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Abstract. This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-
generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential
equations is simplified to a nonlinear system using boundary layer approach and similarity transformations.
Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution
of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have
been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index
and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging
thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat
parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with
increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.
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energy.

PACS Nos 44.25.+f; 47.10.ad; 47.50.−d

1. Introduction

It is well known that some fluids do not adhere to
classical Newtonian viscosity description. These are
classified as non-Newtonian fluids. One special class
of fluids is of considerable practical importance in the
field of science and technology. In these fluids, viscosity
depends on shear stress or flow rate. Moreover, viscos-
ity of most non-Newtonian fluids, such as polymers, is
usually a nonlinear decreasing function of generalised
shear rate. This is known as shear-thinning behaviour.
Tangent hyperbolic fluid model exhibits rheological
characteristics of such fluids (Ai and Vafai [1]). The
tangent hyperbolic fluid is used extensively for differ-
ent laboratory experiments. Friedman et al [2] used
tangent hyperbolic fluid model for large-scale magneto-
rheological fluid damper coils.

The study of boundary layer flows over a stretch-
ing sheet has been considerably increased because
of their tremendous applications in different fields of

science and engineering. Some of the examples include
hot rolling, continuous stretching, aerodynamic extru-
sion of plastic sheets, polymer industries etc. Revolu-
tionary study in this context was conducted by Sakaidis
[3]. Crane [4] and Gupta and Gupta [5] have analysed
continuous moving surface problem with constant sur-
face temperature. Many contributions to this problem
including stretching velocity and study of heat transfer
are available in literature (see [6,7]).

The first analysis on induced magnetic field was done
by Vishnyakov and Pavlov [8]. In their analysis, viscous
fluids have been considered. Theory of magnetohydro-
dynamics (MHD) concerns with inducing current in a
moving conductive fluid in the presence of magnetic
field, which creates force on electrons of conductive
fluid and also changes magnetic field itself. A survey of
MHD studies can be found in [9]. Singh and Gupta [10]
have discussed MHD-free convective flow of a viscous
fluid through a porous medium bounded by an oscillat-
ing porous plate in slip flow regime with mass transfer.
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In thermodynamics, the measure of disorder is called
entropy. According to the second law of thermodynam-
ics for an isolated system, system spontaneously grows
toward thermodynamic equilibrium and attains mini-
mum entropy. On the other hand, for a non-isolated
system, there is a possibility of a decrease in entropy of a
system, which may transfer the same amount of entropy
to surroundings. Heat transfer and viscous dissipation
play vital roles in changing the behaviour of entropy of
a system. Study of entropy generation is a field of interest
among researchers. Different sources such as heat trans-
fer and viscous dissipation are responsible for the gener-
ation of entropy [11,12]. Bejan [13] investigated entropy
generation rate in a circular duct with forced heat flux
at the boundary and its extension to determine optimum
Reynolds number as a function of Prandtl number. Sahin
[14] introduced second law analysis to a viscous fluid
in circular duct with isothermal boundary conditions.
Falahat [15] discussed entropy generation of nanofluids
in helical tube and laminar flow. In another paper, Sahin
[16] presented the effect of variable viscosity on entropy
generation rate for a heated circular duct. In more recent
papers, Mahmud and Fraser [17,18] used second law
analysis to convective heat transfer problems and to non-
Newtonian fluid flow between two parallel plates. Saouli
and Saouli [19] studied entropy generation in a liquid
film falling along an inclined heated plate. Some recent
articles for readers’ interest are cited in refs [20,21].

For any engineering system, an optimal and efficient
system is desired. In order to examine the efficiency
of the system, one has to study the facts contributing
to energy loss. In thermodynamics, this energy loss is
measured by measuring the entropy generation and irre-
versibility ratio. These two parameters play vital roles to
analyse the process through which engineering system
attains its thermal equilibrium. The present entropy gen-
eration analysis is carried out for melting heat transfer of
MHD GNF model. Moreover, conducting equations of

two-dimensional tangent hyperbolic fluid are modelled.
With the help of dimensionless parameters, entropy
generation analysis is discussed numerically with the
assistance of the shooting method.

