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Abstract. The degenerate coupled multi-Korteweg–de Vries equations for coupled multiplicity l = 3 are studied.
The equations, also known as three-field Kaup–Boussinesq equations, are considered for invariant analysis and
conservation laws. The classical Lie’s symmetry method is used to analyse the symmetries of equations. Based on
the Killing’s form, which is invariant of adjoint action, the full classification for Lie algebra is presented. Further,
one-dimensional optimal group classification is used to obtain invariant solutions. Besides this, using general
theorem proved by Ibragimov, we find several non-local conservation laws for these equations. The conserved
currents obtained in this work can be useful for the better understanding of some physical phenomena modelled by
the underlying equations.
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1. Introduction

Recently, degenerate coupled Korteweg–de Vries (KdV)
equations for coupled multiplicity l = 2, 3, 4 have
been considered for travelling wave solutions by Gürses
and Pekcan [1,2]. The multisystem of Kaup–Boussinesq
equations is given by (see [3,4])

ut = 3

2
uux + q2

x ,

q2
t = q2ux + 1

2
uq2

x + q3
x ,

...

ql−1
t = ql−1ux + 1

2
uql−1

x + vx ,

vt = −1

4
uxxx + vux + 1

2
uvx , (1)

where q1 = u and ql = v. For l = 2, system (1)
reduces to

ut = 3

2
uux + vx ,

vt = −1

4
uxxx + vux + 1

2
uux . (2)

System (2) has been studied in detail by Gürses and
Pekcan [1] for travelling wave solutions, and they have
proved that there exists no asymptotically vanishing
travelling wave solution of system (2). Wazwaz [5] has
studied generalised version of system (2) for multiple-
soliton solutions. It is pertinent to mention that system
(2), which is also known as Kaup–Boussinesq system,
exhibits the same shallow water wave characteristics in
the same approximation as the well-known Boussinesq
equation in the lowest order in small parameters con-
trolling weak dispersion and nonlinearity effects [6–9].
Moreover, the function v(x, t) denotes the height of
the water surface above a horizontal bottom, whereas
the function u(x, t) denotes its velocity averaged over
depth. The Kaup–Boussinesq system (2) corresponds
to the case when the gravity force dominates over the
capillary one and it is completely integrable [10–12].

For l = 3, system (1) has the following form:

ut − 3

2
uux − vx = 0,

vt − vux − 1

2
uvx − wx = 0,

wt + 1

4
uxxx − wux − 1

2
uwx = 0. (3)
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The system of eq. (3), which is also known as three-field
Kaup–Boussinesq equations [13], has been discussed
for travelling wave solutions [2], wherein authors have
given a general approach to solve eq. (1) for l ≥ 3. Sub-
sequently, by using the bifurcation analysis, Li and Chen
[14] have given complete parametric representations of
travelling wave solutions of system (1) for l = 2, 3, 4,
which was missing in the work of Gürses and Pekcan
[1,2]. In the literature, we have noticed that eq. (3) has
not been completely analysed, and so in this work, we
propose to investigate eq. (3) for Lie’s symmetry analy-
sis and for conservation laws using the recently proposed
new theorem by Ibragimov.

The paper is organised as follows. In §2, based on the
classical Lie symmetry analysis, we have obtained four-
dimensional Lie algebra. Starting with a brief discussion
about classification techniques, Lie algebra is then clas-
sified into mutually conjugate classes by identifying the
Killing’s form which is invariant of full adjoint action.
Reductions are also presented corresponding to every
conjugate class and exact solutions are also obtained. In
§3, based on a new theorem proposed by Ibragimov, sev-
eral non-local conservation laws are also constructed.
Finally, in §4, the conclusion is drawn.

2. Lie symmetry analysis of Kaup–Boussinesq
equation (3)

In order to identify Lie point symmetries for eq. (3),
we follow the standard procedure given in [15–18]. The
procedure is so algorithmic that it has been successfully
implemented in symbolic languages such as ‘Maple’ and
‘Mathematica’. The Maple package ‘PDEtools’ writ-
ten by Terrab [19] is quite interactive and efficient. It
becomes indispensable for researchers in the field of
partial differential equations (PDEs). In the following,
we have used this Maple package to find out Lie sym-
metries for eq. (3). So, we consider one-parameter local
Lie group of point transformations:

x̃ = x + εξ(x, t, u, v, w) + O(ε2),

t̃ = t + ετ(x, t, u, v, w) + O(ε2),

ũ = u + εη1(x, t, u, v, w) + O(ε2),

ṽ = v + εη2(x, t, u, v, w) + O(ε2),

w̃ = w + εη3(x, t, u, v, w) + O(ε2), (4)

where ε is the group parameter. The invariance of
eq. (3) under symmetry transformations (4) gives rise
to overdetermined system of linear partial differential
equations in ξ, τ, η1, η2 and η3. Such overdetermined
system may be derived by considering the associated
vector field, which may be expressed as

