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Abstract: The reliability of thermal energy meters is analysed using the Markov 

model which describes the operation of these meters in a large number of 

apartments and offices by a media accounting company. The data has been 

extracted from a relational database storing information on the operation, 

installation and exchange of these measures from the last 10 years. The built 

Markov model turned out to be ergodic, which allowed determining its limiting 

distribution. In addition, the probability distributions for the cumulated 

consumption were determined in the work - separately for all meters and meters' 

failures.  
  

Keywords: reliability models, Markov model, exponential distribution, Weibull 

distribution 
 

Streszczenie: Tematem publikacji jest analiza niezawodności mierników energii 

cieplnej z użyciem modelu Markowa. Omawiany model został zbudowany 

w oparciu o badanie procesu użycia tychże mierników w firmie zajmującej się 

rozliczaniem mediów. Dane zostały wyekstrahowane z relacyjnej bazy danych 

przechowującej informacje o eksploatacji, instalacji i wymianie tych mierników 

z ostatnich 10 lat. Zbudowany model Markowa okazał się być ergodyczny, co 

pozwoliło na wyznaczenie jego rozkładu granicznego. Oprócz tego w pracy 

wyznaczono rozkłady prawdopodobieństwa dla przebiegu mierników ciepła – 

osobno dla wszystkich mierników i osobno dla mierników uległych awarii.  

 

Słowa kluczowe: modele niezawodności, model Markowa, rozkład wykładniczy, 

rozkład Weibulla 
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1. Introduction 

The analysed meters estimate heat consumption both in multi-family houses as 

well as in individual apartments or offices. To calculate the amount of received 

heat, the meter must measure the volume of the flowing medium
1
 and - with two 

sensors - its temperature in the supply and return lines. The microcontroller, on 

grounds of these three values, determines the amount of heat in kilowatt-hours 

[kWh]. Due to the method of measuring the volume of the medium, we can 

distinguish two types of meters - volumetric and ultrasonic. The former calculates 

the volume based on the classical volumetric flow meter. The ultrasonic one 

(Figure 1) does not directly measure the volume, but measures the flow rate and 

knowing the cross-sectional area of the line is able to determine it [1].  

 

Fig. 1  Example of a heat meter 
 

The analysis of the reliability of heat meters is intended first to show the 

methodology of building Markov processes based on large data sets collected over 

many years. Finding a stationary or limiting distribution for such a model can also 

be used to plan inventory.  

2. Source data 

Information on the installation, operation and exchange of heat meters has been 

collected over the past 10 years in a relational database. This database also contains 

a lot of other information used for the settlement of heat and water, as well as data 

on other types of meters (water meters and heat cost allocators). The authors, 

however, decided to focus only on the heat meters discussed in the introduction. 

Usually, preparation of data from such an enormous collection is a time-consuming 

task and cannot be easily automated (this was also the case here).  

                                                 
1
 Most often it is water, although in the case when the system is also used for cooling, it can 

be water with appropriate additives to prevent freezing. 
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Not all records’ properties were standardized nor saved in the dictionary. In 

addition, the work was hindered by the usage of three different languages (German, 

French and Italian) to describe some of the parameters of the stored objects. 

Despite these obstacles, almost 367,000 historical records were identified, which 

corresponds to more than 50,000 meters including their possible failures. 

 

 

Fig. 2  Number of heat meters installed / registered per year 

The database system was introduced in 2008, hence data from 2007 and 2008 are 

cumulative. For 2017 we own only partial data. 

3. Analysis of meters 

The Weibull distribution, and in particular the exponential distribution, is the 

standard distribution used in the survival and reliability analysis [2], [3]. We will 

show that the extracted data is also subject to this distribution. 

Selected reliability characteristics 

Let the random variable      takes value 1 when the object at time t is usable 

and 0 when the object at time t is unfit. Let us denote by      the reliability 

function of the object, which determines the probability that it will work correctly 

in time [0, t]. Then             is a distributor of the distribution of 

a random variable      and             is its density. The failure rate function 

     is defined in reliability analysis as follows: 

      
    

    
                                                        (1) 

The failure rate can be treated as a measure of the relative decrease of reliability of 

the object over time [4], [5], [6]. 

2007/8 2009 2010 2011 2012 2013 2014 2015 2016 2017 
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Data analysis  

Figure 3 shows a histogram constructed using 35 bins for cumulated heat 

consumption of all 50,000 meters. This cumulated heat consumption is a feature 

that can be treated as their operating time.  

 

 

Fig. 3  Histogram – cumulated consumption for heat meters 
 

The shape of the obtained graph is similar to the exponential distribution 

           . The parameter             of density function was 

calculated with the maximum likelihood method with confidence intervals of 95%. 

Figures 4-6 show the fitting results. 

