
Pramana – J. Phys. (2018) 91:25 © Indian Academy of Sciences
https://doi.org/10.1007/s12043-018-1600-7

Meyer–Neldel energy in Se-based binary and ternary chalcogenide
glasses

RAM MURTI ∗, S K TRIPATHI, NAVDEEP GOYAL and SATYA PRAKASH

Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160 014, India
∗Corresponding author. E-mail: rammurtisharma07@gmail.com

MS received 9 June 2017; revised 29 December 2017; accepted 29 January 2018; published online 11 July 2018

Abstract. The integral equations for DC conductivity and external conductance for the network of localised states
in amorphous solids are solved by iteration method. The random free energy barriers and single polaron hopping
model are used to obtain the DC conductivity σDC and Meyer–Neldel energy EMN. The experimental estimates
of optical band gap Eg, dielectric function ε, glass transition temperature Tg and σDC are used to calculate EMN
for Se-based binary and ternary chalcogenide glasses. The calculated values are found to be in agreement with the
available experimental data. EMN increases with increase of attempt frequency. The true pre-exponential factor σ00
is related to EMN as ln σ00 = p − qEMN, where p is nearly 7.3 and q is material-dependent. The calculated values
of EMN and σ00 suggest that DC conduction in these chalcogenides is due to acoustic and optical phonon-assisted
polaron hopping.
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1. Introduction

The general expression for DC conductivity, σDC,
is [1]

σDC = σ0 exp

(−EDC

kBT

)
, (1)

where σ0 is the pre-factor, EDC is the barrier height for
DC conduction at temperature T and kB is the Boltz-
mann constant. The Meyer–Neldel (MN) rule is an
empirical relation between σ0 and EDC and it is stated
as

σ0 = σ00 exp

(
EDC

EMN

)
, (2)

where σ00 is the true pre-factor and EMN(= kBT0) is
MN energy with material characteristic temperature T0.
The MN rule is observed in single crystals, polycrys-
tallines, amorphous and organic solids, ionic conductors
and fullerenes [2–7].

Jackson [8] found that if multitrapping transport pro-
cess over fixed distance is temperature-dependent, MN
rule should be observed. Other researchers attribute the

MN rule to the effect of disorder within the material
[9–11]. Shimakawa and Abdel-Wahab [12] fitted the
experimental data of DC conductivity of chalcogenide
glasses As–Se–S, As–Se–I and Se–S–Te in log scale of
eq. (2) and obtained the set of values of σ00 and EMN
within the range of 10−5 to 10−15 S cm−1 and 25 to
60 meV respectively. Small values of σ00 suggest that
DC transport is due to tunnelling of holes through inter-
layer potential barriers as most of these chalcogenide
glasses have two-dimensional layered structure. Yelon
and Movaghar [13,14] used multimode boson field to
evaluate two-level hopping rate and found that MN rule
exists even for large activation energies.

It is believed that DC conductivity in chalcogenide
glasses at relatively higher temperature is dominated
by free holes in the valence band. Therefore, standard
band transport model is not applicable to chalcogenide
glasses [15]. Emin et al [16] proposed small polaron
hopping mechanism for DC conduction in chalcogenide
glasses and suggested that MN rule is the consequence
of carrier-induced softening of phonon modes. In this
model, σ00 is predicted to be of the order of 102

to 103 S cm−1. The conventional correlated barrier
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hopping (CBH) model [17] for σDC for chalcogenide
glasses is also augmented to obtain MN rule [18–20].

Here we use the extended pair model and random free
energy barriers for the network of localised states in the
chalcogenide glasses to calculate σDC and EMN [21,22].
It is found that EMN originates from temperature-
induced configurational and electronic entropies. The
parameters used in the calculations are adopted from
the estimates of available experimental data in the lit-
erature. The calculated values of EMN for binary and
ternary chalcogenide glasses Se1−xXx (X = Ge, In, Te)
and Se1−x−yTexXy (X = Ge, In) are found to be in
agreement with the experimental data and other theo-
retical results. The correlations between EMN and jump
frequency and between ln σ00 and EMN are also stud-
ied.

The plan of the paper is as follows: The necessary
formalism is presented in §2 and the results are discussed
in §3.