V = ξ
∂

∂x
+ τ

∂

∂t
+ η1

∂

∂u
+ η2

∂

∂v
+ η3

∂

∂w
. (5)

Third-order prolongation of vector field (5) when
applied in the following manner

V (3)(�)
∣
∣
(3)

= 0, here � is system (3), (6)

will give infinitesimals of symmetry transformation as
follows:

ξ = −5c3

6
t + 3c1

5
x + c4, τ = c1t + c2,

η1 = −2c1

5
u + c3, η2 = −4c1

5
v − 2c3

3
u,

η3 = −c3

3
v − 6c1

5
w. (7)

Infinitesimals (7) give the following four-dimensional
Lie algebra:

V1 = ∂

∂t
, V2 = ∂

∂x
(translation),

V3 = − 5t

6

∂

∂x
+ ∂

∂u
− 2u

3

∂

∂v
− v

3

∂

∂w
(Galilean boost),

V4 = 3x

5

∂

∂x
+ t

∂

∂t
− 2u

5

∂

∂u

− 4v

5

∂

∂v
− 6w

5

∂

∂w
(dilation). (8)

The non-zero Lie commutations of Lie algebra (8) are
obtained as follows:

[V1, V3] = −5V2

6
, [V1, V4] = V1,

[V2, V4] = 3V2

5
, [V3, V4] = −2V3

5
. (9)

The non-zero Lie brackets (9) show that the Lie algebra
(8) is solvable.

2.1 Construction of optimal system for Lie algebra (8)

In the symmetry analysis, it is well-known that when-
ever PDEs or system of PDEs admit the symmetry group
(or group of invariant transformations), then one can
find group invariant solution corresponding to each sub-
group by reducing the number of independent variables
in the original system. There exist infinitely many such
subgroups and hence infinitely many group invariant
solutions. But, most of these group invariant solutions
would be equivalent by some transformation in the full
symmetry group. In order to minimise the search of
inequivalent group invariant solutions under transforma-
tions in the full symmetry group, the concept of optimal
system is introduced. Although the classification of Lie
algebras by using adjoint transformations was known
to Lie himself, it was Ovsiannikov [15] who first used
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the Lie group classification to derive inequivalent group
invariant solutions. Ovsiannikov used a global adjoint
matrix to construct optimal systems and he further
extended his technique to derive multidimensional opti-
mal systems. In the construction of the two-dimensional
optimal system, Galas and Richter [20] made some mod-
ifications in the technique of Ovsiannikov by selecting
elements from the normaliser of the one-dimensional
optimal system.

Apart from these techniques, the method of classi-
fying the subalgebras proposed by Patera et al [21] is
par excellence (see [22] for recent applications) and
in their subsequent work [23] they have classified all
the real Lie algebras of dim ≤ 4 under the group of
inner automorphisms. It is worth mentioning that the
Lie algebra of dimension greater than 4 has also been
fully classified. For example, Turkowski [24] has classi-
fied all six-dimensional solvable Lie algebras containing
four-dimensional nil radical. He has also classified all
the Lie algebras up to dimension 9. Chou et al [25]
and Chou and Qu [26] suggested a slightly modified
technique of classifying Lie algebras. They have con-
structed different varieties of invariants of the group
of inner automorphism including numerical and condi-
tional invariants. Despite the early work [27] on group
classification by using adjoint actions (or identification
of equivalence classes based on the sign of Killing’s
form), the work of Chou et al is very useful as their
additional invariants help to confirm optimality, i.e.
their technique confirms the completeness and mutual
inequivalence of the representatives of subalgebras. In
the present work, we shall use only the Killing’s form
as invariant for detecting all the representatives of sub-
algebras. Before going any further, in this subsection,
we shall first introduce some definitions and lemmas.

DEFINITION 1

The symmetric bilinear form ϕ on the space of Lie alge-
bra L , that is, the mapping ϕ : L ×L → R is called
invariant (relative to group Int L ) if for any inner auto-
morphism A ∈ Int L , and for any V1, V2 ∈ L

ϕ〈A〈V1〉, A〈V2〉〉 = ϕ〈V1, V2〉.
In terms of adjoint representation Adg, the real func-
tion ϕ on Lie algebra L is invariant if and only if
ϕ(Adg(V )) = ϕ(V ) for all V ∈ L and g ∈ G (group
generated by L ).

