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INTRODUCTION

The genus Edwardsiella belongs to the Enterobac-
teriaceae family based on biochemical characteristics
(Brenner 1984), the presence of ‘Kunin antigen’ (Mä -
kelä & Mayer 1976) and DNA−DNA hybridization
with other genera belonging to the family (Brenner
1978). In the early 1960s, Edwardsiella was independ-
ently reported by several authors as a new group of
Gram-negative rods, producing hydrogen sulfide, in-
dole-positive and mannitol-negative. Saka zaki &
 Murata (1962) described the ‘Asakusa Group’ of 256
enterobacterial isolates obtained from snakes with
similar biochemical characteristics, while King &
Adler (1964) isolated a group of bacteria analogous to
the ‘Asakusa group’ from a patient with gastroenteritis

assigning the name ‘Bartholomew group’. Later,
 Ewing et al. (1965) described the species E. tarda from
a new biogroup designated as ‘biotype 1483-59’, indi-
cating the similarity of this species with the ‘Asakusa’
and ‘Bartholomew’ groups. At the same time, Hoshina
(1962) described the species Para colobactrum anguil-
limortiferum, the etiological agent of ‘red disease’ in
eels. Sakazaki & Tamura (1975) suggested the name
Edwardsiella anguillimortifera to include isolates pre-
viously designated as E. tarda by Ewing et al. (1965)
and as P. anguillimortiferum by Hoshina (1962). How-
ever, Farmer et al. (1976) detected differences in some
phenotypic tests between both descriptions, validating
E. tarda as a species.

Until 1980, the genus Edwardsiella contained only
a single species, Edwardsiella tarda. Edwardsiella
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hoshinae (Grimont et al. 1980) isolated from reptiles
and birds, and Edwardsiella ictaluri (Hawke et al.
1981) isolated from channel and white catfish were
then described. Recently, the novel species Edward-
siella piscicida (Abayneh et al. 2013) and Edward-
siella anguillarum (Shao et al. 2015), both comprising
isolates recovered from diseased fish and previously
classified as E. tarda, were identified. Reclassifica-
tion of these isolates was based on contemporary
genetic methods.

After its first description, identifications of E. pisci-
cida were published exponentially. Moreover, ge ne -
tic surveys of E. tarda isolates from historical reports
concluded that many isolates previously classified as
E. tarda actually belong to the species E. piscicida
(Reichley et al. 2017, Buján et al. 2018b). This recent
reclassification and review of archival data suggests
E. piscicida is more problematic in global finfish
aquaculture than E. tarda. The aim of this article is to
compile the current knowledge of edwardsiellosis
caused by E. piscicida, focusing on phenotypic, sero-
logical, and genetic characters, as well as putative
virulence mechanisms of the bacterium. In addition,
the geographical distribution, host species affected,
diagnostic methods, and potential control or man-
agement strategies to prevent the disease are
addressed.

GEOGRAPHICAL DISTRIBUTION AND 
HOST SPECIES

With the recognition of E. piscicida as a discrete
taxon (Abayneh et al. 2013, Reichley et al. 2017,
Buján et al. 2018b), it has become evident that E. pis-
cicida has a global geographic distribution. The first
report of mortality in cultured fish caused by E. pisci-
cida (identified as E. tarda at the time), occurred in
Japan in 1979 (Castro et al. 2011a). In recent years,
epizootics have been reported in Northern and
Southern Europe (the Netherlands, Norway, Greece,
France, Spain and Portugal; Castro et al. 2006) as
well as China, Japan and the USA (Matsuyama et al.
2005, Griffin et al. 2014, Li et al. 2017), causing enor-
mous economic losses in the fish industry. While
many of these descriptions occurred prior to the re -
cognition of E. piscicida, recent genetic studies have
tied these reports to current Edwardsiella systemat-
ics (Abayneh et al. 2013, Shao et al. 2015, Reichley et
al. 2017, Buján et al. 2018a). At present, E. piscicida
has been isolated from a wide range of fish species
(Table 1). Although E. tarda is involved in human
clinical infections, until now E. piscicida has not been

reported as a zoonotic agent. However, Castro et al.
(2011a) demonstrated that E. piscicida may be viru-
lent for some homoeothermic animals based on path-
ogenicity assays carried out in mice.