2. Formalism

Summerfield and Butcher [23,24] solved Kirchhoff’s
equations for a network of localised states in amorphous
solids in the extended pair model using two site approxi-
mations. The resulting integral equation for DC hopping
conductivity is obtained as

σDC = 4πN 2
s

6

∫ rmax

rmin

dr r4
[

1

g(E, r)
+ 2

Y (E)

]−1

, (3)

where Ns is the density of defect sites and rmin and rmax
are the minimum and maximum defect site separations.
The internal conductance g(E, r) between the defect
sites of energy E at the separation r is given as

g(E, r) = g0 exp

(−EDC

kBT

)
(4)

and the external conductance Y (E) is

Y (E) = 4πNs

BP

∫ rmax

rmin

dr r2
[

1

g(E, r)
+ 1

Y (E)

]−1

, (5)

where g0 and (1/Bp) are the proportionality constants.
If we use the limits (Y (E)/g(E, r)) � 0 and rmin � 0
in eq. (5), we get rmax = rp, which is the percolation
radius and it is given as

rp =
(

3Bp

4πNs

)1/3

. (6)

Here (1/Bp) is determined with the predictions of per-
colation theory and for three-dimensional solids, Bp =
2.7 [25].

Further, eq. (5) is solved by iterative method. In the
first iteration, it is assumed that external and internal
conductances are equal at rp, i.e.

Y (E) = g(E, rp) = g0 exp

(−EDC(rp)

kBT

)
. (7)

There is temperature-induced configurational and elec-
tronic disorder in the thermally activated DC conduction
in the amorphous solids. Therefore, EDC will involve
thermal fluctuations and hence a range of activation
energies will contribute to the conduction process. Thus,
EDC will represent a distribution of free energy barriers
and for the random free energy barrier distribution

EDC(r, T ) = E0
DC(r) − T S, (8)

where E0
DC(r) is the temperature-independent barrier

height and S is the entropy. Here, E0
DC(r) is compen-

sated by thermal fluctuations TS. In the CBH model [17]

E0
DC(r) = EM − 4ze2

εr
, (9)

where EM is the maximum barrier height, ε is the dielec-
tric constant and z = 1 and 2 for single and bipolaron
hopping conduction respectively.

Use of eqs (7)–(9) in eq. (5) gives

Y (E) = 4πNs

Bp
g(E, rp)

×
∫ rmax

rmin

dr r2
[

1

1 + g(E, rp)/g(E, r)

]
, (10)

where

g(E, rp)/g(E, r) = exp

[
a

(
1

rp
− 1

r

)]
(11)

and

a = 4ze2

εkBT
. (12)

For further simplification of eq. (10), it is assumed that
rmax � rp, g(E, rp)/g(E, r) � 1 and r3

p � r3
min [21,

24]. This gives

Y (E) � 4πNs

3Bp
g(E, rp)r

3
p (13)

and

Y (E)/g(E, r) = 4πNs

3Bp
r3
p
g(E, rp)

g(E, r)
. (14)

Using similar simplifications in eq. (3) and assuming
that r5

p � r5
min, one gets

σDC = 4πN 2
s

6

Y (E)

10
r5
p. (15)
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The use of eqs (7) and (13) simplifies eq. (15) as

σDC = πN 2
s r

5
p

15
g(E, rp). (16)

Further use of eqs (7) and (8) in eq. (16) gives

σDC = πN 2
s r

5
p

15
g0 exp

(
S

kB

)
exp

(
−E0

DC(rp)

kBT

)
. (17)

Thus, the MN rule in σDC is achieved due to entropy of
the material.

Using dimensional considerations in eq. (17), we
write [24]

g0 exp

(
S

kB

)
= Cω0 exp

(
E0

DC(rp)

EMN

)
, (18)

whereC and ω0 have the dimensions of capacitance and
frequency respectively and

EMN = kBE0
DC(rp)

S
= kBT0. (19)

Here, T0 is the characteristic temperature of the material
as discussed earlier. Evidently, EMN will increase with
increase of E0

DC and will decrease with increase of S.
However, for a given E0

DC, EMN may not be observable
for large values of S.

