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Finding Statistically Significant Repeats

in Nucleic Acids and Proteins

ANA M. JELOVIC,1,2 NENAD S. MITIC,2 SAMIRA ESHAFAH,2 and MILOS V. BELJANSKI3

ABSTRACT

DNA repeats have great importance for biological research and a large number of tools for
determining repeats have been developed. Herein we define a method for extracting a
statistically significant subset of a determined set of repeats. Our aim was to identify a subset
of repeats in the input sequences that are not expected to occur with a number of their
appearances in a random sequence of the same length. It is expected that results obtained in
such manner would reduce the quantity of processed material and could thereby represent a
more important biological signal. With DNA, RNA, and protein sequences serving as input
material, we also examined the possibility of statistical filtering of repeats in sequences over
an arbitrary alphabet. A new method for selecting statistically significant repeats from a set of
determined repeats has been defined. The proposed method was tested on a large number of
randomly generated sequences. The application of the method on biological sequences re-
vealed that for some viruses, shorter repeats are more statistically significant than longer ones
because of their frequent appearance, whereas for bacteria, the majority of identified repeats
are statistically significant.

Keywords: DNA, protein sequences, repeats, RNA, statistically significant.

1. INTRODUCTION

Nucleic acids (NAs i.e., DNA and RNA) and proteins are linear biological polymers that comprised 4 or

20 ‘‘letters’’ or basic monomeric units, respectively. The monomeric units in NAs are nucleotides and in

proteins they are amino acids. The lengths of NA and protein sequences can vary from a few base pairs to

hundreds of millions of base pairs, and from hundreds to thousands of amino acids. Very often there is a short

subsequence that repeats itself two or more times. Within large sequences, repeats may appear in tandem

(adjacent to each other), or they can be interspersed (not adjacent to each other). Essentially, there are two

types of repeats: direct and mirror (inverted, palindromic). Since NAs often consist of two complementary

chains, two additional types of repeats can be considered: direct complementary and reverse complementary.

In NAs, there are three types of repeats related to their position in the sequence that have been inves-

tigated the most: (1) terminal repeats (e.g., long terminal repeats in viral genomes), (2) tandem repeats (e.g.,

satellite and mini- and microsatellite DNAs), and (3) interspersed repeats (e.g., transposable elements,
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SINEs and LINEs). Special types of short palindromic NA repeats are involved, for example, in the

diversity of T cell receptor genes and are recognized as methylation or restriction enzyme-binding sites

(Heringa, 1998). Repeats are also frequently found in proteins, although their role is less well understood

(e.g., palindromic repeats are related to high a helical propensity in proteins, as well as to formation of

protein–protein complexes) (Andrade et al., 2001).

The most investigated type of repeats is direct repeats, while other types have been more or less

neglected. The majority of applications have been developed for finding repeats in NAs and less often in

proteins. Also, a very few of the developed applications take into account the statistical significance of the

obtained results. We present a novel method for the detection of statistically significant repeats in NAs

(whole genomes) and in proteins (proteomes), aimed at improving the usability of the obtained results. We

have also developed an application to implement the proposed method, available free for download (see the

first Reference: StatRepeats).

1.1. Definition of repeats

In an arbitrary string, a pair of (sub)strings that satisfy certain conditions are called a repeat. Depending

on the conditions they satisfy, repeats can be direct or inverse, which are further divided into comple-

mentary or noncomplementary subsets. In general, all variants of repeats can be precisely defined as

follows:

Let A = {a,b,c,d,.} denote an alphabet with arbitrary symbols and L = {l1,l2,.,ln} is a language over

alphabet A, which includes strings over A with an arbitrary length, including empty string, and let sj j denote

length of string s˛L, which is equal to the number of symbols (letters) from alphabet A.

