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Abstract. The ratio between the confinement lengths in the xy-plane and the z direction plays an important role in
determining the properties of anisotropic quantum dot. Within a variational approach of Pekar type, we investigated
theoretically the effects of electric field and temperature on the ground-state binding energies of hydrogenic impurity
polarons in KBr anisotropic quantum dot. The obtained results illustrate that the binding energies increase with the
electric field strength and temperature but decrease with the position of the impurity when considering different
confinement lengths in the xy-plane and the z direction and present the properties of the anisotropic quantum dot.
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1. Introduction

With the development of the technology of material
growth in recent years, local electronic problems related
to the structure of quantum dots (QDs), superlattices,
heterojunctions, etc. have drawn much attention. More
and more theoretical and experimental investigations
focus on the local electronic systems in the external field.
In addition, the influence of phonons on the local elec-
trons has attracted increasing attention [1,2]. Kandemir
and Cetin [3] have studied the ground- and first-excited
state binding energies (BEs) of hydrogenic impurity
magnetopolaron in a three-dimensional anisotropic QD
using the variational method. Vartanian et al [4] have
investigated the influence of electric field on the ground-
state energy of hydrogenic impurity bound polaron in a
cylindrical QD. The effect of electric field on the hydro-
genic impurity bound polaron in a quantum well has
been discussed by Chen et al [5] and his collaborators
[6]. Considering the effects of impurities, Karabulut and
Baskoutas [7] have calculated the electronic energy lev-
els in a spherical QD subjected to an external electric
field. Xiao et al investigated the influence of hydro-
genic impurity and temperature on the coherence time
of parabolic QD qubit [8]. Recently, Fotue et al [9] have
studied the effects of temperature and electric field on
the binding polaron energy level in a triangular QD.
Wang et al [10] have calculated the influence of elec-
tric and magnetic fields on the ground-state energy of

polaron confined in a cylindrical QD. However, to our
knowledge, the influence of ambient temperature and
electric field on the properties of polaron in anisotropic
QDs is still an open question. It is well known that
the magnitude of longitudinal and lateral confinement
strength controls the shape of the anisotropic QDs. In
the present work, we study the properties of ground-state
energies of polarons in anisotropic QDs under vari-
ous physical conditions, such as applied electric field,
temperature, hydrogenic impurities etc. This paper is
organised as follows. In §2, we derive expressions of
the ground-state BE of hydrogenic impurity in terms of
certain variation parameters using a variational theory
of Pekar type. In §3, the numerical results of the ground-
state BE in anisotropic QDs vs. the applied electric field,
temperature and impurity position are presented and dis-
cussed. Finally, we give a brief conclusion in §4.

2. Theoretical model

An electron bounded to a hydrogenic impurity is
considered to interact with the bulk longitudinal–optical
(LO) phonons and is confined by a three-dimensional
anisotropic harmonic potential. A uniform external
electric field �F is applied along the z direction. The
Hamiltonian of the system is given by the following
equation:
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H = He + Hph + He−ph. (1)

The first term He is the electronic Hamiltonian:

He = − h̄2

2m∗ ∇2 + 1

2
m∗ω2

ρρ2 + 1

2
m∗ω2

z z
2

− e2

ε0

√
ρ2 + (z − zi )2

− eFz, (2)

where ωρ and ωz are the frequencies of the confining
parabolic potential in the xy-plane and the z direction,
respectively. zi is the impurity position along the z-axis.

The second term in eq. (1) represents the LO phonon
Hamiltonian:

Hph =
∑

q

h̄ωLOb
+
q bq, (3)

where b+
q (bq) denotes the creation (annihilation)

operator of the bulk LO phonon with wave vector q.
The third term in eq. (1) is the electron–phonon (E–P)
interaction Hamiltonian, that is

He−ph =
∑

q

(
Vqe(iqρ ·ρ+iqz z)bq + h.c.

)
(4)

with

Vq = i(h̄ωLO/q)
(
h̄/2m∗ωLO

)1/4
(4πα/V )1/2 . (5)

The total wave function is given by

|� 〉 = φ(ρ, z)U |0 〉ph, (6)

where φ(ρ, z) represents the electronic wave function
and |0 〉ph is the phonon vacuum state. The transforma-
tion U is written as

U = exp

⎡

⎣
∑

q

(
fqb

+
q − f ∗

q bq
)
⎤

⎦, (7)

where fq( f ∗
q ) is the variational function.

The ground-state electronic trial wave function is cho-
sen as

φ(ρ, z) = (λ/π)1/2 (μ/π)1/4 e−λρ2/2e−μ(z−zi )2/2, (8)

where λ and μ are the variational parameters.
After the trial wave function is selected, we can

calculate the energy expectation of the E–P system. By
carrying out the theoretical calculations, we found that
the energy expectation is parameterised. Thus, the size

relationship between λ and μ will affect the expression
of the energy expectation. Therefore, when μ ≥ λ,
one can obtain the energy expectation in the following
form:
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Under the condition μ < λ, we get

E(λ, μ) = h̄2
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In eqs (9) and (10), r0 = [h̄/2m∗ωLO]1/2 is the
polaron radius. For the convenience of numerical anal-
ysis, we define the effective confinement length (in
units of the polaron radius) of the anisotropic QD lρ =
[h̄/m∗ωρ]1/2 and lz = [h̄/m∗ωz]1/2. According to the
calculation, we find that the variational parameters λ and
μ are proportional to ωρ and ωz , respectively. There-
fore, a discussion on the relationship between λ and μ

in eqs (9) and (10) is equivalent to the discussion on the
variation of ωρ and ωz which is significant to the inves-
tigation of the orientated characteristics in anisotropic
QD.