As both C and ω0 increase with increase of temper-
ature, it is difficult to establish the exact temperature
dependence of Cω0 [26]. Therefore, Cω0 is taken as
temperature-independent and it is written in conven-
tional units as [27]

Cω0 = α

(
e2

πkBθD

)
ν0, (20)

where θD and ν0 are Debye temperature and effective
jump frequency respectively and α is the magnitude
parameter of Cω0. These parameters essentially repre-
sent the material properties.

The use of eqs (18)–(20) in eq. (17) gives

σDC = σ00 exp

(
E0

DC

EMN

)
exp

(
−E0

DC

kBT

)
, (21)

where the pre-factor

σ0 = σ00 exp

(
E0

DC

EMN

)
(22)

and true pre-factor

σ00 = α

(
e2N 2

s r
5
p

15kBθD

)
ν0. (23)

Here, DC conduction is due to phonon-assisted
single polaron hopping. As temperature decreases, S

will decrease and EMN will increase. Consequently, σDC
will decrease. Similarly, σDC will increase with increase
of T . Thus, entropy barrier height TS is significant in
the DC conduction process and MN rule arises due
to temperature-induced configurational and electronic
entropies.

For further discussion, we rewrite eq. (23) with the
help of eq. (6) as

σ00 = αe2ν0

15kBθD

(
3Bp

4π

)5/3

N 1/3
s . (24)

Thus, σ00 explicitly depends on attempt frequency ν0
and defect density Ns . As the chalcogenide melt is
quenched at glass transition temperature Tg, Ns is given
as [28]

Ns = N0 exp(−EVAP/2kBTg), (25)

where the concentration of chalcogen atoms

N0 ≈ 2

(
2πmwkBTg

h2

)3/2

(26)

and mw is the effective atomic mass of the chalcogen
atom. The factor 2 is added, as the defect states are
doubly occupied. EVAP is the energy needed to cre-
ate a valence alternation pair and EVAP/2 is nearly
the Fermi energy position. Therefore, we assume that
EVAP ≈ EDC, the estimated barrier height from the
experimental data of σDC [29,30].

We can also write eq. (24) with the help of eqs (25)
and (26) as

ln σ00 = p − qEMN, (27)

where

p = ln α + (1/3) ln 2 + (5/3) ln(3Bp/4π)

+ ln(e2ν0/15kBθD) + (1/2) ln(2πmwkBTg/h
2)

(28)

q = xy

3kBTg
, x = (EDC/E0

DC) and y = (S/kB).

(29)

Thus, ln σ00 is linearly related to EMN, and the intercept
p and slope q will depend on material properties and
the experimental conditions.

3. Results and discussion

We rewrite eq. (21) as

EMN = E0
DC[(

E0
DC

kBT
+ ln(σDC

σ00
)

)] . (30)
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The parameters E0
DC, T , σDC, Ns , θD and ν0 are needed

to calculate EMN. σDC and T are the experimental data.
E0

DC is calculated by replacing r by rp in eq. (9) and
using the relation EM = 2(Eg − E0

DC), where Eg is the
optical band gap. This gives

E0
DC = (1/3)

(
2Eg − 4ze2

εrp

)
. (31)

rp and Ns are calculated with the help of eqs (6) and (25)
respectively. The glass transition temperature Tg varies
with heating rate β, and therefore Tg is estimated with
the empirical relation

Tg = A + B log(β), (32)

where the parameters A and B are the intercepts and
slopes of Tg vs. log β graph [31].

θD for Se-based binary and ternary chalcogenide
glasses is estimated with the help of Debye temperature
θ ′

D of amorphous Ge, Se, Te and In. Here, θ ′
D = 244.6 K

for a-Ge is taken from the calculations of Singh and Ali
[32] and θ ′

D = 67 K for a-In is taken from Comberg et al
[33]. The specific heat measurements of amorphous and
crystalline Se predict θ ′

D = 56 K and 90 K respectively
[34,35]. θ ′

D for a-Te is not available, and therefore we
estimated θ ′

D = 95 K for a-Te by reducing its crystalline
value θ ′

D = 153 K in the same ratio as for a-Se given
above. The weighted average of these values of θ ′

D is
taken as θD for these alloys. If ν0 = νD, where νD is the
Debye frequency, it is calculated as hνD = kBθD. The
details of other parameters are as follows:

(a) Se100−xGex (x = 15, 20, 25)

Zolanvari et al [36] prepared glassy alloys
Se100−xGex (x = 15, 20, 25) by heating and quenching
(HQ) rate and measured the DC conductivity σDC. We
adopted σDC, T and EDC from these measurements. Ns
is estimated with the help of eq. (25) and mw is taken as
the weighted average atomic mass of Se100−xGex alloy.