Definition 1: An ordered triplet x‚ s‚ pxð Þ denotes a substring x˛L of string s˛L at the position px � 1

if 9y‚ z 2 L : s = yxz ^ sj j = xj j + yj j + zj j ^ xj j � 1:

Let the following functions be defined as:

� f : A! A

f xð Þ = z‚ if xj j = 1; for some z�A
f x1ð Þf x2ð Þ‚ if x = x1x2�L ^ xj j > 1

�

� g : L! L

g xyð Þ =

yx‚ if xj j = 1 ^ yj j = 1

yg xð Þ‚ if yj j = 1 ^ xj j > 1

g yð Þx‚ if xj j = 1 ^ yj j > 1

g yð Þg xð Þ‚ otherwise

8>><
>>:

then, for all strings s˛L, the following four types of repeats can be defined (Fig. 1):

FIG. 1. Graphical presentation of repeat types: (a) di-

rect non-complementary, (b) inverse non-complementary,

(c) direct complementary, and (d) inverse complementary

repeats. In (c) and (d), f (x) = l, f (y) = k, f (z) = g is used for

complement mapping.
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1. The substring pair a‚ s‚ pað Þ and b‚ s‚ pbð Þ is a direct noncomplementary repeat (DN) if and only if

a = b ^ pa < pb

2. The substring pair (a,s,pa) and (b,s,pb) is an inverse noncomplementary repeat (IN) if and only if

a = g(b) ^ pa £ pb

3. The substring pair (a,s,pa) and (b,s,pb) is a direct complementary repeat (DC) if and only if a = f (b) ^
pa < pb

4. The substring pair (a,s,pa) and (b,s,pb) is an inverse complementary repeat (IC) if and only if

a = f (g(b)) = g(f (b)) ^ pa £ pb

In the literature, different and often ambiguous terms for previously defined repeat types are often used,

such as palindromes (for both types of inverse repeats), inverted repeats, everted repeats, and mirrored

repeats (Gurusaran et al., 2013). Because of the manner in which various types of repeats were defined, the

following synonyms can be used: mathematical repeats and mathematical palindromes for direct non-

complementary and inverse noncomplementary repeats in the case of these types of repeats in mathematics,

and biological repeats and biological palindromes for direct complementary and inverse complementary

repeats, with regard to the complementarity of their positions in sequences.

Definition 2: Length l of repeat (a,s,pa) and (b,s,pb) is equal to the length of its corresponding

substrings l = j a j = j b j.

It is evident that if the substring pair (a,s,pa) and (b,s,pb) is a repeat, and if the elements of the pair

include substrings a0 and b0, respectively, such that a = xa0y ^ b = zb0w, then the substring pair (a0,s,pa0) and

(b0,s,pb0) is a repeat of the same type. This is the reason why a maximal repeat is introduced. The definition

of a maximal repeat is as follows:

Definition 3:

1. The substring pair (a,s,pa) and (b,s,pb) is a maximal direct repeat if none of the substring pairs (xa,s,

pa - 1),(yb,s,pb - 1) and (az,s,pa),(bw,s,pb) is direct repeats.

2. The substring pair (a,s,pa) and (b,s,pb) is a maximal inverse repeat if none of substring pairs (xa,s,

pa - 1),(by,s,pb) and (az,s,pa), (wb,s,pb - 1) is inverse repeats.

Where x,y,z,w˛A. For brevity, from this point on the repeat we are referring to is a maximal repeat.

Definition 4: A repeat occurs k times in the input sequence if there are k different repeats in the input

sequence, with the same corresponding strings.

Although these definitions are based on linear string only, previous general definitions cover all cases of

repeat occurrences in biological materials. Elements of substring pair in such repeats can be separated by gap

(with a specified length), or can overlap. Also, given definitions are valid for an arbitrary input alphabet, which

permits exploring DNA sequences (A = {A, C, G, T}), RNA sequences (A = {A, C, G, U}), protein sequences

(A = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, U, O}), as well as work with another

user-defined alphabet. Given the important role of repeats in the analysis of biological material, there is a

clear need to determine which repeats found in the input material are significant with regard to the content

of the material itself. Our primary assumption is that if a group of repeats occur with a high probability in a

random sequence, then that group is most likely to represent a random pattern, and that the existence of

such a pattern is not significant for the organization of a biological process.