2. Problem development

Assume a steady incompressible flow of a tangent hyper-
bolic fluid over a stretching sheet situated at the initial
line, i.e. on x-axis (y = 0). Consider that the fluid is
under the influence of a magnetic field of strength B0
that is applied in positive y-direction normal to the plate.
Moreover, melting at a steady rate is incorporated with
constant property. The x- and y-axes are taken along and
perpendicular to the sheet, respectively, and the flow is
being confined to the region y ≥ 0. The velocity of
stretching sheet is considered to be uw(x) = ax , where
a is a positive stretching sheet constant. The temperature
of the melting surface Tm and ambient temperature T∞
have been chosen such that T∞ > Tm . The induced mag-
netic field due to magnetic Reynolds number is taken to
be small enough and negligible when compared to the
applied magnetic field. Physical flow situation is pre-
sented in figure 1.

The governing equations of the boundary layer flow,
heat and mass transfer of a tangent hyperbolic fluid are
[22]:
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Figure 1. Engineering flow structure.
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where u and v are velocity components in x- and y-
directions, respectively. n is the behaviour index. It
represents Newtonian behaviour of fluid forn = 1, shear
thinning when n > 1 and shear thickening when n < 1.
T is the fluid temperature, Cp is the specific heat, k is
the thermal conductivity, ρ is the fluid density, ν = μ/ρ

(ratio of viscosity to density of fluid) is the kinematic
viscosity. The associated boundary conditions are

u = uw(x) = ax, v = 0, T = Tw at y = 0,

u → 0,
∂u

∂y
→ 0, T → T∞ as y → ∞, (4)

with

k

(
∂T

∂y

)∣∣∣∣
y = 0

= ρ [λ + cs(Tm − T0)] v(x, 0). (5)

In the above equations, λ is the latent heat of fluid and
cs is the heat capacity of the solid surface. The bound-
ary conditions defined in eq. (4) explain that the heat
conducted to the melting surface is equal to the heat of
melting plus sensible heat required in rising solid tem-
perature T0 to its melting temperature Tm . The boundary
layer equations (1)–(3) admit solution of the form:

u = ax f ′(η), v = √
aν f (η), η =

√
a

ν
y,

θ(η) = T − Tw

T∞ − Tw

. (6)

Equation (1) is automatically satisfied, and (2)–(3)
become

(1 − n) f ′′′ + f f ′′ − ( f ′′)2

+nWe f
′′ f ′′′ − M2 f ′ = 0, (7)

θ ′′ + Pr f θ ′ = 0 (8)

and the corresponding boundary conditions (4) are

f ′ (0) = 1, θ (0) = 0, Pr f (0) + M1θ
′ (0) = 0,

f ′′ → 0, θ → 1 as η → ∞, (9)

where primes denote differentiation with respect to η, Pr
is the Prandtl number, Weissenberg number, We is the
fluid parameter, M is the Hartman number and M1 is the
dimensionless melting parameter. It is a combination of
Stefan numbers c f (T∞ − Tw)/λ and cs(Tw − T0)/λ for
liquid and solid phases, respectively. Mathematically,
we have

We =
√

2a

ν
ax�, Pr = k

ρCp
,

M1 = c f (T∞ − Tw)

λ + cs(Tw − T0)
,

M2 = σ B2
0

ρa
. (10)

The skin friction coefficient Cf and local Nusselt num-
ber Nux are

Cf = τw

ρu2
w

,

Nux = xqw

k(T∞ − Tw)
, (11)

in which expressions of wall skin friction (τw) and wall
heat flux (qw) are given by

τw = (1 − n)
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With the help of dimensionless variables (10), we have

Cf (Rex )
−1/2 = (1 − n) f ′′(η) +n

2
We

(
f ′′(η)

)2
∣∣∣
η=0

,

NuxRe−1/2
x = −θ ′(0), (13)

where Rex = ax2/ν is the local Reynolds number.