DEFINITION 2

Let L be a Lie algebra and V ∈ L . Then the adjoint
transformation defined by V is the linear transformation
ad(V ) : L → L defined by

ad(V )(W ) = [V,W ], for all W ∈ L ,

where [· , ·] is the usual Lie bracket. The exponential
of ad(X), usually denoted by Ad(X), is a Lie algebra
isomorphism. The symmetric bilinear form K : L ×
L → R defined by

K〈V,W 〉 = tr(ad(V ) ◦ ad(W ))

is called the Killing’s form. This Killing’s form is the
invariant of the group of inner automorphism Int L , the
importance of which we shall realise during the con-
struction of optimal system of subalgebras.

Lemma 1. Let V = ∑4
i=1 ai Vi be the general element

of Lie algebraL 4 given by (8) and a1, . . . , a4 ∈ R. The
invariant function ϕ is of the form f (a4). Here f is an
arbitrary function.

Proof. The general invariant function ϕ can be obtained
by solving the system of linear partial differential equa-
tions given by

a4
∂ϕ

∂a2
= 0, a4

∂ϕ

∂a1
− 5a3

6

∂ϕ

∂a2
= 0,

−2a4

5

∂ϕ

∂a3
+ 5a1

6

∂ϕ

∂a2
= 0,

−a1
∂ϕ

∂a1
+ 2a3

5

∂ϕ

∂a3
− 3a2

5

∂ϕ

∂a2
= 0. (10)

A straightforward solution of system (10) is f (a4) for
arbitrary function f . The procedure for constructing the
system of PDEs (10) is discussed in detail in [28]. 
�

Lemma 2. The Killing’s form is particularly invariant
which can be derived from the general solution of system
(10), for Lie algebra (8) K〈V, V 〉 = 38

25a
2
4 .

Proof. The direct computations show that

ad(V ) =

⎡

⎢
⎢
⎢
⎢
⎣

−a4 0 0 a1

5a3/6 −3a4/5 −5a1/6 3a2/5

0 0 2a4/5 −2a3/5

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

(11)

By definition of the Killing’s form, K〈V, V 〉 =
tr(ad(V ) ◦ ad(V )) = 38

25a
2
4 . 
�

In search of the group invariant solutions, one ought
to be careful of instances where two group invariant
solutions can be recovered from each other by some
transformation in the full symmetry group. For exam-
ple, the two group invariant solutions 	1 and 	2 are
called essentially inequivalent if it is impossible to
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connect these solutions by some four parameter group
transformation ψ̃ = exp[∑4

i=1 aiVi ]ψ . In this manner,
the group invariant solutions separate into equivalence
classes, and the collection of generators corresponding
to these classes would constitute an optimal system. In
order to find such equivalence classes, we define the
following adjoint operator:

Adexp(εV )(W ) = exp(−εV )W exp(εV ) = W̃ (ε) . (12)

The adjoint transformation (12) can be written through
Lie brackets using the Campbell–Hausdorff formula as
follows:

Adexp(εV )(W )=W − ε[V,W ]+ ε2

2
[V, [V,W ]]−· · · ,

(13)

where [·, ·] is the Lie bracket defined by (9). Let V =
∑4

i=1 ai Vi , and based on this Lie bracket and formula
(13), the straightforward calculations show that

Adexp(ε3v3) Adexp(ε4v4) Adexp(ε1v1) Adexp(ε2v2)(V )

=
4

∑

i=1

ãi Vi . (14)

The full adjoint transformation (14) in the matrix nota-
tion is

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eε4 0 0 −ε1eε4

−5ε3

6
eε4 e

3ε4
5

5ε1

6
e

3ε4
5 −3ε2

5
e

3ε4
5 + 5ε1ε3

6
eε4

0 0 e− 2ε4
5

2ε3

5
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (15)

The construction of adjoint matrix (15) is discussed in
[15], where the coefficients ã1, . . . , ã4 in (14) are given
by the following relations:

ã1 = −a4ε1eε4 + a1eε4,

ã2 = 5a3ε1

6
e

3ε4
5 − 3a4ε2

5
e

3ε4
5 + a2e

3ε4
5

+5a4ε1ε3

6
eε4 − 5a1ε3

6
eε4,

ã3 = 2a4ε3

5
+ a3e− 2ε4

5 ,

ã4 = a4. (16)

The last equation in (16) agrees with the invariance of
the Killing’s form under full adjoint transformation (14).