Craig Russel [37] studied the photodarkening prop-
erties of Ge–Se glasses using both the curve fitting and
derivative techniques to obtain Eg and ε. These results
were close to those obtained by Shirafuji et al [38] with
the help of photoluminisence and absorption spectra of
Se1−xGex compounds and those obtained by Oheda [39]
with the help of compositional dependence of Urbash
tail of these glasses. Sharma and Kumar [40] estimated
ε from the capacitance measurements of the thin films.
Therefore, we have taken Eg and ε from the estimates
of Craig Russel [37].

Derrey et al [41] prepared the amorphous Se85Ge15 by
HQ method and estimated Tg = 408 K with the help of
structural relaxation data obtained by differential ther-
mal analysis (DTA). Tiwari et al [42] also prepared

Se80Ge20 alloy by the same method. However, they
analysed the differential scanning calorimetric (DSC)
data for different heating rates. We calculated Tg with the
help of eq. (32) using parameters A = 378.1, B = 17.1
and the average value of log β = 3.0 given by them.
Hyun-Yong et al [43] analysed DTA data of Se75Ge25
and estimated Tg = 493 K.

(b) Se100−x Inx (x = 10, 15, 20)

Mehta et al [44] measured DC and AC conductivities of
Se100−x Inx (x = 10, 15, 20) glassy alloys prepared by
HQ technique and estimated EDC. They also estimated
ε and Tg with the help of capacitance and AC conduc-
tivity measurements respectively. We have taken σDC,
T , EDC, ε and Tg from them. Singh et al [45] also pre-
pared Se100−x Inx glasses by HQ method and estimated
Eg by analysing the reflection spectra and found a non-
linear relation between Eg and x . We have adopted these
values of Eg for our calculations [45]. Ns and mw are
estimated as for Se100−xGex alloys.

(c) Se100−xTex (x = 10, 20, 30)

Mehra et al [46] used HQ method to prepare
Se100−xTex (x = 10, 20, 30) glasses and measured σDC
in the temperature range 150 K to 300 K. We have taken
σDC, EDC and T from these measurements. Ns and mw

are calculated as for Se100−xGex alloys.
Calventus et al [47] prepared the glassy alloys

Se90Te10 by HQ method and obtained Tg = 320 K by
analysing the X-ray diffraction data with the help of
crystallisation rate equation. Mehta et al [48] analysed
the DSC thermograms of glassy Se80Te20 and estimated
the parametersA,B and β. We obtained Tg = 342 K with
the help of eq. (32) with A = 328.7, B = 11.83 and
average value of log β = 1.2 given by Mehta et al [48].
Similarly, the DSC thermogram analysis of Se70Te30
glasses due to Srivastava et al [49] gave Tg = 357 K
with A = 338.88, B = 6.80 and average value of
log β = 2.7.
Eg and ε for the configuration Se100−xTex (x =

10, 15, 20) is not available to us. Therefore, we esti-
mated these parameters with the help of linear relation
between Eg and ε given by Mandoza-Galvan et al [50]
from their measurements of transmission and reflectiv-
ity of amorphous SexTe1−x alloys.

(d) Se85−xTe15Gex (x = 2, 6, 10, 15)

Kumar et al [51] prepared Se85−xTe15Gex (x = 2, 6,

10, 15) alloys by HQ method and measured σDC in the
temperature range of 279–353 K. We have taken σDC,
T and EDC from these measurements. Kumar et al [52]
also reported the temperature and frequency dependence
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of ε of these alloys in the frequency range 5 kHz to 20
kHz and in the temperature range 253–313 K. There is
dispersion in ε with frequency, and therefore we have
taken ε at the highest frequency 20 kHz and at T =
303 K. Ns and mw are estimated as for Se100−xGex
glasses.
Tg is not available for Se85−xTe15Gex alloys. Patial

et al [53] prepared Se85−xTe15Snx (x = 0, 2, 4 and 6)

glasses by HQ method and estimated Tg with the help of
DSC data and crystallisation rate equation. Similar mea-
surements are also carried out for Se85−xTe15Bix glasses
[54]. As the atomic mass of Ge is closer to Sn, we esti-
mated Tg for Se85−xTe15Gex (x = 2, 6, 10, 15) alloys
from the linear relation of Tg and x for Se85−xTe15Snx
[53]. Ganesan et al [55] prepared Se100−x−yTeyGex
glasses using HQ technique and used photoacoustic data
to estimate the dependence of Eg on average coordina-
tion number Za given as