ISOLATION AND IDENTIFICATION

E. piscicida grows on a variety of general growth
media including, but not limited to, trypticase soy
agar, brain heart infusion agar, Mueller-Hinton agar,
Luria broth, and marine agar. Differential media for
the Enterobacteriaceae such as MacConkey agar,
xylose-lysine-desoxycholate agar and Salmonella-
Shigella agar, as well as Edwardsiella tarda agar
(Lindquist 1991) which was designed for the specific
isolation of E. tarda, are unable to differentiate E. pis-
cicida from other members of the genus Edwardsiella
(Castro et al. 2011b). Biochemical test results, espe-
cially for carbon utilisation, are variable. Thus,
although some phenotypic tests occasionally provide
differential results among E. piscicida and other
members of the genus (Table 2), phenotypic analysis
by such methods are not recommended for reliable
discrimination between E. piscicida and E. tarda
(Griffin et al. 2013). Similarly, the API 20E and the
BBL crystal enteric/nonfermenter identification sys-
tem codes for E. piscicida are similar to those for bona
fide E. tarda (Reichley et al. 2017).

Fatty acid methyl ether (FAME) analysis was per-
formed in order to determine if the Sherlock Micro-
bial Identification System (MIDI) could be employed
for the identification of E. piscicida (Castro 2011,
Reichley et al. 2017). The MIDI system misidentified
E. piscicida as E. tarda based on species profiles pop-
ulating the library’s database. However, a dendro-
gram constructed with the MIDI Sherlock software
(Fig. 1a) which determines relatedness between spe-
cies through Euclidean distance, clustered E. pisci-
cida separately from E. tarda and affords discrimina-
tion between species (Castro 2011). Therefore, it is
suggested the fatty acid profiles of this species be
deposited within the Sherlock Microbial Identifica-
tion System database to validate its application in the
identification of E. piscicida. In addition, the 2D plot
of principal components (Fig. 1b) revealed 4 groups,
3 of them encompassing European isolates (group I,
II and III) while Asian and American strains formed a
different group (group IV).

Matrix-assisted laser desorption/ionization time of
flight mass spectrometry (MALDI-TOF MS) has also
been used for the identification of a collection of
E. piscicida strains obtained from different host and
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origins. Although the existing database mis-
classified the strains of E. piscicida as E. tarda,
specific mass spectra fingerprints were ob -
served for each species due to inherent differ-
ences in the cellular proteins expressed (Barja
et al. 2008, Fogelson et al. 2016, Reichley et al.
2017). The incorrect assignment of these
strains as E. tarda is attributed to the fact that
the reference protein mass spectra database
was compiled prior to the recognition of
E. piscicida as a species, resulting in outdated
identification of the strains included in the
database. In fact, the protein profiles included
in the database of the strains ACC35.1,
ACC36.1 and HL23.1, which have since been
identified as E. piscicida, are categorized as
E. tarda in line with their original designa-
tions (Buján et al. 2018b).

Lastly, polymerase chain reaction (PCR)
protocols were developed for a rapid and spe-
cific identification of Edwardsiella species
from pure cultures and fish tissues. Different
pairs of primers designed to target the hae -
molysin gene (tardaF/tardaR; Chen & Lai
1998), the type 1 fimbrial gene cluster (etfA
and etf D; Sakai et al. 2007) or the gyrB gene
(gyrBF1/gyrBR1; Lan et al. 2008) can differ-
entiate E. tarda and E. piscicida from other
members of the genus. Griffin et al. (2014) de -
veloped E. piscicida-specific PCR primers
based on the work of Sakai et al. (2009), and
Reichley et al. (2015b) used these species-
specific primers in the development of a real-
time PCR (qPCR) assay to provide a rapid,
quantitative confirmatory test for this micro-
organism. This qPCR assay has since been
used in a multiplex qPCR, which de mon stra -
ted the ability to discriminate among E. pisci-
cida, E. ictaluri, E. anguillarum, and E. tarda
(Reichley et al. 2017).

PHENOTYPIC AND SEROLOGICAL 
CHARACTERIZATION

Edwardsiella piscicida is a Gram-negative,
oxidase-negative, facultative anaerobe, short
and rod-shaped microorganism usually mo -
tile. The bacterium is positive for lysine and
ornithine decarboxylase, produces H2S and
indole from tryptophan, and ferments glu-
cose, mannose and maltose. The phenotypic
and physiological properties of E. piscicida
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assayed during the present study and
recovered from other works are listed
in Table 3.