Theorem 3. The one-dimensional optimal system
corresponding to Lie algebra (7) is {V1, V2, V3, V4,

αV1 ± V3}.
Proof. Let V = ∑4

i=1 aiVi and K = 38
25a

2
4. We have the

following cases for K .

Case 1. For K �= 0, we take a4 = 1. Choosing ε4 = 0,
system of eq. (16) becomes

ã1 = −ε1 + a1,

ã2 = 5a3ε1

6
− 3ε2

5
+ a2 + 5ε1ε3

6
− 5a1ε3

6
,

ã3 = 2ε3

5
+ a3,

ã4 = 1.

The selection

ε1 = a1, ε2 = 25 a3a1

18
+ 5a2

3
, ε3 = −5a3

2

gives ã1 = ã2 = ã3 = 0, and we obtain the simplifica-
tion V = V4.

Case 2. For K = 0, we have to take a4 = 0.

(1) a3 = 1. Choosing ε4 = 5
2 ln(a3) gives ã3 = ±1,

and appropriate selection of ε1, ε3 gives ã1 =

a1a3
5/2 and ã2 = 0. We obtain the simplification

V = αV1 ± V3, α = a1a3
5/2.

(2) a3 = 0. System (16) reduces to ã1 = a1eε4, ã2 =
a2e3ε4/5 − ((5a1ε3/6) eε4). By taking ε3 =
(6a2e−(2ε4/5))/5a1, we obtain the simplification
V = V1.

(3) a3 = 0, a1 = 0. In this case we obtain the
straightforward simplification V = V2.

(4) a3 �= 0, a1 = 0.

ã2 = 5a3ε1

6
e

3ε4
5 + a2e

3ε4
5 , ã3 = a3e− 2ε4

5 .

By taking ε1 = − (6a2/5a3) we obtain the sim-
plification V = V3. 
�
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2.2 Symmetry reductions and invariant solutions

By virtue of vector fields V1 and V2, we can see that
eq. (3) admits symmetry in space and time translation.
So by letting ξ = x−ct , we have similarity transforma-
tions u = F(ξ), v = G(ξ) and w = H(ξ). Substituting
into system (3), we obtain

−cFξ − 3

2
FFξ − Gξ = 0, (17a)

−cGξ − GFξ − 1

2
FGξ − Hξ = 0, (17b)

−cHξ + 1

4
Fξ,ξ,ξ − HFξ − 1

2
FHξ = 0. (17c)

Integrating (17a) with respect to ξ gives

G = −cF − 3

4
F2 + d1, (18)

here d is a constant of integration.

Again substituting this G into (17b) gives

Hξ = (c2 − d1)Fξ + 3cFFξ + 3

2
F2Fξ ,

followed by integrating once with respect to ξ

H = (c2 − d1)F + 3c

2
F2 + 1

2
F3 + d2. (19)

Substituting (18) and (19) into (17c) gives

−c3Fξ + cd1Fξ − 9

2
c2FFξ − 9

2
cFξ F

2

+1

4
Fξ,ξ,ξ + 3

2
d1Fξ F − 5

4
Fξ F

3 − d2Fξ = 0. (20)

Integrating (20) with respect to ξ and then second inte-
gration after using the integrating factor Fξ gives

(Fξ )
2 = 1

2
F5 + 3cF4 + (6c2 − 2d1)F

3

+4(c3 − cd1 + d2)F
2 + 8d3F + 8d4, (21)

where c, d1, d2, d3, d4 are constants of integration.
Detailed discussion about the solution of (21) can be
seen in [2]. The reductions corresponding to the rest of
the vector fields have been classified in the following
cases.

Case 3. Reduction under the subalgebra V3.

• Similarity variables:

ξ = t,

u = F(t) − 6x

5t
,

v = G(t) + 4ux

5t
+ 12 x2

25 t2 ,

w = H(t) + 2vx

5t
− 4 ux2

25 t2 − 8 x3

125 t3 . (22)

• Reduced system: Substituting (22) into (3), the
reduced system is obtained as follows:

t Ft + F = 0,

2tF2 − 5t2Gt − 4t xFt − 4xF − 4tG = 0,

4t xF2+5t2FG − 25t3Ht − 10t2xGt − 4t x2Ft
−4x2F − 8t xG − 30t2H = 0. (23)

• Similarity solutions:

u = c1

t
− 6x

5t
, (24)

v = − c1
2

3t2 + c2

t4/5
+ 4c1x

5t2 − 12 x2

25 t2 , (25)

w = − c1c2

3t9/5
+ c1

3

27t3 + c3

t6/5
− 2xc1

2

15t3 (26)

+ 2xc2

5t9/5
+ 4 c1x2

25 t3 − 8 x3

125 t3 . (27)

Case 4. Reduction under subalgebra V4.