3. Entropy generation analysis

The following expression indicates entropy generation:

EG = k

T∞

[(
∂T

∂x

)2

+
(

∂T

∂y

)2
]

+ τ L . (14)

Entropy generation due to fluid friction is a non-
dimensional quantity denoted as Ns . It is the ratio
of actual entropy generation rate EG to characteristic
entropy transfer rate EG0 and is given as

EG0 = k�T

l2T 2∞
, � = �T

T∞
, (15)

Ns = EG
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(
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)2

+ γ

�

(
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)2

. (16)

In eq. (16), first term on the right side represented as Nh
is entropy due to heat transfer and second one is due to
viscous dissipation termed as N f , i.e.,

Ns = Nh + N f . (17)

Ratio between entropy generation due to fluid friction
and Joule dissipation to total entropy generation due to
heat transfer is known as irreversibility ratio. It is defined
as

r = Nf

Nh
= (γ /�) (∂u/∂n)2

(∂T /∂y)2 . (18)

It is worth mentioning that heat transfer irreversibility
dominates in the region 0 ≤ r < 1 and fluid friction with
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magnetic effects dominates when r > 1. Moreover, heat
transfer and combined effect of friction and magnetic
field is in equilibrium when r = 1. Another irreversibil-
ity parameter is Bejan number Be. It is defined as

Be = 1

1 + r
. (19)

It has a range from 0 to 1. The combined effect of fluid
friction and magnetic field is prominent when Be → 0.
For Be → 1, it is the case for entropy generation due
to the dominant effect of heat transfer irreversibility.
Equilibrium occurs when Be = 1/2, i.e., when entropy
generation crops up due to the same effects of heat trans-
fer and fluid friction.

4. Computational procedure

The solution of eqs (7)–(8) along with boundary con-
ditions (9) is computed by employing a numerical
technique known as shooting method. Here, we con-
vert nonlinear equations into a system of five first-order
ordinary differential equations by labelling variables as
f = y1, f ′ = y′

1 = y2, f ′′ = y′
2 = y3, θ = y4,

θ ′ = y′
4 = y5. This yields the following mathematical

expressions:⎛
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.

Then, we solve it by Runge–Kutta method of order
5. The iterative process will be terminated when error
involved is < 10−6.

5. Description of results

The flow and heat transfer in tangent hyperbolic fluid
has been solved numerically using shooting method.
The expressions of velocity and temperature have been
used to compute entropy generation and Bejan number.
Figures 2–6 depict the effects of various material param-
eters, such as Prandtl number Pr, melting parameter M1,
Weissenberg number We and magnetic parameter M , on

Figure 2. Impact of We on f ′(η).

Figure 3. Variation of n on f ′(η).

velocity profile f ′(η). Figure 2 shows that an increase
in We decreases the boundary layer thickness because
the fluid parameter causes a resistance in the veloc-
ity of fluid, i.e. fluid velocity is remarkably affected
by this physical parameter. For the case of shear thin-
ning fluids, fluid parameter plays a role in increasing
fluid flow which leads to a decrease in boundary layer
thickness. Same trend can be seen for power law index
n and Prandtl number Pr (see figures 3 and 4). It is
depicted that Pr contributes in lowering the velocity pro-
file. The influence of melting parameter M1 on velocity
profile is illustrated in figure 5. It causes an increase
in boundary layer thickness. Figure 6 shows the influ-
ence of increasing magnetic parameter M. It decreases
the fluid velocity leading to an enhanced boundary layer
thickness. Figures 7–10 describe the impact of several
physical numbers on temperature profile θ(η). In figure
7, it can be observed that We influences in enhanc-
ing temperature. The temperature profile has similar
behaviour in comparison to other parameters like n, M1
and magnetic parameter M .

Figures 11–13 show the effects of parameters on skin
friction coefficient and local Nusselt number. The effect
of Weissenberg number We on skin friction is seen in
figure 11. It explains that skin friction is an increasing
function of applied magnetic field and opposite trend is
seen against We. Moreover, from figure 12, it is depicted
that skin friction decreases by rising power law index.
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Figure 4. Behaviour of Pr on f ′(η).

Figure 5. Impact of M1 on f ′(η).

Figure 6. Influence of M on f ′(η).

Figure 7. Effect of We on θ(η).

Figure 13 shows the effect of power law index on Nusselt
number when plotted against applied magnetic field. It
can be seen that both M and n play roles in decreasing
Nusselt number.

Figure 8. Impact of n on θ(η).

Figure 9. Behaviour of M on θ(η).

Figure 10. Influence of M1 on θ(η).

Figure 11. Variation of We on (Rex )1/2C f against M.

5.1 Analysis of thermal equilibrium

Ns and Be are the two significant non-dimensional
parameters in entropy generation analysis. Entropy
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Figure 12. Effect of n on (Rex )1/2C f against M.