1.2. Motivation

The process of finding repeats, especially in large input material, produces a mixture of repeats with a

statistically expected occurrence and repeats with a lower probability of occurrence in the input sequence.

The separation of statistically important results allows us to obtain a clearer outcome, to separate an

important signal(s) from noise. The aim of the research was to define the method which, based on the

specified p-value, would allow for filtering of the set of repeats found and selection of only statistically

significant repeats. In practice, extracting repeats from biological material is often the first step in research.

The number of repeats found can be huge. By applying the proposed method, the amount of material for

further processing is reduced, while data likely to represent an important biological signal are retained and

data that probably occur in a random sequence of the same length are rejected.
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1.3. Related work

Repeat finding algorithms can be divided into two groups: those that use an annotated library of known

repeats and the second group of de novo repeat finders. An example of the first type is RepeatMasker (Smit

et al., 2013–2015) where a repeat is defined as a substring that occurs frequently in input sequence and uses

a library of previously known repeats. Methods from the de novo group find repeats without prior

knowledge of found repeats using only the input sequence (Martinez, 1983). Among these methods, some

use heuristics such as Repex (Gurusaran et al., 2013) and Emboss (Rice et al., 2000), while others detect

repeats precisely like REPuter (Kurtz et al., 2001). A lot of methods for finding tandem repeats are

available (Benson, 1999; Wexler et al., 2005; and Landau et al., 2001). A number of algorithms have been

developed to identify repeats in proteins, such as GBA (Li and Kahveci, 2006).

We focus on de novo methods precisely finding repeats. REPuter (Kurtz et al., 2001) provides statistical

significance of repeats by computing the number of repeats of the same length or longer that one would

expect to find in a random DNA of the same length as the input sequence. Repseek (Achaz et al., 2007)

calculates the smallest length above which no such repeat is expected to occur by chance in a random

sequence and uses it as a seed or uses the score of the best local alignment observed between two random

sequences (Waterman and Vingron, 1994), which is also used in Swelfe (Abraham et al., 2008). Finding the

minimal length above which repeats are significant and avoid spurious matches has been studied (Guyon

and Gunoche, 2008), and furthermore, finding the optimal minimal length (Devillers and Schbath, 2012)

is also recoverability of sequence from words (Arratia et al., 1996). We developed an easily computable

(Robin and Schbath, 2001) method that considers only exact maximal repeats in an input sequence as a

basic repeat type and filters them based on a defined p-value.

The main difference from previously mentioned statistical methods is that our method does not group

repeats by their length only, as within that length some repeats may indeed occur many times thus making

them statistically significant, but others may occur just a few times. Instead of the coarse measure of

significance based on the repeat length, we look at the number of occurrences of each individual repeat and

calculate the probability that the specific number of occurrences of that specific repeat of specific length

being significant.

2. METHODS

Our method defines the procedure for detecting whether the occurrences of concrete repeats in an input

string are statistically significant. We therefore calculated the expected number of lexicographically dif-

ferent repeats (maximal pairs) that occur kl times in a random sequence using statistical distributions. The

significance of a given repeat occurring kl times was determined by comparing the calculated expected

number with the actual number of repeats found. The correctness of the calculated results was checked

by comparing them with the counted number of repeats of the same length occurring kl times in ran-

domly generated sequences with the same properties (length of input sequence N over an alphabet with

cardinality c).

2.1. Probability for an arbitrary number of substring occurrences

If every symbol in an alphabet has the same probability of occurrence, then the expected number of

occurrences of a substring with a length l in string s with a length N using an alphabet with cardinality c is

k = N - l + 1
cl (1)

The probability that an arbitrary substring occurs k times can be approximated using the binomial or

Poisson distribution, even though the events of a substring occurring at different positions in a string are not

independent:

Ps kð Þ = e - k kk

k!
(2)

The previous formula is suitable if substrings do not overlap with other identical substrings. Otherwise, they have

a tendency to accumulate (to appear in droves), in which instance Formula (2) does not provide an adequate

approximation. In such cases, the compound Poisson distribution (Robin and Schbath, 2001) can be used:
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Ps xð Þ = e - k
Xk

i = 1

ki

i!

k - 1

i - 1

� �
pk - i 1 - pð Þi

Ps 0ð Þ = e - k

(3)

where p is the probability of an overlapping pipe occurrence.