Za = x ZGe + yZTe + (100 − x − y)ZSe

100
, (33)

where ZGe = 4, ZTe = 2 and ZSe = 2 are the coordi-
nation numbers of Ge, Te and Se respectively. We cal-
culated Za for the configurations Se85−xTe15Gex (x =
2, 6, 10, 15) using eq. (33) and estimated Eg with the
illustration given by Ganesan et al [55] for the lowest
Te concentration GexSe80−xTe20 alloy.

(e) Se85−xTe15Inx (x = 2, 6, 10, 15)

Kumar et al [56,57] also measured and estimated σDC,T,
EDC and ε for Se85−xTe15Inx (x = 2, 6, 10, 15) alloys
as discussed for Se85−xTe15Gex alloys. We have taken
these parameters from the above measurements and esti-
mates. Ns and mw are calculated as described earlier.

Tripathi et al [58] did the DSC measurements for
Se70Te15In15 alloy at different heating rates and used
crystallisation rate equation to obtain Tg. We have taken
Tg = 349 K, and the average of Tg given for differ-
ent heating rates. Similar measurements of Patial et al
[59] suggested Tg = 340 K for the Se79Te15In6 con-
figuration. Tg for the configurations Se83Te15In2 and
Se75Te15In10 is not available. Therefore, we linearly
extrapolated the data of [58,59] to obtain Tg for these
configurations.

The increase of σDC is not linear with increase of
In concentration in Se85−xTe15Inx alloys. σDC is max-
imum for x = 10. As discussed earlier, Singh et al
[45] found non-linear relation between Eg and x for
Se100−x Inx alloys and Eg is minimum for x = 10. The
In impurity-induced crystallisation will reduce the band
gap. Therefore, we estimated Eg for Se100−xTe15Inx
alloys using the graphical relation given in [45] assum-
ing that Eg will be less than those for Se100−xTex alloys.

The input parameters Eg, ε, mw, Tg, θD, EDC, T and
σDC are tabulated in table 1 for binary and ternary alloys
respectively. These parameters are used to calculate σ0,
σ00 and EMN with the help of eqs (22), (23) and (30)
respectively for α = 1. These results along with Ns , rp,
νD, E0

DC, p and q are tabulated in table 2.
It is noted that σDC for Se100−xGex alloys is larger

by three to four orders of magnitude than those for
Se100−x Inx alloys and six to seven orders of magnitude
larger than those of Se100−xTex alloys. The addition
of Ge in Se100−xTex alloys does not alter σDC signif-
icantly while with addition of In in Se100−xTex alloys,
σDC increases nearly by four to five orders of magnitude.
Further in the formation of ternary alloy, the Ge impu-
rity in Se100−xTex reduces Ns nearly by four orders,
while In impurity increases Ns by four to six orders.
Ns is minimum and maximum for Se85−xTe15Gex and
Se85−xTe15Inx alloys respectively and this is consistent
with the variation of σDC. The percolation radius rp is
sufficiently large for Se100−xTex and Se85−xTe15Gex
alloys and it is nearly of the order of nearest neighbour
distances for Se85−xTe15Inx alloys.