The fatty acid profile of this patho-
gen is composed of 7 principal fatty
acids, detected at a level >1%, includ-
ing saturated, unsaturated and cyclo-
propane fatty acids. Among them, the
most abundant are the 14:0 (tetrade-
canoic acid or myristate), 16:0 (hexa-
decanoic acid or palmitate), 17:0Δ
(ana logous of margaric acid), 19:0Δω8c
(analog of lactobacillic acid) and the
summed features SF2 (14:0 3-OH, 16:1
iso I), SF3 (16:1ω7c/16:1ω6c, 16:1ω6c/
16:1ω7c) and SF8 (18:1ω7c, 18:1ω6c)
(Castro 2011, Reichley et al. 2017).

Analyses of the serological relation-
ship among E. piscicida strains, (previ-
ously designated as E. tarda), revealed
the existence of at least 2 different
serotypes, with all serotype 1 isolates
stemming from European hosts (Castro
et al. 2006, 2012).

GENOTYPING, PHYLOGENY AND 
CLASSIFICATION

While E. piscicida and E. tarda are
difficult to differentiate by phenotype,
there are demonstrable genetic differ-
ences between the 2 taxa. Applying
randomly amplified polymorphic DNA
(RAPD), Castro et al. (2006, 2011c)
demonstrated that isolates from turbot
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Characteristic E. tarda E. hoshinae E. ictaluri E. piscicida E. anguillarum

H2S production + +a − + +
Indole production + − − + +
Voges-Proskauer − − − − +

Carbon source
D-mannitol − + − − +
L-arabinose − − − − +
D-mannose + + + + −

β-methyl-D-glucoside + − − − −
L-fucose + + + + −
L-proline + − − − −

aPositive on Kligler but negative on TSI

Table 2. Differential phenotypic characteristics among Edwardsiella species. (+) 90−100% of strains positive; (−) 0−10% of 
strains positive

Fig. 1. (a) Dendrogram of Euclidean distance and (b) 2D plot of principal com-
ponents obtained based on the results of the chromatographic fatty acid pro-
file of different Edwardsiella piscicida isolates. PC1: first principal component; 

PC2: second principal component
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and sole, previously identified as E. tarda but now re-
classified as E. piscicida, comprised a unique group
with a different fingerprint from those obtained for
bona fide E. tarda strains. Moreover, 2 different E. pis-
cicida clonal lineages coexisting in a single farm but
from different outbreaks where identified by RAPD.
Repetitive sequence mediated PCR has also been
shown to differentiate between different E. piscicida
strains (Castro et al. 2011c, Griffin et al. 2013, Camus
et al. 2016, Shafiei et al. 2016, Reichley et al. 2017).
REP-PCR was used to detect different clonal lineages
in a single farm even within the same outbreak
(Castro et al. 2011c). In contrast, enterobacterial
repetitive intergenic consensus PCR (ERIC-PCR) and
BOX-PCR demonstrated a high degree of ge netic ho-
mogeneity among E. piscicida isolates tested, al-
though both techniques generated distinct banding
patterns for each species of the genus (Griffin et al.
2014, Reichley et al. 2017). Due to the relative similar-
ity among isolates from different hosts and geographic
origins, the lack of resolution provided by ERIC-PCR
renders it unsuitable for epidemiological analysis of
edwardsiellosis (Shafiei et al. 2016). Genotyping of E.

piscicida using amplified fragment
length polymorphism (AFLP) also sep-
arates this species into an independent
cluster from other members of the Ed-
wardsiella genus, adding to the tech-
niques that may be useful for classifi-
cation (Buján et al. 2018b). Plasmid
profiling of different E. piscicida iso-
lates carried out by Reichley et al.
(2017) found variability in size, com-
position and arrangement among the
plasmids studied. However, it is note-
worthy that the plasmids of turbot iso-
lates used in this study were identical,
implying an epidemiological link or
host-adaptive factors associated with
the plasmids (Reichley et al. 2017).