For a small value of k, previously specified distributions are used. However, for a larger k, that is, when a

substring occurs frequently, a version of the normal distribution can be used instead. If substrings are not

self-overlapping, then the following distribution can be used (Ewens and Grant, 2005):

N k‚ k - 2l - 1ð ÞN - 3l2 + 4l - 1ð Þ 1
c2l

� �
(4)

and if substrings can be self-overlapping then the distribution

N k‚ k - 2l - 1ð ÞN - 3l2 + 4l - 1
� � 1

c2l
+ l

� �
‚

l =
P

l - 1
j = 1 N - 2l + j + 1ð Þ nj 1

c2l - 1

(5)

can be used, where nj = 1 if the first j symbols are equal with the last j symbols of the same substring,

otherwise, nj = 0.

Because substrings that are self-overlapping are rare (and as we examine groups of repeats), they can be

ignored in calculations, and the probability for an arbitrary number of substring occurrences with fixed

length is calculated with the Formulae (2) and (4).

2.2. Probability of an arbitrary number of repeat occurrences

The probability of occurrence of z substring pairs can be calculated using formulae for determining the

probability of a string occurring k times. Multiplying this number with the probability that a certain number

of these pairs are maximal provides the probability of an arbitrary number of repeat occurrences. As defined

previously, a repeat is maximal if and only if it cannot be extended to a longer repeat. The probability for

this is equal to the probability that the letters surrounding both corresponding substrings of a pair do not

correspond to each other, which is c - 1
c

� �2
.

2.2.1. Direct noncomplementary repeats. In the case of direct noncomplementary repeats, the

pair of substrings that represent this repeat consists of the same string in different positions in the input

sequence. From n substrings, z = (n
2) pairs can be constructed. Let P(n,kl) denote the probability that

among z pairs, kl of them are maximal. The expected number of lexicographically different repeats

(maximal pairs) that occur kl times for direct noncomplementary repeats of length l can be calculated

as follows:

Edn klð Þ =
P1
i = n

Ps ið Þ � P i‚ klð Þ � cl (6)

where n is the minimal value that satisfies inequality kl �
n

2

� �
.

We could not find the formula for determining the values for P n‚ klð Þ with satisfying accuracy. Instead,

the values P n‚ klð Þ (which are not dependent on the input sequence length) can be calculated by a brute-

force method, which counts empirically all possible combinations of symbols to the left and to the right of

substrings that form a pair.

The limit for n in these calculations depends on the available computing resources and becomes very

expensive as the alphabet cardinality gets higher. So to get results for larger n, we generated a large number

of random sequences of 2n length and counted all possible combinations of symbols to the left and to the

right of substrings that form a pair. We calculated values for n < 32. For larger n values, we found that the

binomial distribution B kl‚ z‚ c - 1
c

� �2
� �

provides a satisfactory approximation.

2.2.2. Direct complementary repeats. In the case of complementary repeats, a pair that represents a

repeat consists of mutually different substrings. The probability of occurrence of z such substring pairs can

be calculated using the following:
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Ppairs zð Þ =
P

m2div zð Þ
Ps mð Þ � Ps

z
m

� �
(7)

where div(z) represents all divisors of z. If P m‚ z
m

‚ kl

� �
denotes the probability that kl pairs from z pairs are

maximal, then the expected number of lexicographically different repeats (maximal pairs) that occur kl

times for complementary repeats of length l can be calculated using the following formulae:

Edc klð Þ =
P1
i = kl

P
m�div ið Þ

Ps mð Þ � Ps
i
m

� �
� P m‚ i

m
‚ kl

� �
� cl

(8)

where P m‚ z
m

‚ kl

� �
is the probability that can be reliably approximated by the binomial distribution

B kl‚ z‚ c - 1
c

� �2
� �

, and hence can be used for an alphabet of any cardinality. Because the events that kl pairs

from z ones are maximal are not independent, a slightly better result can be obtained by replacing the

binomial distribution above with a distribution obtained using a brute-force approach, as in the case of

direct noncomplementary repeats.

