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Abstract. Solvable mathematical model is suggested for tunnelling through quantum dot. The model is based on
the theory of self-adjoint extensions of symmetric operators. The spin–orbit interaction is taken into account. The
transmission coefficient is obtained. The result is compared with the case where spin–orbit interaction is absent.
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1. Introduction

Many nanoelectronic devices are based on tunnelling
through nanostructures. Correspondingly, the depen-
dence of the transmission coefficient on the particle
energy and the system parameters plays a crucial role
in such engineering applications. Electron tunnelling
through quantum dots having connecting leads was stud-
ied in [1–6]. To describe the process effectively, one
can use a solvable model of quantum dot – point-like
potential with internal structure (see e.g. [7–9] and ref-
erences in [10]). An abstract model for tunnelling was
suggested in [5]. As for the mathematical difficulties,
they are related to the necessity of connecting mani-
folds having different dimensions. The general approach
to the description of such contacts was developed in
[11]. It is based on the theory of self-adjoint extensions
of symmetric operators. As for physical aspects, one
can mention works dealing with the properties of two-
dimensional electron gas on curved surfaces [12,13]. In
many cases, the spin–orbit interaction plays an impor-
tant role (see e.g. [14,15]). The spin–orbit interaction is
at the heart of the emerging field of spintronics. New
devices are being contemplated based purely on the
spin degrees of freedom instead of charge. There are
two microscopic origins of spin–orbit interactions. One
originates due to structural inversion asymmetry, which
is known as Rashba spin–orbit interaction [16], and the

other is due to the bulk inversion asymmetry, which is
known as Dresselhaus spin–orbit interaction [17]. The
Rashba effect makes it possible to control the electron
spin by the external electric field (see e.g. [18]). The dis-
covery of the giant Rashba effect [19,20] in bulk crystals
such as BiTeI and ferroelectric GeTe and in a number
of low-dimensional systems bears a promise of creating
devices operating electron spins at nanoscale and pos-
sessing short operational times. In this paper we deal
with the Rashba Hamiltonian.

All the aforementioned models of tunnelling do not
take into account the spin–orbit interaction. In this paper,
we construct a model of tunnelling through quantum
dots under the assumption that the spin–orbit interaction
takes place inside the quantum dot. The model is based
on the operator extension theory. One can mention a
series of papers related to extension theory models for
spin–orbit Hamiltonians [21–23]. We follow the work
of Jursenas [24] where the point-like potential inR3 was
constructed for the Rashba Hamiltonian. In our case, the
model configuration is as follows. We have two semi-
infinite lines with the state space L2(R+) ⊗ C

2. These
lines are coupled to R

3 at some point. The state space
for R3 is L2(R

3)⊗C
2. Correspondingly, the state space

is as follows:

L2(R+) ⊗ C
2 ⊕ L2(R

3) ⊗ C
2 ⊕ L2(R+) ⊗ C

2.
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At each semi-infinite line, we consider two copies of
L2-space corresponding to two values of particle spin.
The initial Hamiltonian has the form

S = S1 ⊕ Sd ⊕ S2.

Here

S1 = S2 = − d2

dx2 ⊗ C
2,

Sd = −� ⊗ I + ıα(∇1 ⊗ σ2 − ∇2 ⊗ σ1) + β I ⊗ σ3,

α, β ≥ 0, α stands for the spin–orbit coupling strength
and β is the strength of the magnetic Zeeman field,
� denotes the three-dimensional Laplace operator,
∇ j ( j = 1, 2) is the gradient in the j th component
of a three-dimensional position vector, I is the identity
operator and σ j , j = 1, 2, 3, are the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −ı
ı 0

)
, σ3 =

(
1 0
0 −1

)
.

The domain of S is as follows:

dom S = dom S1 ⊕ dom Sd ⊕ dom S2,

dom S1 = dom S2 = { f ∈ H2(R+),

f (0) = f ′(0) = 0} ⊗ C
2,

dom Sd = { f ∈ H2(R3), f (0) = 0} ⊗ C
2,

where H2 is the Sobolev space. Operator S is a sym-
metric operator with the deficiency indices (6, 6). It has
self-adjoint extensions. We choose a particular exten-
sion (see below) as a model Hamiltonian.

2. Model construction

There are several ways to construct the self-adjoint
extension, including Neumann formula approach (see
e.g. [7]), Krein formula approach (see e.g. [25]) and
boundary triplet approach (see e.g. [26]). We choose
the second one. This method uses the fact that it is
more convenient to deal with the resolvent instead of
the initial operator. It is the resolvent of the extension,
which is given by the Krein resolvent formula. The for-
mula contains the �-field (the Krein �-function) and
the Krein Q-function (see e.g. [27]). In our model, the
Krein �-functions for the half-lines are mappings from
the deficiency subspaces to the state space L2(R+)⊗C

2.
It is given by the Green function for the half-line. As for
the quantum dot, the situation is analogous, but the state
space is L2(R

3) ⊗ C
2. The Krein Q-function is given

by a value of the regular part of the Green function for
coinciding arguments. These functions for the full sys-
tem are constructed from the corresponding functions
for the system parts. The expressions are written below.