The recognition of E. piscicida and
E. anguillarum as species required a
revision of Edwardsiella systematics.
The tool most used for classification
and identification is the sequencing
of 16S rRNA. For Edwardsiella, phy-
logenetic analysis based on the 16S
rRNA gene has demonstrated low
resolving power (Fig. 2), which, cou-
pled with arbitrary similarity cutoffs
and misidentification within public
nucleotide databases, has led to erro-
neous identifications due to the high

degree of 16S rRNA variability within the genus
(Shao et al. 2015, Reichley et al. 2017, Buján et al.
2018b). In comparison, the genes sodB and gyrB, and
dnaJ employed by Reichley et al. (2017) and Buján et
al. (2018b) respectively have higher discriminatory
power.

Multilocus sequence analysis (MLSA) has grou ped
E. piscicida strains in a robust clade separate from
the other members of the genus (Fig. 3) (Abayneh et
al. 2012, Griffin et al. 2013, Buján et al. 2018b), sug-
gesting that MLSA is an adequate tool to determine
inter- and intra-specific variability within the Ed -
wardsiella genus. Furthermore, similar methods indi-
cate genetic discontinuity within E. piscicida, re flec -
ted by a high number of unique sequence types
(Yang et al. 2013). It is interesting to note that all
E. piscicida isolates from Asian countries are com-
piled in 2 clonal complexes, while all isolates from
European turbot and sole comprise a single separate
sequence type (Buján et al. 2018a). This may reflect
genetic changes associated with adaption to a new
environment through geographical isolation and/or
infection of different hosts.
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Characteristic Carbon source

Motility v D-mannitol −
Oxidase − L-arabinose −
Catalase + L-rhamnose −
Oxidative/fermentative F Maltose v
Arginine descarboxilase − D-mannose +
Lysine descarboxilase + D-galactose +
Ornithine descarboxilase + β-methyl-D-glucoside −
Indole production + Tween 80 v
Voges-Proskauer − L-fucose v
Methyl red + Acetic acid −
Simmons’ citrate v Citric acid v
Nitrate reduction + Formic acid −
Urease − D-glucosaminic acid v
Aesculin − α-ketobutyric acid −
Tween 80 − α-ketovaleric acid −
Amylase − Quinic acid v
H2S production + Bromosuccinic acid v
D-glucose gas production + Glucuronamide +

L-asparagine +
Growth at L-aspartic acid v
4°C − L-glutamic acid v
37°C + L-proline −
42°C v L-serine +
0% NaCl + Uridine v
3% NaCl + Glycerol v
6% NaCl − D,L-α-glycerol phosphate v

Table 3. Phenotypic characteristics of Edwardsiella piscicida (Castro et al.
2006, Abayneh et al. 2013, Griffin et al. 2013, Shao et al. 2014, this work). 
(F) fermentative; (+) 90−100% of strains positive; (−) 0−10% of strains positive; 

(v) 11−89% of strains positive
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Multilocus variable-number tandem repeat analy-
sis (MLVA) has also been employed successfully with
sufficient resolving power for epidemiological and
phylogenetic analysis of E. piscicida isolates patho-
genic to fish (Abayneh et al. 2014).

Advances in complete genome sequencing re -
sulted in the availability of several E. piscicida
(Oguro et al. 2014, Reichley et al. 2016, Buján et
al. 2018b) and E. tarda genomes (Reichley et al.
2015a, Buján et al. 2018a). The comparative stu -
dies of these and other whole genomes of the ge -
nus Edwardsiella shows that complete genome
sequencing is the most reliable taxonomic tool
(Buján et al. 2018b).

PATHOGENESIS AND VIRULENCE 
MECHANISMS

Experimental infection studies have demonstrated
that E. piscicida is highly pathogenic, not only for the
host from which it was isolated but also for other fish
species such as zebrafish (Castro et al. 2011a,
Abayneh et al. 2012). Therefore, E. piscicida does not
seem to exhibit host specificity, and edwardsiellosis
may be a risk for many marine fish species.