2.2.3. Inverse noncomplementary repeats. In the case of inverse noncomplementary repeats, the

pair of substrings that create the repeat are different strings, except in the case of strings that are palin-

dromes themselves. From n substrings that are palindromes themselves, z = n

2

� �
+ n pairs can be made. Let

P n‚ klð Þ denote the probability that from z pairs, kl of them are maximal. The expected number of lexi-

cographically different repeats (maximal pairs) that occur kl times for inverse noncomplementary repeats of

length l can be calculated from

Epal klð Þ =
P1
i = n

Ps ið Þ � P i‚ klð Þ � c l
2½ � (9)

where n is the minimal value that satisfies the inequality kl �
n

2

� �
+ n. As in the case of direct non-

complementary repeats, values P n‚ klð Þ are computed by the brute-force method until n £ 32. For greater

values of n, the probability is computed as follows:

P n‚ klð Þ =
Pkl

j = 0

B j‚
n

2

� �
‚ c - 1

c

� �2

� �
� B kl - j‚ n‚ c - 1

c

� �
(10)

where B kl‚ n‚ pð Þ = 0 for kl > n. This provided a satisfactory approximation. Adding the expected number

for strings that are palindromes themselves to the expected number for other strings, we found that the

expected number of lexicographically different repeats (maximal pairs) that occur kl times for inverse

noncomplementary repeats of length l is

Ein klð Þ = Edc klð Þ � 1 - cØ1
2
ø - l

� �
+ Epal klð Þ (11)

2.2.4. Inverse complementary repeats. In the case of inverse complementary repeats, the pair of

substrings that create the repeat are different strings, except in the case of strings that are palindromes

themselves.

As only strings with even length can be palindromes themselves, we use the calculation for inverse

noncomplementary repeats for repeats with even length and for repeats with odd length we use the

calculation for direct complementary repeats.

2.3. Determining whether a repeat is statistically significant

The computed expected value E represents the mean of normal distribution, which models the number of

different repeats of length l that occur kl times in a randomly generated sequence of length N over an

alphabet with cardinality c. With the given p-value, we can then calculate the boundary above which the

results are statistically significant.
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2.4. Limitations of method

The described method has two limitations: it assumes that all letters in the alphabet have the same

frequency of appearance and it buckets all repeats of length n occurring k times together even though

overlapping repeats have a higher chance to accumulate.

Both limitations are a result of a search of a computationally feasible method for improving the signal-to-

noise ratio of found repeats. Any signal-to-noise filter will have both false positives and false negatives, and

we tried to find a balance between the quality of the filter and execution times.

The first limitation lies in our assumption that all base pairs have the same frequency in a random

sequence. Modifying our method to work with nonidentically distributed base pairs (where formulae

include weights) requires that for every distribution, appropriate probabilities must be computed whether

the found repeats are maximal. This would make our method computationally unfeasible and prevents

implementation of an efficient program.

The bucketing of all repeats by length and number of occurrences underestimates the number of over-

lapping repeats that occur in a random sequence, and leading to a slightly higher number of false positives.

However, highly overlapping repeats of meaningful length are a tiny fraction of all repeats found, so

increasing the computation time by several orders of magnitude to avoid a slight increase in false positives

was evaluated to be a bad trade-off. Likewise, as long as the base pairs are uniformly distributed, applying a

method that more precisely models overlapping repeats (such as Markov chains) would impose prohibitive

performance penalty while providing a negligible improvement in precision (Robin and Schbath, 2001).