For the half-line, the �-field and the Q-function are as
follows [27]:

�1(z) = �2(z) = diag
( ı

k
eıkx ,

ı

k
eıkx

)
,

Q1(z) = Q2(z) = diag
( ı

k
,
ı

k

)
,

where k = √
z and z is the spectral parameter.

As for the term Sd , we use the expression for the Green
function from [24]:

�s = diag(G+(x; z),G+(x; z)),
Qs = diag(Q+, Q−).

Here

Q±(z) = N 2±
(

1

4
√

2π
−

√−z

4π
+ Gren± (0; z)

− Re Gren± (0; ı)
)

,

where

Gren± (0; z) =
√−z

4π

− 1

4π

√√√√√−z

2

⎛
⎝1 +

√
1 −

(
β

z

)2
⎞
⎠

+
(

α

8π
∓ β

4πα

)

×artanh

⎛
⎜⎝α

β

√√√√√−z

2

⎛
⎝1 −

√
1 −

(
β

z

)2
⎞
⎠

⎞
⎟⎠.

The normalisation constant is as follows:

N−2± = 1

8π

(√
1 +

√
1 + β2 +

(
α

2
∓ β

α

)

×(Arg(1 + c(1 + ı)) − Arg(1 − c(1 + ı)))

)
,

c = α

2β

4

√
2 + β2 − 2

√
1 + β2.

The �-field and Q-function for the full operator (i.e. for
the orthogonal sum of the operators) are obtained by the
following method justified in [28]:

�(z) = �1 ⊕ �s ⊕ �2,

Q(z) = Q1 ⊕ Qs ⊕ Q2.

To describe an extension of the initial symmetric oper-
ator, it is more convenient to deal with the operator
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Figure 1. Transmission coefficients |t±| via energy z and parameter of spin–orbit interaction α. Values of other parameters
are: β = μ = γ = 0.5 (dimensionless units) (a) for T− and (b) for T+.

resolvent and to use the well-known Krein’s resolvent
formula:

R(z) = R0(z) − �(z)(Q(z) + A)−1�∗(z). (1)

Here a Hermitian matrix A parameterises the extension.
We choose this matrix in the following form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ 0 γ 0 0 0

0 μ 0 γ 0 0

γ 0 0 0 γ 0
0 γ 0 0 0 γ

0 0 γ 0 μ 0

0 0 0 γ 0 μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where parameter μ is related to the properties of the
channels. In its turn, non-zero γ corresponds to the exis-
tence of interaction between the one-dimensional leads
and the quantum dots (i.e. a three-dimensional space in
our model). We choose the simplest variant of the matrix
ensuring the interaction. The value of γ is related to the
probability of transmission from the lead to the dot.

3. Results and discussion

Let us find the transmission coefficient for an electron
travelling from the first semi-infinite lead to another one.
The incoming wave has the following form:

ϕ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−ıkx

e−ıkx

0

0

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The solution of the scattering problem is obtained from
formula (1):

ψ = ϕ − �(z)(Q(z) + A)−1�∗(z)(H0 − z)ϕ. (2)

Consequent calculations give us

�∗(z)(H0 − z)ϕ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

0
0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(Q(z) + A)−1�∗(z)(H0 − z)ϕ

= det(Q + A)−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B11 + B12

B21 + B22

B31 + B32

B41 + B42

B51 + B52

B61 + B62

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here Bi j is the corresponding minor of the matrix Q+A.
The scattered wave in (2) has the form

�(Q + A)−1�∗(z)(H0 − z)ϕ

= det(Q + A)−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ı/k)(B11 + B12)eıkx

(ı/k)(B21 + B22)eıkx

(B31 + B32)G+(x; z)
(B41 + B42)G−(x; z)
(ı/k)(B51 + B52)eıkx

(ı/k)(B61 + B62)eıkx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

The transmission coefficients are as follows:

t+ = ı(B51 + B52)

k det(Q + A)
, t− = ı(B61 + B62)

k det(Q + A)
.
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Figure 2. Transmission coefficients |t±| via energy z for the spin–orbit interaction α = 0.9. Values of other parameters are:
β = μ = γ = 0.5 (dimensionless units) (a) for T− and (b) for T+.

Figure 3. Transmission coefficients |t±| via energy z for the spin–orbit interaction α = 0.3. Values of other parameters are:
β = μ = γ = 0.5 (dimensionless units) (a) for T− and (b) for T+.

Here ± corresponds to the different directions of
the spin. The transmission probabilities are given by
P± = |t±|2:

P+ = |B51 + B52|2
z|det(Q + A)|2 , P− = |B61 + B62|2

z|det(Q + A)|2 .

Figure 1 shows the dependence of the transmission coef-
ficients T± on two variables: energy z and spin–orbit
interaction α. We choose dimensionless units. One can
see the difference in the behaviour of the coefficients
for different directions of the spin. To show this differ-
ence in more details and to stress the influence of the
spin–orbit interaction, we arrange two cross-sections of
figure 1 in figures 2 and 3.
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