In Se100−x Inx and Se85−xTe15Inx alloys, E0
DC is

nearly twice of EDC, in Se100−xGex and Se100−xTex
alloys E0

DC is nearly 50% higher than EDC and in
Se85−xTe15Gex alloys, E0

DC is about 15% higher than
EDC. Thus, thermal compensation is the significant part
of DC conduction barrier height.
EMN increases from 67 to 75 meV with increase in

Te concentration in Se100−xTex alloys while it remains
nearly 40 meV with increase of Ge concentration in
Se100−xGex alloys. In Se100−x Inx alloys, EMN increases
from 47 to 72 meV with the minimum for x = 15. EMN
increases from 52 to 59 meV with increase of Ge concen-
tration in Se85−xTe15Gex alloys while in Se85−xTe15Inx
alloys, EMN is varying inconsistently within 57 to 51
meV with an exception of 97 meV for x = 10. The
magnitude of our calculated values of EMN agrees with
the estimates of Shimakawa and Abdel-Wahab [12] for
the As-based chalcogenides.

(f) Correlations between EMN, ν0, σ00, σ0 and E0
DC

It was shown by Miller and Abrahams [60] that effective
jump frequency at higher temperature is given as ν0 ≈
2 × 1012(r/R)3/2 exp(−2r/R) where (r/R) is the ratio
of intersite separation r and radius of localised polaron
states R. Therefore, we studied the variation of EMN
with ν0 in the the frequency range (10–100) × 1012

Hz for both binary and ternary alloys. These results are
shown in figures 1a–1e. In the above frequency range,
EMN increases within 10% for Se100−xGex alloys while
for Se100−xTex alloy, EMN increases by about 30% for
all the values of x . This increase in EMN in the above
frequency range is 40% for x = 20, 16% for x = 10
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Table 1. Physical parameters of binary chalcogenides Se100−xGex , Se100−x Inx and Se100−xTex (A) and
ternary chalcogenides Se85−xTe15Gex and Se85−xTe15Inx (B).

Chalcogenide Eg (eV) ε mw (a.m.u.) Tg (K) θD (K) EDC (eV) T (K) σDC (
−1 cm−1)

(A)
Se85Ge15 1.97 5.9 78.01 408 84.29 0.93 333 1.08E − 5
Se80Ge20 2.00 5.7 77.69 430 93.70 0.76 333 8.98E − 6
Se75Ge25 2.06 5.5 77.38 493 103.15 0.90 333 9.77E − 6
Se90In10 2.00 3.0 82.55 335 57.10 0.51 307 2.33E − 9
Se85In15 2.23 3.0 84.34 338 57.65 0.63 307 9.87E − 11
Se80In20 2.21 3.0 86.13 337 58.20 0.41 307 3.34E − 7
Se90Te10 1.69 7.0 83.82 320 59.90 0.77 300 6.13E − 13
Se80Te20 1.54 7.5 88.69 342 63.80 0.72 300 6.04E − 12
Se70Te30 1.46 8.5 93.55 357 67.70 0.68 300 6.00E − 11

(B)
Se83Te15Ge2 1.78 10.2 86.13 338 65.62 1.05 303 2.40E − 12
Se79Te15Ge6 1.72 7.90 85.87 340 73.17 1.06 303 2.06E − 12
Se75Te15Ge10 1.70 6.00 85.62 345 80.71 1.04 303 2.26E − 12
Se70Te15Ge15 1.65 4.50 85.31 350 90.14 0.99 303 2.79E − 12
Se83Te15In2 1.46 19.6 86.97 337 62.07 0.43 293 8.56E − 8
Se79Te15In6 1.40 24.9 88.41 340 62.51 0.49 293 7.19E − 8
Se75Te15In10 1.25 43.2 89.84 344 62.95 0.29 293 1.70E − 6
Se70Te15In15 1.48 70.0 91.63 349 63.50 0.44 293 1.32E − 7

Eg (eV): Estimated band gap from optical transmission measurements, ε: Estimated dielectric constant
from optical transmission and capacitance measurements, mw (a.m.u.): Weighted average atomic mass
of the chalcogenide, Tg: Estimated glass transition temperature from calorimetric measurements, θD (K):
Weighted averaged Debye temperature estimated from Debye temperature of amorphous constituent ele-
ments, EDC (eV): Experimental DC activation energy, σDC (
−1 cm−1): Experimental DC conductivity at
temperature T (K).

and 10% for x = 15 in the Se100−x Inx alloys. Similarly,
EMN increases about 15% for given concentrations of
Ge in the Se85−xTe15Gex alloys. However, this increase
of EMN is 10% for x = 2, 6, 15 and 100% for x =
10 in the Se85−xTe15Inx alloys. Thus, the increase in
EMN with increase of ν0 depends upon both impurity
concentration and its characteristics.