For these reasons, we rely on bucketing per repeat length and the number of occurrences to keep the

computational cost down, as well as on computationally expensive precomputed probability tables to model

how many repeats in a found group are maximal as those are not independent. Despite these limitations, our

method produces a significant benefit in result quality over nonfiltered results.

3. METHOD IMPLEMENTATION

The proposed method is implemented in the program StatRepeats. The implementation has four phases:

finding all maximal repeats in an input sequence, calculating the expected number of their occurrence,

determining which of the found repeats are statistically significant, and outputting the statistically significant

repeats. In the first step of the program, we found all maximal repeats in an input sequence of length N over an

alphabet with cardinality c. This problem has been known for a long time and it was first solved using suffix

trees (Gusfield, 1997), while subsequent solutions have used suffix arrays (Abouelhoda et al., 2004) as they

are more compact in memory and are linear in both time and space (Ko and Aluru, 2003; Kim et al., 2003). At

present, a considerable number of very efficient algorithms for suffix array construction are available. In

StatRepeats, we used a slightly modified divsufsort algorithm (Mori, 2006).

Calculation of the expected number of repeats in the second step was performed as described in Section

2. For direct noncomplementary and inverse repeats, the values P(n,kl) were precomputed and built into the

program for alphabets with cardinalities between 4 and 22 and with limits n < 32, while for larger values of

n we used calculations described in the method definition. For direct (inverse) complementary repeats, we

precomputed the values P(m‚ z
m

‚ kl) where z £ 64 for sequences with alphabet cardinality 4, whereas for

larger z values we used the binomial distribution. As the distribution provides an excellent approximation, it

can be used for other alphabets with different cardinalities.

In the third step, the program can perform or skip statistical filtering. If filtering is not chosen, the

program can find all repeats starting from a certain length in any input sequence. If statistical filtering

is chosen, the program provides very precise results for any type of repeat in the input sequences over

alphabets with cardinality between 4 and 22, and good results for direct complementary repeats with

alphabets of any cardinality. In the case of inverse complementary and noncomplementary repeats (direct

and inverse) over alphabets whose cardinality is not between 4 and 22, statistical filtering is not provided in

the current version of the program but will be added in the future. In case of working with amino acids, our

program also provides mappings for different groups of amino acids such as aromatic, charged, and polar,

leading to alphabets with cardinalities between 8 and 22. The program can output results in many dif-

ferent ways. Console output and file output (in a number of different formats) are used most often, and

are well structured so that they can be easily utilized by another program. Alternatively, the program can
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output repeats to an ODBC-compliant database, thus enabling simplified Data Mining or other Big Data

approaches.

StatRepeats is written in C++ and is available for Linux and Windows (StatRepeats). Mandatory input

arguments are names of file with the input sequence and minimal repeat length that we are searching for.

For other input options, the default values that can be changed are defined. A detailed explanation of

program arguments and different types of results that can be produced with StatRepeats can be accessed on

the website where the program is available. Comparison of the program characteristics with (some) similar

programs is given in Table 1 (possibilities not connected to repeats are not considered).

3.1. Method correctness verification

As we used a number of approximations in the method, it was important to measure the magnitude of

error against a large number of data sets. Verification of the method was performed by comparing the

results (computed by previously explained formulas) for expected values for a random sequence of length

Ntest over an alphabet with cardinality ctest, with the average number of repeats found in 1000 or more

sequences generated using the Mersenne Twister 19937 (Matsumoto and Nishimura, 1998) pseudorandom

number generator, with same length Ntest over an alphabet with cardinality ctest. The previously described

method proved accurate, with a low relative error. The error slightly increased as the expected values get

closer to zero. The differences between the computed expected values, the found repeat counts, and the

percentage differences between them are shown in Figure 2.

As the repeat length that we are searching for becomes lower, there is a growing dispersion of results and

the calculated expected values get very close to zero. All of the expected outcomes have very small

probabilities, but in any concrete experiment, some of those outcomes will ensue. In these cases, all found

results have counts greater than the expected value, which implies that all of the repeats found are

statistically significant. Hence, the implemented program proposes a lower limit (reached empirically) for a

repeat length under which filtering is not provided.