The clinical signs of E. piscicida infection are com-
mon to all species of fish suffering from the disease.
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Fig. 2. Phylogenetic tree based on partial 16S rRNA gene
sequences constructed by the ML algorithm (TN93+G). Ser-
ratia rubidaea CIP 103234T was used as outgroup. Bootstrap
(≥60%) from 1000 replications appears next to correspon-
ding branch. Scale bar: 0.005 substitutions per nucleotide 

position. Based on Buján et al. (2018b)
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Externally, affected fish show discolored areas of the
skin with loss of pigmentation, external haemor-
rhages and a general septicemia in the ventral mus-
cle (Shetty et al. 2014, Griffin et al. 2017). Moreover,
exophthalmia, abundant ascitic fluid and general
petechiae in the internal organs were also observed
in turbot Scophthalmus maximus (Castro et al. 2006),
and abscesses and nodules in the visceral organs in
sharp snout seabream Diplodus puntazzo were also

de scribed (Katharios et al. 2015). Histological exa -
minations performed in largemouth bass revealed
multifocal necrosis scattered throughout the heart,
liver, anterior kidney, posterior kidney and spleen
(Fogelson et al. 2016).

Several potential virulence factors implicated in
the infection process of E. piscicida have been pro-
posed. Extracellular products include chondroiti-
nase, related to cartilage degradation (Waltman et al.
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Fig. 3. Phylogenetic tree based on the concatenation of the nucleotide sequences of 6 housekeeping genes (adk, atpD, dnaJ,
glnA, hsp60, tuf) by the NJ method (Kimura 2-parameter model). Serratia rubidaea CIP 103234T was used as outgroup.
 Bootstrap (≥60%) from 1000 replications appears next to corresponding branch. Scale bar: 0.02 substitutions per nucleotide 

position. Based on Buján et al. (2018b)



Buján et al.: Fish pathogen Edwardsiella piscicida

1986, Shotts & Cooper 1992), with homologues
recently reported in European turbot isolates of
E. piscicida (Castro et al. 2016) and in an Asian turbot
strain of this species (Yang et al. 2012). Different
hemolysins and their precursors (EthA, EthB and
SlyA) have also been detected (Janda et al. 1991,
Kumar et al. 2010, Wang et al. 2010, Xiao et al. 2012).

Contact and adherence to the host often comprise
early stages of infection. The invasin Inv1 has been
identified in E. piscicida (Li et al. 2012), and E. pisci-
cida presents different adhesins on the cell surface
including flagellins (FliC, FlgD) (Park et al. 2011, He
et al. 2012, Liu et al. 2012, Buján et al. 2015a, X. Liu
et al. 2017b), fimbrial proteins (FimA) (Srinivasa Rao
et al. 2003, Kim et al. 2014) and other adhesins
(AIDA) (Sakai et al. 2009). FliC, along with sigma fac-
tor RpoS may be involved in the development of bio-
films (Xiao et al. 2009, He et al. 2012), although
Shafiei et al. (2016) reported the inability of highly
virulent E. piscicida to form thick biofilms under the
conditions tested. Moreover, comparative proteomics
of strains with a different degree of virulence impli-
cate flagellin (FliC) in virulence. Indeed, recent
unpublished work in our laboratory indicate that fla-
gella-impaired mutants (via flgG) are attenuated in
turbot and increase biofilm formation (N. Castro un -
publ. data).

To survive and subsequently multiply, the micro -
organisms have a series of mechanisms to resist their
host’s defenses. Under stress conditions, such as
serum resistance or replication in macrophages,
E. piscicida expresses proteins of the catalase family
(KatB and KatG) (Han et al. 2006, Xiao et al. 2012),
heat shock proteins (HtpG and Hsp60) (Dang et al.
2011), superoxide dismutase (SodB and SodC) (Han
et al. 2006, Gao et al. 2016) and 2-component systems
(EsrA-EsrB) (Liu Y et al. 2017, Yin et al. 2017). E. pis-
cicida produces the hydroxamate-type siderophore
vibrioferrin and can utilize heme groups (hemin or
haemoglobin) as an iron source by direct binding
(Castro et al. 2016). Under iron limitation this iron
uptake system is upregulated along with hemolysin,
hydrolases and stress protein Hsp90. Proteins in -
volved in transport, carbohydrate metabolism and
amino acid synthesis were also up-regulated (Buján
et al. 2015b).