• Similarity variables:

ξ = t

x5/3
, u = 1

x2/3 F(ξ), v = 1

x4/3 G(ξ),

w = 1

x2 H(ξ). (28)

• Reduced system: Substituting (28) into (3), the
reduced system is obtained as follows:

15FξFξ + 6F2 + 10ξGξ + 8G + 6Fξ = 0,

5FξGξ + 10GξFξ + 8FG

+ 10ξHξ + 12H + 6Gξ = 0,

125ξ3Fξ,ξ,ξ −90FξHξ −180HξFξ +750ξ2Fξ,ξ

− 180FH + 830ξFξ + 80F − 108Hξ = 0. (29)

• Similarity solutions:

u = 1

x2/3

∞
∑

n=0

Pn

(
t

x5/3

)n

,

v = 1

x4/3

∞
∑

n=0

Qn

(
t

x5/3

)n

,

w = 1

x2

∞
∑

n=0

Rn

(
t

x5/3

)n

, (30)

where the coefficients Pn, Qn and Rn are obtained
in Theorem 4.
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Case 5. Reduction under subalgebra αV1 + V3.

• Similarity variables:

ξ = 12αx

5
+ t2,

u = −F(ξ) − t

α
,

v = G(ξ) − 2t F(ξ)

3α
+ 4x

5α
,

w = H(ξ) − tG(ξ)

3α
− 4x F(ξ)

15 α
− 4t x

45α2

− 2 tξ

27α3 . (31)

• Reduced system: Substituting (31) into (3), the
reduced system is obtained as follows:

18Fα2Fξ + 12α2Gξ − 1 = 0,

9Fα3Gξ + 18Gα3Fξ + 18α3Hξ

+ 4αξFξ + 6Fα = 0,

3888α6Fξ,ξ,ξ − 1350Fα4Hξ − 2700Hα4Fξ

+ 450Fα2ξFξ + 150F2α2

− 375Gα2 − 125ξ = 0. (32)

• Similarity solutions:

u = −
∞
∑

n=0

Pn

(
12αx

5
+ t2

)n

− t

α
,

v =
∞
∑

n=0

Qn

(
12αx

5
+ t2

)n

− 2t

3α

∞
∑

n=0

Pn

(
12αx

5
+ t2

)n

+ 4x

5α
,

w =
∞
∑

n=0

Rn

(
12αx

5
+ t2

)n

− t

3α

∞
∑

n=0

Qn

(
12αx

5
+ t2

)n

− 4x

15α

∞
∑

n=0

Pn

(
12αx

5
+ t2

)n

− 4t x

45α2 − 2t
(12αx

5 + t2
)

27α3 , (33)

where the coefficients Pn, Qn and Rn are obtained in
Theorem 5.

For similarity solutions of reductions corresponding to
vector V4 and αV1 + V3, we seek power series solution
of the form

F=
∞
∑

n=0

Pnξ
n, G=

∞
∑

n=0

Qnξ
n, H =

∞
∑

n=0

Rnξ
n, (34)

where Pn, Qn and Rn are unknown coefficients of power
series that need to be determined later. On substituting
(34) into reductions corresponding to respective vector
fields we have the following theorems:

Theorem 4. Substitution of power series (34) into
reductions corresponding to vector field V4 gives the
following recurrence relations:

Pn+1 = − 1

6(n + 1)

(

10 nQn + 15
n

∑

k=0

(n − k)Pk Pn−k

+ 6
n

∑

k=0

Pk Pn−k + 8Qn

)

,

Qn+1 = − 1

6(n + 1)

(

10 nRn + 5
n

∑

k=0

(n − k)PkQn−k

+ 10
n

∑

k=0

(n − k)Qk Pn−k

+ 8
n

∑

k=0

PkQn−k + 12Rn

)

,

Rn+1 = −1

108(n + 1)
(

− 125n3Pn − 375 n2Pn − 330 nPn

+ 180
n

∑

k=0

Pk Rn−k+90
n

∑

k=0

(n−k)Pk Rn−k

+ 180
n

∑

k=0

(n − k)Rk Pn−k − 80Pn

)