3.2. Examples of program application

The designed program has been tested on different sets of nucleotide and protein sequences. Sets of

sequences and obtained results are available in the program package. The longest sequence on which the

program was tested is human chromosome 21 GRCh38.p2 (NCBI ID: NC 000021.9) with 46,709,983 bp. In

Table 1. Characteristics of StatRepeats Compared with Similar Programs

(According to Documentations)

Program Emboss Repex Repseek REPuter StatRepeats Swelfe

DNA sequence as input X X X X X X

RNA sequence as input X x X x X x

Protein sequence as input x X x x X X

Flexible alphabet as input x x x x X x

Mathematical repeats (DN) X x X X X X

Mathematical palindromes (IN) x X x X X x

Biological repeats (DC) x X x X X x

Biological palindromes (IC) X X X X X x

Minimum repeat length X X X X X X

Allow gap length X X x x X X

Allow mismatch X X X X x X

Allow multiple input sequence X X X x X X

Skip array of Ns x x x x X x

Replace IUB ambiguous char with ACGT x x x X x X

Probability estimation x x X x X x

Calculating score x X X X x X

Visualization of results x x x X x x

Output for load in database x x x x X x

Direct output to database x x x x X x

ACGT, ACGT-Iupac base nucleotide codes; IUB, Iub-Iupac base wildcards: R,Y,M,K,W,S,B,D,H,V,N.
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Table 2, we show a part of the results that were obtained by applying the program that searched for all four

types of repeats with or without statistical filtering. We used the following genomes: Tobacco mosaic virus

(NC 001367), Saccharomyces cerevisiae S288c chromosome I (NC_001133), Halophilic archaeon DL31

(NC 015954), Escherichia coli str. K-12 substr. MG1655 (NC_000913), as well as the following proteins:

insulin receptor long proprotein isoform [Homo sapiens] (NP 000199), epidermal growth factor receptor,

isoform a precursor [Homo sapiens] (NP_005219), and amelogenin X, isoform 1 precursor [Homo sapiens]

(NP 001133).

The size of the material for which the program can be applied is limited by the size of the main memory

of the computer. StatRepeats uses O(N) bytes, where N is the input sequence length. More precisely, 13N

bytes of memory for finding all repeats in case of direct noncomplementary repeats, and for other repeat

types, 16N bytes are needed. If statistical filtering is used, then for every unique repeat substring, an

additional 12 bytes are needed in a 32-bit system, and 24 bytes in 64-bit systems. The execution time

Table 2. Results of the Application StatRepeats

Sequence Size (bp)

Minimal

length

Repeat

type

Count w/o

statistics

Count with

statistics

Filtering

survival, %

NC 001367 6395 5 IC 16,482 6112 37

NC 001367 6395 5 DC 16,000 6034 37

NC 001367 6395 5 IN 17,619 7708 43

NC 001367 6395 5 DN 17,955 7666 42

NC 001133 230,218 6 IC 6,913,484 5,704,959 82

NC 001133 230,218 6 IN 6,551,679 5,200,614 79

NC 001133 230,218 6 DC 6,548,635 5,253,961 80

NC 001133 230,218 6 DN 6,910,631 5,250,465 75

NC 015954 2,913,689 9 IC 40,123,688 37,036,155 92

NC 015954 2,913,689 9 IN 23,951,364 20,733,964 86

NC 015954 2,913,689 9 DC 23,927,425 20,658,434 86

NC 015954 2,913,689 9 DN 40,148,123 36,540,233 91

NC 000913 4,641,652 9 IC 51,741,328 41,812,659 80

NC 000913 4,641,652 9 DC 35,026,375 24,107,015 68

NC 000913 4,641,652 9 IN 35,052,824 24,087,571 68

NC 000913 4,641,652 9 DN 51,755,175 40,004,602 77

NP 000199 1382 3 IN 253 253 100

NP 000199 1382 3 DN 197 197 100

NP 005219 1210 3 IN 191 191 100

NP 005219 1210 3 DN 152 143 94

NP 001133 191 3 IN 236 236 100

NP 001133 191 3 DN 180 180 100

Table 3. Illustration of the Dependence of Statistically Significant Repeats and Repeat Length