 

Fig. 4  Fitting – exponential distribution PDF 

 

Fig. 5  Fitting – cumulative density function CDF 
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Fig. 6  Fitting – survivor function 

As you can see, the empirical data fit the exponential model quite well. Several 

interesting conclusions can be drawn on this basis. The exponential model is 

mainly characterised by a constant intensity of damage, i.e.        . This means 

that failures are external random events and do not depend on the time of usage –  

they appear accidentally with a constant intensity. In addition, the reliability 

function           has the property that                . It is called 

“memorylessness” of exponential distribution and means, that “waiting time” until 

the failure occurs, does not depend on how much time has elapsed already. In other 

words, if we know that at the time x the element was fit, then from now the 

expiration time of this element has the same distribution as the new element [4], 

[6], [7], [8]. The calculated parameter             of that distribution can 

also be interpreted as the average time between failures.  

The next step was to investigate the distribution of cumulated heat consumption for 

damaged meters. The collection contained over 11700 records. The obtained 

histogram is shown in Figure 7. 

 
 

 

Fig. 7  Histogram – cumulated consumption for damaged heat meters 
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This time the shape of the histogram does not resemble the exponential 

distribution, but rather the Weibull distribution                    . Since the 

maximum likelihood method is best suited for the estimation of the parameters of 

this distribution [9], it was used again and parameters were obtained          
             . A comparison of the data and the model is shown in figures 

8-10. 

 

Fig. 8  Fitting –Weibull distribution 

 

Fig. 9  Fitting – cumulative density function CDF 

 

Fig. 10 Fitting – survivor function 
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The Weibull distribution for data related only to meter failures allows us to analyse 

in more detail the nature of these events and better determine the reliability of heat 

meters. The reliability function in this case is in the form of             and the 

intensity of damage is no longer a constant             . [10], [11]. Due to the 

fact that in our model, calculated parameter     , the probability of failure 

increases over time. This is in line with the observations that the equipment is 

wearing down. On the one hand, this is partly contradicted by the analysis carried 

out for all meters, where we found that the probability of failure is time-

independent. However, it should be noted that firstly, the data used in the first 

analysis are five times larger and include cases where the meter was replaced 

despite the failure. Secondly, in the Weibull model, the calculated k is very close to 1, 

which corresponds to a special case when the Weibull distribution coincides with 

the exponential distribution. In conclusion – it can be said that over 10 years, the 

intensity of damage of heat meters is poorly dependent on the time of use. The 

reliability function shows the “memorylessness” property, which encourages 

further analysis using the Markov processes. 

4. Markov processes  

Let      be a finite or countable set. Stochastic process       will be called 

a Markov process, if for every n ≥ 0 the following equality is true: 
 

                                                                   (2) 

 

where           . 

The set E can be understood as a set of all possible states of a certain system. Then, 

a random vector    means the state in which our system is located at the moment 

of time n. On the ground that    is a random vector, in fact we do not know 

exactly its “position” but only the probability distribution of the event, that the 

system is in one of the states. 

Equation 2 can be interpreted as a condition that the probability of transition from 

one state to another state in a time unit depends only on these states and does not 

depend on the history of the system or the specific moment in which this transition 

occurs. This property is often called the “memorylessness” or Markov property [12]. 

Let us denote by       conditional probability                      from 

equation 2. In the case when the set of states is finite, the square matrix 

                                                                (3) 

is a stochastic matrix whose rows add up to unity.  
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Classification of states 
 

Let us denote by      the probability of getting from state j to state i. Then, from the 

formula for the total probability we have:                           . The state i 

will be called recurrent if       , i.e. if we return to it with probability 1. The 

state is transient if it is not recurrent. 

The state j is accessible from state i, if                , where         

means the probability of reaching from state i to j after k steps – in particular, 

        is an appropriate element of matrix   . A set of all states accessible from 

the state i we mark     . The states i and j are said to communicate if         

and        . The state i is periodic, if there is a natural number d greater than one 

such that, if           for some k, then d is the divisor of k. 
 

Ergodicity 
 

Distribution of probabilities π on the space of states E is called stationary if and 

only if the condition is met:                (or in matrix notation      ), 

where π is such a line vector that             and         . 
If the finite Markov chain is irreducible (i.e. it has only one class of communicating 

states), and does not contain periodic states, then there exists a stationary 

distribution π such as                   ([13]).   

This distribution is called equilibrium distribution, and Markov chain – ergodic. It 

is worth noting that the equilibrium distribution does not depend on the initial 

distribution (which is not necessarily true for stationary distributions).  In addition, 

the equilibrium distribution π is the only non-zero system solution          
  fulfilling the condition        ([14], [3]). 
 

5. Markov model  
 

The operation process of the meters has been presented in Figure 11. After 

installation, we enter the read – validation cycle, which corresponds to one 

accounting period, i.e. the most often 12 months. In the event of a failure being 

detected, we proceed to the repair or renewal status, that is, the meter replacement.  

 

 

Fig. 11  Operation process 

Installation Read Validation 

Repair Renewal 
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Based on this, the following Markov model was built (Figure 12). 
 