, (35)

where P0, Q0, R0 ought to be taken as arbitrary, and

P1 = −P0
2 − 4Q0

3
, Q1 = −4P0Q0

3
− 2R0,

R1 = −5P0R0

3
+ 20P0

27
. (36)

Proof. For brevity, we have omitted detailed calcula-
tions and results in the form of power series solutions
for system (3) corresponding to reductions under vector
field V4 are interpreted in Case 4. 
�

Theorem 5. Substitution of power series (34) into
reductions corresponding to vector field αV1 +V3 gives
the following recurrence relations:
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Pn+3 = −1

1296 α4
(

n3 + 6 n2 + 11 n + 6
)

×
(

− 450 α2
n

∑

k=0

(n − k + 1)Pk Rn−k+1

− 900 α2
n

∑

k=0

(n − k + 1)Rk Pn−k+1

+ 50
n

∑

k=0

Pk Pn−k + 150
n

∑

k=0

(n − k)Pk Pn−k

− 125Qn

)

,

Qn+1 = −3

2(n + 1)

n
∑

k=0

(n − k + 1)Pk Pn−k+1,

Rn+1 = −1

18 α2(n + 1)

(

9α2
n

∑

k=0

(n−k+1)PkQn−k+1

+ 18 α2
n

∑

k=0

(n − k + 1)Qk Pn−k+1

+ 4 nPn + 6Pn

)

and

P3 = 1

31104 α4 (1350 α2P0
3P1 − 1800 α2P0P1Q0

+3600 α2P1R0 − 875P2
0 + 500Q0),

Q1 = 1 − 18 α2P0P1

12α2 ,

R1 = 6α2P2
0 P1 − 8α2P1Q0 − 3P0

8α2 ,

P4 = 1

186624 α6 (4050α4P0
3P2 + 2025α4P2

0 P
2
1

−4050α4P0P1Q1 − 5400 α4P0P2Q0

+8100α4P1R1 + 10800 α4P2R0

−3000α2P0P1 + 750 α2Q1 + 250),

Q2 = −3P0P2

2
− 3P2

1

4
,

R2 = 1

72α2 (54α2P2
0 P2 + 27α2P0P

2
1 − 54 α2P1Q1

−72 α2P2Q0 − 20 P1), (37)

where P0, Q0, R0, P1, P2 are ought to be taken as
arbitrary.

Proof. Again, for brevity, we have omitted detailed
calculations and results in the form of power series solu-
tions for system (3) corresponding to reductions under
vector field αV1 + V3 are interpreted in Case 5. 
�

3. Conservation laws

In physics, the conservation laws are fundamental laws
which ensure that certain physical quantity will not
change with time during the course of physical pro-
cess [29]. Some of the well-known conservation laws in
physics are conservation of mass, momentum, energy,
electric charge, etc. It is a well-known fact that the
Noether’s theorem gives conservation laws for a sys-
tem only when it has variational principle. To establish
conservation laws for a system without variational
structure, Ibragimov [30] has given a new theorem
based on the concept of adjoint equations for nonlinear
equations. In the recent literature, many authors have
applied the theorem of Ibragimov to derive conserva-
tion laws. For instance, in [31] it was proved that the
Camassa–Holm is strictly self-adjoint and conservation
laws were also obtained without classical Lagrangians.
Freire and Sampaio [32] have constructed some con-
servation laws for the nonlinear self-adjoint class of
the generalised fifth-order equation, such as a gen-
eral Kawahara equation, modified Kawahara equation
and simplified modified Kawahara equation. Johnpillai
and Khalique [33] have applied the same theorem to
derive conservation laws for the generalised KdV equa-
tion of time-dependent variable coefficients. For further
details about the application of theorem by Ibragimov,
see [22,34–40].

Based on the theory developed in [30] and notations
adopted therein, we define formal Lagrangian for eq. (3)
in the following manner:

I = φ(x, t)

(

ut − 3

2
uux − vx

)

+ ψ(x, t)

(

vt − vux − 1

2
uvx − wx

)

+ θ(x, t)

(

wt + 1

4
uxxx − wux − 1

2
uwx

)

, (38)

where φ(x, t), ψ(x, t) and θ(x, t) are new dependent
variables. The adjoint equations for (3) can be written
as

F∗ = δ I

δu
= 0, G∗ = δ I

δv
= 0, H∗ = δ I

δw
= 0, (39)

where we have used the variational derivative δ/δuα

defined by the relation

δ

δuα
= ∂

∂uα
+

∞
∑

s=1

(−1)s Di1 . . . Dis
∂

∂uα
i1...is

. (40)
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Substituting Lagrangian (38) into (39) and using
relation (40), we obtain the adjoint equations:

F∗ = 1

2
ψvx + 1

2
θwx + 3

2
φxu + ψxv

+ θxw − θt − 1

4
θxxx = 0,

G∗ = −1

2
ψux + φx + 1

2
ψxu − ψt = 0,

H∗ = −1

2
θux + ψx + 1

2
θxu − θt = 0. (41)

For conservation laws we shall use the following theo-
rem proved in [30].