Secretion systems are used by a multitude of
micro organisms to release different virulence factors
(quorum sensing regulators, exotoxins and exo -
enzymes) within the host (Tan et al. 2005, Leung et
al. 2012). In E. piscicida, the proteins EseB, EseC,
EseD and EseH belonging to the type III secretion
system, are related to the translocation of effector

proteins in infected host cells (Srinivasa Rao et al.
2004, Hou et al. 2017). Moreover, proteins of the type
VI secretion system, EvpA, EvpB and EvpC (Edward-
siella virulence protein) are associated with viru-
lence of E. piscicida (Tan et al. 2005, Chakraborty et
al. 2011) although the details of their functions are
still un known (Srinivasa Rao et al. 2004). With regard
to quorum sensing systems, Romero et al. (2014)
reported in vitro detection of the N-acyl homoserine
lactones (AHLs) C6-HSL and OC6-HSL and Castro et
al. (2016) showed the production of these molecules
in vivo during fish infections. Moreover, they demon-
strated a strong increase in AHL production when
the fish were infected with low doses of bacteria con-
sistent with AHL production in E. piscicida being
under density-dependent control in the fish. Castro
et al. (2016) also described the presence of genes
involved in AHL production (AI1), the AI2 system
(luxS) and the QscBC system.

TREATMENT AND PREVENTION

In vitro antimicrobial susceptibility testing of E.
pis cicida indicates that, to date, strains isolated from
different hosts and geographical regions are sus -
ceptible to most commonly used antibiotics for the
treatment of edwardsiellosis, including enrofloxacin,
oxytetracycline, trimethoprim/sulfamethoxazole or
flor fenicol among others (Castro et al. 2006, Shafiei et
al. 2016, Reichley et al. 2017, Kim et al. 2018).

Prophylactic vaccines are the most cost-effective
tools for preventing bacterial infections. Kwon et al.
(2006), Castro et al. (2008) and Sun et al. (2011) eval-
uated the effectiveness of different formalin-killed
formulations in turbot, tilapia and flounder respec-
tively. These were found to be generally effective,
with the adjuvanted vaccine developed by Castro et
al. (2008) providing highest protection. Several live
attenuated vaccines were tested in turbot and
zebrafish with high relative percent survival (RPS)
values (Xiao et al. 2011, 2013, Wang et al. 2013, Yan
et al. 2013, Yang et al. 2015) but they are not appro-
priate for commercial applications due to biosafety
and environmental risks. In E. piscicida different
recombinant proteins were evaluated as potential
protective antigens. F. Liu et al. (2016b, 2017) devel-
oped various vaccines based on the membrane pro-
teins rOmpI, rOmpX and OmpC obtaining high RPS
values (over 80%) in flounder. Flagellar proteins
were tested by Zhang et al. (2012) in zebrafish and by
X. Liu et al. (2017b) in turbot obtaining the best RPS
values with the protein FlgD (76% and 70% res -
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pectively). The effectiveness of the FlgD protein as
vaccine was supported by X. Liu et al. (2017a), in
zebrafish and turbot, using reverse vaccinology
approach. On the other hand, the GroEL DNA vac-
cine tested by Liu et al. (2016a) and the chimeric
DNA vaccine encoding the flagellar genes Eta6 fused
in-frame to FliC developed by Jiao et al. (2009), were
protective in flounder with RPS values of 60% and
72%, respectively. However, better results (RPS over
87%) were obtained in flounder by a bicistronic vac-
cination using the flgD gene, adjuvanted with C5a
peptidase protein driven by a modified cyto megalo -
virus promoter/enhancer to increase gene expression
(Liu et al. 2016b). Polyvalent vaccines obtained by
shuffling 6 ompA genes of 4 bacteria, V. algino -
lyticus, V. parahaemolyticus, E. piscicida and E. coli,
were effective in zebrafish assays with values of RPS
over 80% (Cheng et al. 2018).

CONCLUDING REMARKS

In this work, we review the current literature on
fish edwardsiellosis caused by E. piscicida. Much
recent effort has focused on correct identification,
classification and phylogenetic positioning of this fish
pathogen. As we have seen before, the difficulty in
validating and reproducing phenotypic tests to iden-
tify species of the Edwardsiella genus correctly has
necessitated use of specific PCR (Griffin et al. 2014)
or sequencing of genes such as dnaJ (Buján et al.
2018b) or gyrB (Griffin et al. 2014) for accurate differ-
ential identification. Virulence mechanisms seem to
be largely aligned with other enteric fish pathogens.
However, further information on the epidemiology,
strain variation and host–pathogen interactions of
this species are required to prevent economic losses
in the aquaculture industry through biosecurity other
preventative measures. Moreover, whether E. pisci-
cida is exclusively a fish pathogen or has zoonotic
role, as in the case of E. tarda, needs to be elucidated.
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