The correlations between ln σ00 and EMN, as given in
eq. (27), for these alloys are shown in figures 2a–2e. The
results tabulated in table 2 show that, p is nearly 7.3 for
all these alloys and this agrees with the results obtained
by Yelon and Movaghar [14]. However,q depends on the
material properties. It is larger for alloys with Ge impu-
rities than those alloys with Te and In impurities. The
best-fit linear relations ln σ00 = p1 − q1EMN through
these points with constants p1 and q1 are shown by solid
lines in figures 2a–2e. The dispersion from linearity is
maximum for Se85−xTe15Inx ternary alloys.

To obtain a unified correlation between ln σ00 and
EMN, ln σ00 and EMN for all these alloys are put
together in figure 3. The calculated results are well rep-
resented by two independent linear relations as shown
by solid lines, one for Se100−xTex and Se85−xTe15Gex
(group A) alloys with (p1, q1) = (−14.64, −0.198) and
other for Se100−xGex , Se100−x Inx and Se85−xTe15Inx

(group B) alloys with (p1, q1) = (−2.124, −0.078).
However, the calculated results are too far from an
overall linear relation between ln σ00 and EMN with
(p1, q1) = (−2.95, −0.057) as shown by the dashed
line.

The correlation between ln σ0 and static barrier height
E0

DC for these alloys is shown in figure 4. It is similar
to that between ln σ00 and EMN. The calculated points
are too dispersed from the linear relation ln σ0 = p2 −
q2E0

DC with (p2, q2) = (−9.41, −28.01) as shown by
the dashed line. However, two linear relations for the
group A and group B materials are well represented by
the solid lines with (p2, q2) = (−7.95, −21.64) and
(−7.98, −30.27) respectively.
EMN and σ00 are quite sensitive to the determina-

tion of slope and intercept of ln σ0 vs. EDC correlations.
Therefore, we also studied the correlation between EMN
and σ00 with σ00 in the range of 103 to 10−15ω−1cm−1 as
discussed in Introduction [12,16], using eq. (30). These
results for the two alloys Se90Te10 and Se83Te15Ge2
are shown in figure 5. EMN varies between 135 and
22 meV for Se90Te10 alloy and between 100 and 22
meV for Se83Te15Ge2 alloy for σ00 in the range of 103

to 10−15
−1cm−1. EMN increases with the increase of
σ00.
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Figure 1. The variation of EMN with frequency ν0 for (a) Se100−xGex , (b) Se100−x Inx , (c) Se100−xTex , (d) Se85−xTe15Gex
and (e) Se85−xTe15Inx .

(g) Comparison of EMN with experiments

It is interesting to study the correlation between the
calculated and available experimental values of EMN.
Mehta et al [61] prepared the Se100−xGex (5 ≤ x ≤
22), Se100−x Inx (5 ≤ x ≤ 30) and Se100−xTex (5 ≤
x ≤ 30) alloys by HQ method and studied the DSC
pattern at the cooling rate of 5 K/min. These results
are used in the crystallisation rate equation (CRE) to
estimate EMN. These values are 39, 36 and 32 meV for
Se100−xGex , Se100−x Inx and Se100−xTex alloys respec-
tively. Muiva et al [62] also prepared the glassy alloy
Se100−x Inx (1 ≤ x ≤ 20) by the same method and used

the DSC data in CRE and estimated EMN = 48 meV
for Se100−x Inx alloys.

We have calculated EMN for these alloys using DC
conduction rate equation and the calculated values of
EMN for Se100−xGex (15 ≤ x ≤ 25) alloys are between
30 and 40 meV. If it is assumed that EMN obtained
through CRE is the impurity averaged concentration
value of EMN, our results for Se100−xGex alloy agree
with those obtained by Mehta and Kumar [61]. Our cal-
culated values of EMN for Se100−x Inx (10 ≤ x ≤ 20)

alloys are between 47 and 72 meV. These values are
higher than those estimated by Mehta and Kumar [61].
However, the values agree with those of Muiva et al [62].
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Figure 2. ln σ00 vs. EMN for (a) Se100−xGex , (b) Se100−x Inx , (c) Se100−xTex , (d) Se85−xTe15Gex and (e) Se85−xTe15Inx .