The ground-state energy of the E–P system can be
obtained by minimising E(λ, μ) with respect to λ, μ

and zi . Another important quantity is the BE of bound
polaron. Following the definition in [11], the BE of the
bound polaron is

Eb = h̄ωρ + 1

2
h̄ωz − e2F2

2m∗ω2
z

− E0. (11)

At a finite temperature, according to the quantum
statistics, we have

N̄ = [
e(h̄ωLO/KBT ) − 1

]−1
. (12)
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Figure 1. BE (in meV) of ground state Eb in KBr anisotropic
QD as a function of the electric field F with two different
Zi and lρ = 30 Å. The solid and dashed curves represent
Zi = 10 Å and 20 Å, respectively.

3. Numerical results and discussion

We have carried out numerical calculation for a KBr
semiconductor QD with a relatively high electron–
phonon coupling (α = 3.05) by using the following
experimental parameters for KBr [12]: m∗ = 0.369m0,
where m0 is the free electron mass, ε0 = 4.52, ε∞ =
2.39 and h̄ωLO = 20.97 meV.

The numerical results of the BE in KBr anisotropic
QD for lρ = 30 Å vs. the electric field with different
impurity positions (zi = 10 Å and 20 Å) are shown in
figure 1. As can be seen from this figure, the BE increases
as the electric field strength increases for fixed confine-
ment lengths in the xy-plane lρ and impurity position zi .
It can be understood physically that the effect of a uni-
form external electric field is equivalent to changing the
wave function φ(ρ, z) to φ(ρ, z − zi ). zi = eF/m∗ω2

z
is the position of the new equilibrium point of the har-
monic oscillator. Thus, for fixed lρ and zi , the increase
in the electric field strength F leads to an increase in ωz
and a decrease in lz simultaneously. Due to the confine-
ment of the size of QD, an increasing BE is shown in
figure 1.

In figure 2 the BE of the impurity in an anisotropic
QD for two confinement lengths in the xy-plane (lρ = 30
Å, lρ = 60 Å) is shown as a function of the impurity
position along the z-axis when the electric field with
strength F = 100 kV/cm is applied. From this fig-
ure, we can find that the BE becomes extremely large
when the impurity is at the centre of the QD. Under the
influence of the electric field, the impurity with posi-
tive electricity deviates from the centre of the QD and
therefore the BE reduces significantly at zi = 0−50 Å,
then falls gradually with an increase in zi . This can be
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Figure 2. BE (in meV) of ground state Eb in KBr anisotropic
QD as a function of the impurity position along the z-axis Zi
with two different lρ and F = 100 kV/cm. The solid and
dashed curves represent lρ = 60 Å and 30 Å, respectively.
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Figure 3. The frequencies of the confining parabolic poten-
tial in the z-direction ωz in KBr anisotropic QD as a function
of temperature T with two different lρ . The solid and dashed
curves represent lρ = 40 Å and 30 Å, respectively.

understood by the following physical philosophy. For
a fixed electric field with strength F and confinement
lengths in the xy-plane lρ , the increase in zi brings
a decrease of ωz , giving rise to an increase of lzwith
respect to the expression zi = eF/m∗ω2

z . Due to the
effect of confinement of quantum size, the BE decreases
as zi increases. At the same time, this figure shows
that the BE becomes larger as lρ decreases. This phys-
ical phenomenon is consistent with the result obtained
by Mukhopadhyay and Chatterjee [13]. However, they
neglected the z-direction restriction. Therefore, the
influence of impurity location should be considered in
the experimental work.

In figure 3, the frequencies of the confining parabolic
potential in the z-direction ωz obtained numerically are
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Figure 4. BE (in meV) of ground state Eb in KBr anisotropic
QD as a function of temperature T .

plotted with respect to the temperature T for a fixed lρ
(lρ = 30 Å and 40 Å). On the one hand, one can easily
observe that the frequency ωz is almost zero at T =200–
300 K, then increases with increasing T . This variation
pointed towards a relatively high electron–phonon cou-
pling in KBr QD and few phonons are excited at low
temperature. However, the effect of temperature is pre-
dominant beyond a certain temperature level. On the
other hand, the frequency ωz increases very rapidly
with increasing T at high temperature. Furthermore, at
the same high temperature, the larger the confinement
lengths in the xy-plane lρ , the higher the value of ωz .

Figure 4 illustrates the BE in KBr anisotropic QD
against temperature T . From figure 4 we can see that
the BE is an increasing function of T for T > 50 K.
As temperature rises, the speed and amount of electrons
and phonons will increase, which results in an increase
in BE.

4. Conclusion

We systematically studied the influence of electric
field, temperature and impurity position on the BE of

hydrogenic impurity polarons in anisotropic QD using
the Pekar-type variational method. We derive the expres-
sion of the ground-state BE in two cases, i.e. μ ≥ λ

and μ < λ. We have carried out numerical calculation
for a KBr semiconductor QD. It has been demon-
strated that the BE can be significantly reduced with
impurities deviating from the centre of the QD. More-
over, the BE increases as the electric field strength
increases for a QD with fixed size. The results also
show that the BE is an increasing function of T for
T >50 K. Theoretical calculations suggest that the posi-
tion of impurity and the electric field strength should
be considered in further theoretical or experimental
work.
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