Theorem 6. Any infinitesimal symmetry (Lie point, Lie
Bäcklund, non-local)

V = ξ i(x, u, u(1), . . . )
∂

∂xi
+ ηα(x, u, u(1), . . . )

∂

∂uα

of eq. (3) leads to conservation laws Di (Ci ) = 0 con-
structed by the formula

Ci = ξ iI + Wα

[

∂ I

∂uα
i

− Dj

(

∂ I

∂uα
i j

)

+Dj Dk

(

∂ I

∂uα
i jk

)

− · · ·
]

+Dj (W
α)

[

∂ I

∂uα
i j

− Dk

(

∂ I

∂uα
i jk

)

+ · · ·
]

+Dj Dk(W
α)

[

∂ I

∂uα
i jk

− · · ·
]

, (42)

whereWα = ηα−ξ j uα
j and I is the Lagrangian defined

by (38).

Relation (42) can be simplified by writing Lagrangian
I with respect to all mixed derivative uα

i j , u
α
i jk, . . . in a

symmetric manner. We obtain

Cx = ξ I + W (1)

[
∂ I

∂ux
− Dx

(
∂ I

∂uxx

)

+D2
x

(
∂ I

∂uxxx

)]

+W (2) ∂ I

∂vx
+ W (3) ∂ I

∂wx
+ Dx(W

(1))

×
[(

∂ I

∂uxx

)

− Dx

(
∂ I

∂uxxx

)]

+D2
x(W

(1))
∂ I

∂uxxx
,

Ct = τ I + W (1) ∂ I

∂ut
+ W (2) ∂ I

∂vt
+ W (3) ∂ I

∂wt
, (43)

where Di denotes the operator of total differentiation:

Di = ∂

∂xi
+ uα

i
∂

∂uα
+ uα

i j
∂

∂uα
j

+ · · · ,

and rest of the details about notations can be seen in
[30].

In the following cases, we shall find conserved cur-
rents (43) corresponding to every symmetry generator
of optimal system obtained in Theorem 3.

Case 1. For the generator V1 = ∂/∂t , the Lie’s charac-
teristic functions are obtained as follows:

W (1) = −ut , W (2) = −vt , W (3) = −wt . (44)

Substituting (44) into (43) yields the following con-
served currents:

Cx = 3

2
utφu + utψv + utθw

−1

4
utθxx + vtφ + 1

2
vtψu

+wtψ + 1

2
wtθu + 1

4
uxtθx − 1

4
uxxtθ,

Ct = −3

2
φuux − φvx − ψvux − 1

2
ψuvx − ψwx

+1

4
θuxxx − θwux − 1

2
θuwx , (45)

where φ(x, t), ψ(x, t) and θ(x, t) are arbitrary solu-
tions of adjoint equation (41).

Case 2. For the generator V2 = ∂/∂x , the Lie’s charac-
teristic functions are obtained as follows:

W (1) = −ux , W (2) = −vx , W (3) = −wx . (46)

Substituting (46) into (43) yields the following con-
served currents:

Cx = utφ + vtψ + wtθ − 1

4
uxθxx + 1

4
ux,xθx ,

Ct = −φux − ψvx − θwx , (47)

where φ(x, t), ψ(x, t) and θ(x, t) are the arbitrary solu-
tions of adjoint equation (41).

Case 3. For the generator

V3 = −5t

6

∂

∂x
+ ∂

∂u
− 2u

3

∂

∂v
− v

3

∂

∂w
,

the Lie’s characteristic functions are obtained as fol-
lows:

W (1) = 1 + 5 t

6
ux , W (2) = −2 u

3
+ 5 t

6
vx ,

W (3) = −v

3
+ 5 t

6
wx . (48)
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Substituting (48) into (43) yields the following
conserved currents:

Cx = 1

3
ψu2 − 5

6
tutφ − 5

6
tvtψ

− 5

6
twtθ + 5tuxθxx

24

+ 1

6
vθu − 5tuxxθx

24
+ 1

4
θxx − 2

3
ψv

− θw − 5

6
φu,

Ct = φ + 5

6
φtux − 2

3
ψu + 5

6
ψ tvx

− 1

3
vθ + 5

6
θ twx , (49)

where φ(x, t), ψ(x, t) and θ(x, t) are arbitrary solu-
tions of adjoint equation (41).