Our calculated values of EMN for Se100−xTex (10 ≤
x ≤ 30) alloy are between 67 and 75 meV. These are
higher than those obtained by Mehta and Kumar [61].
This may be due to two different ways of estimating
EMN, one using the crystallisation rate and the other
using the DC conduction rate equation.

Arora and Kumar [63] prepared Se100−xTex (5 ≤ x ≤
25), Se80−xTe20Inx (0 ≤ x ≤ 25), Se100−xGex (10 ≤
x ≤ 40) and Se68Ge22In10 glassy alloys using HQ
method and studied the temperature dependence of DC
conductivity. These authors estimated EMN = 69 meV
and σ00 = 1.97 × 10−2
−1cm−1 for Se100−xTex (5 ≤
x ≤ 25) alloys. These results fairly agree with our cal-
culated values of EMN (67–75 meV) and σ00 = (0.24
to 2.08 
−1cm−1) for Se100−xTex (10 ≤ x ≤ 30)

alloys. A closer agreement for σ00 may be obtained
for magnitude parameter α = 10−1, given in eq.
(20).

Arora and Kumar [63] did not observe MN rule in
the Ge-based alloys Se100−xGex (10 ≤ x ≤ 40) and
Se68Ge22In10. However, Kumar et al [56] estimated
EMN = 40.67 meV and σ00 = 3.78 × 10−6
−1cm−1

for Se85−xTe15Gex (x = 2, 4, 10 and 15) alloys with
their measurements for temperature dependence σDC.
Our calculated values of EMN for these alloys are
52 to 59 meV and σ00 are 1.45 × 10−2 to 4.60 ×
10−2
−1cm−1. Thus, the calculated values of EMN rea-
sonably agree with the estimates of Kumar et al [56].
However, σ00 is larger by orders of magnitude and this
suggests α = 10−4 for closer agreement.
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Figure 3. ln σ00 vs. EMN for Se-based chalcogenides.
The dashed line represents the overall linear relation
ln σ00 = p1 − q1EMN, with (p1, q1) = (−2.95,−0.057).
The solid lines represent the linear relation with
(p1, q1) = (−14.64,−0.198) for group A materials and
(p1, q1) = (−2.124,−0.078) for group B materials.

Figure 4. ln σ0 vs. E0
DC for Se-based chalcogenides.

The dashed line represents the overall linear relation
ln σ0 = p2 − q2E0

DC, with (p2, q2) = (−9.41,−28.01).
The solid lines represent the linear relation with
(p2, q2) = (−7.95,−21.64) for group A materials and
(p2, q2) = (−7.98,−30.27) for group B materials.

Arora and Kumar [63] also estimated EMN = 68 meV
and σ00 = 0.55 × 10−2 
−1 cm−1 for Se80−xTe20Inx
(0 ≤ x ≤ 20). However, with similar measurements,
Kumar et al [56] estimated EMN = 17.04 meV and
σ00 = 1.678 × 10−9 
−1 cm−1 for Se85−xTe15Inx
(x = 2, 6, 15). Our calculated values of EMN, 51 to
57 meV, agree with the estimates of Arora and Kumar
[63] but higher than those of Kumar et al [56]. Similarly,
our calculated σ00 between 12.88 and 27.67 
−1 cm−1

agrees with that of Arora and Kumar [63] for α = 10−2.
The results for the configuration Se75Te15In10 are excep-
tionally higher.

Figure 5. The variation of EMN vs. σ00 (
−1 cm−1) for
Se90Te10 and Se83Te15Ge2.

Our calculated values of σ00 for Se-based binary and
ternary chalcogenides in the range of 10−2 
−1 cm−1

to 102 
−1 cm−1 are higher by orders of magnitude
than those found by Shimakawa and Abdel Wahab for
As-based chalcogenides [12] and more close to those
suggested by Emin et al [16]. The calculated values of
EMN agree with the experimental estimates and these
are of the order of acoustic and optical phonon ener-
gies. Therefore, it is very likely that DC conduction in
these Se-based chalcogenides may be due to acoustic
and optical phonon-assisted polaron hopping and ther-
mal compensation of DC conduction barrier height is
significant.
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