Figure 13. Variation of n on (Rex )1/2Nux against M.

generation number Ns consists of two major factors,
Nh (due to heat transfer) and N f (due to viscous dis-
sipation). Graphical illustrations of entropy generation
and Bejan numbers can be seen in figures 14–19. Fig-
ures 14–16 demonstrate the effect of power law index,
applied magnetic field and fluid parameter on Ns . It
is depicted that the parameters n and We contribute in
decreasing Ns due to the fact that, more shear thinning
behaviour of fluid has more energy loss. However, the
applied magnetic field, being a resistance force, con-
tributes in up-surging it. Effects of pertinent parameters
n, M and We on irreversibility parameter are displayed
in figures 17–19. Analysis of these graphs concludes that
all the three significant parameters contribute in enlarg-
ing Bejan number. Be → 1 is significant in the sense that
it shows the dominant role of viscous dissipation. It is
observed that viscous dissipation gets dominant where
boundary layer ends.

Further, table 1 gives values of Nusselt number for
different influential parameters. From this table, we
noticed that Nusselt number increases with an increase
in Hartman, Weissenberg and index numbers. Table 2
represents the behaviour of entropy number Ns , entropy
due to heat generation Nh and entropy due to viscous dis-
sipation Nf with respect to significant parameters. It is
clear from the table that Pr is related directly with Nh, Ns
and Nf and inversely related to index n, Weissenberg
number We, Hartman number M and dimensionless
parameter �.

Figure 14. Result of power index n on Ns .

Figure 15. Outcome of M on Ns .

Figure 16. Influence of We on Ns .

Figure 17. Effect of power index n on Be.

6. Summary

The present analysis explained boundary layer flow of
hyperbolic tangent fluid with combined effects of MHD
and melting heat transfer. The main findings of the
present analysis are:
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Figure 18. Variation of M on Be.

Figure 19. Impact of We on Be.

• The rate of transport reduces with increase in Prandtl
number Pr and hence viscous boundary layer dimin-
ishes.

Table 1. Numerical results analysis of −θ ′(0) for physical
parameters n, M and We.

n M We Nusselt number: −θ ′(0)

0.0 0.0 0.1 0.8939
0.1 0.9386
0.2 0.9912
0.3 0.5 1.2026

1.0 1.5734
1.5 2.0559
0.5 0.3 1.2678

0.5 1.3240

• The effect of index n, Weissenberg We and Hartman
M numbers on viscous and thermal boundary layers
is the same.

• Velocity and temperature profile decrease with an
increase in magnetic, index and Weissenberg num-
bers.

• Results of M, n and We are the same for entropy
generation number, but reverse in the case of Bejan
number.

• Melting parameter contributes in lessening the
entropy of flow.

• There is an increase in skin friction coefficient when
n and We increase.

• Influence of n and We on Be and Ns is quite opposite.
• Thermal equilibrium is attained within the boundary

layer.

Table 2. Computational analysis for entropy generation.

Pr n We M M1 Re γ � Nh N f Ns

1.0 0.2 0.2 2.0 0.5 10 1.0 0.011635 0.8197 380.6602 381.4799
2.0 2.0872 386.2029 388.2901
3.0 3.8770 388.2227 392.0996
4.0 0.3 4.7933 319.5442 324.3374

0.4 5.4674 367.7308 373.1983
0.5 3.8331 157.9181 161.7512
0.1 3.0 6.4241 398.0315 404.4556

4.0 6.3907 393.6704 400.0611
5.0 6.3565 389.0455 395.4020
2.0 1.0 4.3451 825.3465 829.6916

1.5 3.0083 1.411 × 103 1.414 × 103

2.0 2.2013 2.160 × 103 2.160 × 103

0.5 20 4.1680 394.5991 398.7671
30 2.9339 386.9139 389.8478
40 2.1920 381.3081 383.5001
10 1.5 12.9773 406.0613 419.0386

2.0 19.4659 406.0613 425.5272
2.5 25.9545 406.0613 432.0159
1.0 0.5 25.9545 609.0920 635.0465

1.0 25.9545 812.1227 838.0772
1.5 25.9545 1.015 × 103 1.041 × 103

1.5 0.5 25.9545 9.4490 35.4036
1.0 25.9545 4.7245 30.6790
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• Dominant effects of viscous dissipation exist at free
stream.
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