 

Fig. 12  Markov model 
 

The states with numbers from 1 to 10 indicate the number of the billing cycle in 
which the counter is currently located. After 10 cycles, the meter automatically 
changes to the “Renewal” status and is replaced. In each of these states, the meter 
may fail, as illustrated by the “Failure” status. The above directed graph allows to 
build a system of differential equations, known as the Kolmogorov equation. 
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where       is the probability of remaining in the state k,      and      indicate 

the probabilities of being in a state of failure, and state of renewal respectively. The 

parameters      means the intensity of the transition from state x to state y at what 

                               . 

In matrix notation, this system shall take the form: 

  

 

  
                                                            (5) 

 

where                                             is a column vector 

and matrix   looks as follows 

 

Ʌ=  

-(λ1,2+λ1,A) 0 0 0 0 0 λA,1 λ0,1 

(6) 

λ1,2 -(λ2,3+λ2,A) 0 0 0 0 0 0 

0 λ2,3 -(λ3,4+λ3,A) 0 0 0 0 0 

0 0 λ3,4 
... 0 0 0 0 

0 0 0 ... 0 0 0 0 

0 0 0 0 -(λ9,10+λ9,A) 0 0 0 

0 0 0 0 λ9,10 -(λ10,0+λ10,A) 0 0 

0 0 0 0 0 λ10,0 λ0,1 
0 

λ1,A λ2,A λ3,A λi,A λ9,A λ10,A 0 λA,1 

 

 

The values of transition intensities      can be calculated based on available 

empirical data (see table in Tab 1). Then, using the Laplace transform   and using 

its property 

 

                                                              (7) 

 
a system of linear equations was obtained 

 

                                                               (8) 

 

Solving it with respect to       and using the inverse Laplace transform    , one 

can get the searched vector of probabilities     .  
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Tab. 1  Intensity of transitions between individual model states [1/d] 

     1 2 3 4 5 6 7 8 9 10 A O 

1 0 7,19 0 0 0 0  0 0 0 1,39 0 

2 0 0 14,51 0 0 0 0 0 0 00 1,89 0 

3 0 0 0 13,64  0 0 0 0 0 3,80 0 

4 0 0 0 0 15,00 0 0 0 0 0 3,46 0 

5 0 0 0 0 0 12,57 0 0 0 0 3,58 0 

6 0 0 0 0 0 0 13,39  0 0 4,44 0 

7 0 0 0 0 0 0 0 12,87 0 0 5,11 0 

8 0 0 0 0 0 0 0 0 11,23 0 3,68 0 

9 0 0 0 0 0 0 0 0 0 8,58 3,20 0 

10 0 0 0 0 0 0 0 0 0 0 3,77 15,43 

A 34,32 0 0 0 0 0 0 0 0 0 0 0 

O 15,43 0 0 0 0 0 0 0 0 0 0 0 

 

In practice, we are interested in the asymptotic values of probabilities      at 

    , which in case of discrete time finite Markov process, comes down to the 

solution of the system of equations: 

                                                              (9) 
where P is the matrix of probabilities of transitions between states (Table 2), while  
I is the unit matrix. 
 

Tab. 2  Transition probabilities matrix 

Stan 1 2 3 4 5 6 7 8 9 10 A O 

1 0 0,947 0 0 0 0  0 0 0 0,053 0 

2 0 0 0,888 0 0 0 0 0 0 00 0,112 0 

3 0 0 0 0,882  0 0 0 0 0 0,118 0 

4 0 0 0 0 0,853 0 0 0 0 0 0,147 0 

5 0 0 0 0 0 0,856 0 0 0 0 0,144 0 

6 0 0 0 0 0 0 0,820  0 0 0,180 0 

7 0 0 0 0 0 0 0 0,789 0 0 0,211 0 

8 0 0 0 0 0 0 0 0 0,767 0 0,233 0 

9 0 0 0 0 0 0 0 0 0 0,768 0,232 0 

10 0 0 0 0 0 0 0 0 0 0 0,238 0,762 

A 1 0 0 0 0 0 0 0 0 0 0 0 

O 1 0 0 0 0 0 0 0 0 0 0 0 
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Using the Matlab package, the following solution was obtained (asymptotic vector)  
 

                                                                                          (8) 

 

which is shown in Fig 13. 

 
Fig. 13  Transition probability 

6. Summary 

Analysis of reliability characteristics for heat meters provide interesting 

information about their maintenance and failure rate. It turns out that the intensity 

of damage is poorly dependent on their operation time - at least during the first 10 

years after installation. This leads to rethinking of the decision on the standard 

replacement of meters after this period and extending it until noticing a significant 

increase in failure rate. Analysis of the presented Markov model allows to confirm 

the correctness of the conclusions drawn from the analysis of the characteristics. It 

can be seen that the equilibrium probabilities in subsequent cycles decrease almost 

linearly. The values of these probabilities can be used to plan inventory and 

company resources for handling crisis situations.  
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Well, regardless of their age, we have about 12% of the measures requiring 

replacement in each annual accounting period. Also, the value of the asymptotic 

vector in the state of renewal: 0.0226 in relation to its value in state no. 10 –  

0.0297 suggests the sense of extending their lifetime. 

The availability of such a large amount of data leads to the extension of the above 

analysis and possible breakdown of it to individual producers or geographic 

regions.  
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