub-
stantial off-target effects, with CHC more po- 
tently inhibiting mitochondrial pyruvate trans-
port and DBDS the erythrocyte chloride/bicar-
bonate exchanger AE1, thereby necessitating 
the development of more specific inhibitors 
[14, 56, 57]. Two such compounds, AR-C177977 
and AR-C122982, were developed as highly 
specific MCT1 and MCT2 inhibitors that act 
through direct binding to transmembrane heli-
ces 7-10 intracellularly [58]. These compounds 
were quite efficacious in the prevention of 
allograft rejection and disruption of the graft-
versus-host in rats and mice and AR-C177977 
for glioblastoma cancer stem cells with high 
MCT1 expression [35]. Both, however, exhibit-
ed low oral bioavailability with short plasma 
half-lives, limiting their clinical value [59-61]. 
Several novel compounds based on the two 
predecessors demonstrated substantially in- 
creased oral bioavailability and PK half-lives, 
however, they all remained outside the range of 
clinical practicality [61]. Within this group of 
compounds, AR-C155858 has been shown to 
be effective at reducing lactate export in Ras-
transformed fibroblast and reducing tumorige-

nicity both in-vitro and in-vivo. These effects, 
though, were reversed upon exogenous or 
increased endogenous MCT4 expression [62]. 

A variant of AR-C155858, AZD3965 was devel-
oped as a better candidate for clinical use. In 
addition to having a greater specificity for MCT1 
over MCT2 (6-fold greater specificity), AZD3965 
was shown to be effective against diffuse large 
B-cell lymphoma, non-Hodgkin lymphoma, and 
Burkitt’s lymphoma in-vitro [63]. Based on this, 
AZD3965 was selected for clinical review, cur-
rently undergoing phase I clinical trials in the 
United Kingdom in patients with advanced can-
cers, with an expected primary completion date 
of August 2019. Started in February 2013, this 
study represents the first instance of a targeted 
MCT inhibitor therapy in clinical trials and 
remains the only of its kind as of August 2018. 
Aside from hematological malignancies, AZD- 
3965 has shown variable efficacy against small 
cell lung cancer in-vitro and in-vivo, with it being 
most effective against cancer cells expressing 
high levels of MCT1 in hypoxia with concurrent 
low expression of MCT4; high levels of MCT4 
expression correlated with increased rates of 
resistance to the drug [64].

While there have been a variety of targeted 
inhibitors identified towards MCT1, few direct 
inhibitors exist for MCT4 despite it having been 
shown to be an effective target through gene 
silencing in a variety of cancers [65]. One such 
inhibitor, acriflavine (ACF), inhibits the function 
of MCT4 through disruption of the MCT4-CD147 
interaction necessary for the functional local-
ization of MCT4 to the plasma membrane. ACF 
was validated in glioblastoma stem cells, in-
vitro and in-vivo, where it significantly reduced 
angiogenesis and tumor progression, most 
effectively under hypoxia [66]. p-chloromer-
curibenzene sulfonate (pCMBS), an organo-
mercurial reagent, is capable of inhibiting the 
interaction between MCT4 and CD147, but it 
also inhibits the MCT1-CD147 interaction owing 
to its direct targeting of basigin [67]. This has 
yet to be utilized in any cancer studies.

Table 3. Summary of targets and corresponding inhibitors
Target Non-specific MCT1/MCT2 MCT1 MCT4-CD147 MCT1/MCT4-CD147
Inhibitors CHC AR-C177977 AZD3965 ACF pCMBS

DIDS AR-C122982
DBDS AR-C155858
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Future directions/conclusion 

GBM has lesions in multiple cancer related 
pathways substantiating the need for therapies 
targeting various points within these pathways. 
Despite our imperfect understanding of MCT1 
and 4 in GBM and the lack of therapeutic op- 
tions targeting these transporters, current 
research indicates MCT1 and MCT4 as promis-
ing targets for GBM treatment. Understanding 
MCT1 and MCT4 will shed light on the develop-
ment of GBM and provides an attractive thera-
peutic option for GBM patients. Research into 
potential cooperative effects of MCT1 and 
MCT4 are warranted to understand how they 
work together to promote tumorigenesis. Un- 
derstanding the mechanisms behind the inter-
action between MCT1 and MCT4 and stromal 
cells could illuminate potential targets of study. 
Additionally, the full effects that the tumor micro-
environment, created by metabolic symbiosis, 
has on MCT1 and MCT4 function are unknown. 
The role of p53 in managing MCT1 and MCT4 
during hypoxia is not fully understood, and fur-
ther research would be of great benefit.

Novel, more efficacious inhibitors targeting 
these transporters can be developed once the 
relationship between MCT1 and MCT4 and the 
development of GBM is better understood. As 
previously mentioned, there are many in vitro 
inhibitors available for MCT1 and MCT4 but few 
have made it to human trials and few are spe-
cific to MCT1 and MCT4 [58, 64, 66]. The major-
ity of the specific inhibitors aren’t feasible for 
GBM trials in humans [59-61]. ACF is particu-
larly promising as a therapeutic agent for GBM. 
Treatment with ACF in temozolomide resistant 
mouse models inhibited tumor growth. Addition- 
ally, treatment with ACF did not promote resis-
tance. What is more, only one clinical trial for an 
MCT inhibitor is currently ongoing with no trials 
for MCTs in glioblastoma and no MCT inhibitors 
approved for the treatment of glioblastoma.

In conclusion, MCT1 and MCT4 play integral 
roles in cancer development and metabolism. 
The current literature indicates MCT1 and 
MCT4 to be equally significant in GBM. This, 
however, gives us just a glimpse of their roles. 
Gaining a better understanding of MCT1 and 
MCT4 in GBM is critical to the development of 
novel inhibitors. As discussed, GBM displays 
the Warburg effect and must maintain an alka-
line intracellular pH in order to continue under-
going glycolysis. Inhibiting MCT and MCT4, 

which play a key role in maintaining this bal-
ance would prevent glucose metabolism th- 
rough glycolysis. While multiple inhibitors cur-
rently exist for MCTs generally, research for 
potential therapeutic drugs specific to GBM is 
absent. 
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