Case 4. For the generator

V4 = 3x

5

∂

∂x
+ t

∂

∂t
− 2u

5

∂

∂u
− 4v

5

∂

∂v
− 6w

5

∂

∂w
,

the Lie’s characteristic functions are obtained as fol-
lows:

W (1) = −2u

5
− 3x

5
ux − tut ,

W (2) = −4v

5
− 3x

5
vx − tvt ,

W (3) = −6w

5
− 3x

5
wx − twt . (50)

Substituting (50) into (43) yields the following con-
served currents:

Cx = 3

5
φu2 − 1

10
uθxx + 4

5
vφ + 6

5
wψ + 1

4
θxux

−2

5
θuxx + 3

2
tutφu + tutψv + tutθw

+1

2
tvtψu + 1

2
twtθu + tvtφ + uθw

−1

4
tutθxx + 3θx xuxx

20
+ 1

4
θx tuxt − 1

4
θ tuxxt

+4

5
uψv + 3

5
xψvt + 3

5
xφut

−3xuxθxx
20

+ 3

5
xθwt + twtψ,

Ct = −3

2
tφuux − tφvx − tψvux − 1

2
tψuvx

−tψwx + 1

4
tuxxxθ − tθwux − 1

2
tθuwx

−2

5
φu − 3

5
φxux − 4

5
ψv − 3

5
ψxvx

−6

5
θw − 3

5
θxwx , (51)

where φ(x, t), ψ(x, t) and θ(x, t) are arbitrary
solutions of adjoint equation (41).

Case 5. For the generator

αV1 + V3 = −5t

6

∂

∂x
+ α

∂

∂t
+ ∂

∂u
− 2u

3

∂

∂v
− v

3

∂

∂w
,

the Lie’s characteristic functions are obtained as fol-
lows:

W (1) = 1 + 5t

6
ux − αut ,

W (2) = −2 u

3
+ 5t

6
vx − αvt ,

W (3) = −v

3
+ 5t

6
wx − αwt . (52)

Substituting (52) into (43) yields the following con-
served currents:

Cx =3

2
αutφu + αutψv + αutθw + 1

2
αvtψu

+ 1

2
αwtθu + 1

6
vθu + 1

4
θxαuxt + 5tuxθxx

24

− 5

6
twtθ + αvtφ − 1

4
αutθxx − 1

4
θαuxxt

− 5

6
tvtψ − 5

6
tutφ − 5tuxxθx

24
+ αwtψ + 1

4
θxx

− 5

6
φu − 2

3
ψv − θw + 1

3
ψu2,

Ct = − 3

2
αφuux − αφvx − αψvux

− 1

2
αψuvx − αψwx + 1

4
αθuxxx

− αθwux − 1

2
αθuwx + φ + 5

6
φtux

− 2

3
ψu + 5

6
ψ tvx − 1

3
vθ + 5

6
θ twx , (53)

where φ(x, t), ψ(x, t) and θ(x, t) are arbitrary solu-
tions of adjoint equation (41). In a similar manner, the
conserved currents corresponding to the generator

αV1 − V3 = 5t

6

∂

∂x
+ α

∂

∂t
− ∂

∂u
+ 2u

3

∂

∂v
+ v

3

∂

∂w

can also be calculated.

Remark 1. Despite the huge success of new conserva-
tion theorem of Ibragimov, the recent comments from
Anco [41] confirm the incompleteness of the theorem. In
particular, the formulation proposed by Ibragimov can
generate trivial conservation laws and does not always
yield non-trivial conservation laws. But fortunately, in
the present case, all the conservation laws given in (45),
(47), (49), (51) and (53) are not trivial. Rather, these
conservation laws are non-local.
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4. Conclusion

Using the classical Lie symmetry analysis we have
analysed three-field Kaup–Boussinesq system (3) in a
comprehensive manner. Based on the Killing’s form
derived in Lemma 2, the complete classification of Lie
algebra (8) is obtained in Theorem 3. Similarity reduc-
tions and invariant solutions using the power series
method are also presented. Apart from this usual sym-
metry analysis, we have demonstrated the construction
of several non-local conservation laws based on the
theory of a new conservation theorem [30]. The work
presented here emphasised the relevance of new con-
servation theorem by Ibragimov for the construction of
conservation from Lie symmetries without the formula-
tion of classical Lagrangian.
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