(a) DC repeats for murine hepatitis virus

strain JHM (AC 000192)

(b) DC repeats for Enterobacteria

phage Mu (NC 00929)

Length All repeats

Statistically

significant repeats

Filtering

survival, % Length

All

repeats

Statistically

significant repeats

Filtering

survival, %

5 281,443 202,483 72

6 71,115 34,217 48 6 94,523 50,740 53

7 18,126 7252 40 7 23,937 10,481 43

8 4496 1499 33 8 6308 2871 45

9 1220 324 26 9 1450 451 31

10 311 40 12 10 349 27 7

11 66 4 6 11 101 0 0

12 12 0 0 12 26 0 0

13 4 0 0 13 9 0 0
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depends on the length of input sequence, minimal length from which repeats are searched for, number of

found results, and the speed of the output device.

Applying StatRepeats with and without statistical filtering provided results that could be significant in

further research. In many examples of previous research, the repeat length from which the repeats were

searched for was determined arbitrarily relative to the input sequence length with the assumption that the

longer the repeats were, the greater was their significance. However, the obtained results showed that in

some genomes, shorter repeats are more statistically significant than longer ones. In Table 3a, we show

the results for the murine hepatitis virus strain JHM genome where we searched for direct complementary

repeats starting from length 5. Counts are shown for each length individually, with and without statistical

filtering. The obtained results revealed that the longer repeats are less statistically significant than shorter

FIG. 3. Statistically significant DC repeats of length 6 for murine hepatitis virus strain JHM (AC 000192). Con-

fidence bound is the boundary above which the results are significant.

Table 4. Statistically Significant Direct Noncomplementary

Repeats for the Complete Genome Lactococcus Phage

bIL67 (NC 001629)

Length All repeats

Statistically

significant repeats

Filtering

survival, %

5 199,878 151,467 75

6 57,487 40,098 69

7 16,847 12,693 75

8 4850 4850 100

9 1464 1464 100

10 443 443 100

11 115 155 100

12 46 46 100

13 17 17 100

14 2 2 100

15 1 1 100

16 2 2 100

23 1 1 100

25 1 1 100
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repeats. In general, when starting from some repeat length, all found repeats were expected to be

statistically significant; however, in this particular case, such long repeats are not present in the input

sequence.

Figure 3 shows the results for the same genome for repeat length 6. It can be seen that for some number

of pairs, the number of occurrences is much higher than the expected number that renders them statistically

significant. Determining the significance of repeats based on minimal length only does not provide precise

filtering.

An example similar to the previous one was obtained for Enterobacteria phage Mu (Table 3b). In this

example, all repeat lengths had low filtering survival. Once again, as the repeats got longer the filtering

survival became lower. In the set of genomes we tested, this was not the prevailing trend. For the majority

of genomes we applied our program to, the trend was that as the repeats get longer, the percentage of

filtering survival rises. An example that illustrates this is Lactococcus phage bIL67, which we searched for

direct noncomplementary repeats (Table 4).

4. CONCLUSION

We have developed a method for the precise determination of statistically significant repeats of all types

(direct, inverse, complementary, and noncomplementary). The method can be applied to both nucleotide

and amino acid sequences, as well as to sequences with a user-defined alphabet. The program that im-

plements the method was tested on various nucleotide and amino acid sequences. It was noted that not all

repeats found were statistically significant, and in some cases, counterintuitively, shorter repeats were

statistically more significant then longer ones. For the large number of repeats that can be found in

genomes, if the minimal repeat length is relatively low, our method provides a significant gain in per-

formance and quality of results compared with methods that output all found repeats.
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