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Abstract: High-precision, low-cost three-dimensional (3D) space measurement and positioning technology is desperately
needed in wide applications. This study analyses the key technologies in the recognition of the devices to achieve the
requirement of device recognition and capture on the production line. A 3D measurement algorithm for the small devices based
on the consumer-level sensors is proposed in this study. Histogram of gradients feature is used to classify the devices, and
structure light is used to get the depth data of the devices. Object extraction and Euclidean cluster segmentation are used to
analyse the depth data, in order to determine their positions and orientations. In the database built on iPhone X, the accuracy of
category identification reached 0.97, and the measurement error of angle is small. The results show that the proposed method

is feasible and can be applied to the recognition and position of the devices.

1 Introduction

With the rapid development of the industry, traditional two-
dimensional (2D) technology is limited in accuracy and distance
measurement, especially in complex object recognition, dimension
measurement, and interactive applications. The demand for 3D
vision technology becomes more and more requisite because high-
precision, low-cost 3D space measurement, and positioning
technology are desperately needed in many parts of the society. In
the application of industry, this technology can not only classify the
devices but also determine their positions, size and orientations in
high precision.

Although the current solution has been better for positioning
accuracy, such as laser scanning measurement systems, structure
light 3D scanners, the cost has remained high. 3D visual
technology also appears on mobile phones. Apple's iPhone X uses
a structure light-based 3D machine vision solution on its front
camera, which is captured by the camera by projecting specific
light information onto the surface of the object. The changes of the
optical signal caused by the object are used to calculate the
position, depth and other information of the object so that the entire
3D space can be restored. Therefore, real-time 3D information
acquisition is achieved by using consumer electronic devices.

To the best of our knowledge, there are no studies using
consumer-level sensors to measure components on industrial
production lines. Therefore, in this study, the consumer-level
sensor is used to measure devices on industrial production lines.
After acquiring 3D information of the small device, the distance
and angle can be measured through the TrueDepth camera's
structure light technology. First, we establish the sample to be
detected, extract its histogram of oriented gradients (HOG) [1]
features of the sample, and put it into the support vector machine
(SVM) classifier for training. Then, the trained classifier is used for
device classification. The target device can be extracted when its
category is identified. Also, then we can find the plane of the
object from the marked point and get its normal vector. Therefore,
the angle between the object and the plane is obtained.

2 Related works

This study mainly focused on how to obtain the 3D information of
the detected object from the consumer-level 3D vision system
software platform and performs visual measurement on small
devices.
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In the current industrial measurement system, in order to
achieve high-precision inspection and adjustment of the devices,
precision measurement including 3D coordinates is performed, and
the following systems are available [2].

The laser scanning measurement system [3] can quickly obtain
the coordinates of the spatial position of each sample point on the
surface of the object to obtain a set of points representing the
entity, which is ‘point cloud’ [4, 5]. It has the advantage of directly
reflecting the real-time, dynamic, and real morphological
characteristics of the detected object. There are companies that
produce 3D laser scanners at home and abroad, such as Trimble's
Trimble GX200, which is currently a relatively advanced device.
The point accuracy is up to =6 mm at a distance of 50 m, £12 mm
at 100 m, and a distance accuracy of +4 mm at 50 m and =7 mm at
100 m. The angle accuracy can reach <£12’ in both horizontal and
vertical directions.

A structure light 3D scanner is a non-contact measuring device
based on a line or surface structure light projection measurement
principle. It has fast measurement speed, ability to collect surface
data on a large scale, high accuracy, and unique calibration
technology can make single- sided accuracy up to 4 um. It has been
widely used in the contour measurement of large-scale complex
parts such as airplanes, automobiles, and ships.

These methods are a trend in industrial measurement, but they
are all relatively expensive. 3D visual products also have been tried
in the consumer market, such as Microsoft Kinect [6, 7] game
accessories and Intel RealSense somatosensory accessories.
However, because of the lack of good application scenarios and
immature technology, the current consumer-level 3D visual market
is cheerless.

At present, there are also 3D visuals on personal mobile phones.
For example, iPhone X uses a structured light based on a 3D
machine vision solution on its front camera. Huawei also
introduced a Jupiter X, a speckle-structure light mobile phone
accessory with a ‘point cloud depth camera.” ‘Point cloud depth
camera’ recognition accuracy reaches the sub-millimetre level to
achieve high-precision and safety face recognition. It can achieve
3D face model and face recognition, as well as 3D facial
expression control and 3D small object modelling.

Our main contributions are as follows: (i) a low-cost consumer-
level sensor is used to collect 3D data of the object. (ii) The data
we collect is used to achieve object recognition, distance and angle
measurements. The results show that our method can be applied to
the recognition and position of the devices.

1442

This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



Fig. 1 Spatial points [x, y, z] correspond to pixels [u, v, d]

3 Methodology
3.1 Data collection

This paper uses the iPhone 3D vision sensor TrueDepth camera to
collect RGB pictures and depth information. It can effectively
capture the depth information of the target, and directly obtain the
position of the target object relative to the camera.

Through the TrueDepth camera, the AVFrame class in the
ARKit framework and the AVDepthData class in the AV-
Foundation framework of the development framework of the Apple
platform were used to obtain RGB images and depth information
synchronously.

3.1.1 Convert RGB image and depth data to point cloud
data: The correspondence between a space point [ x, y, z] is shown
in Fig. 1 [8], and its pixel coordinates [ u, v, d] in the image (d
refers to depth data) is as follows:

x-f
u=—"+c,
- fy 1
s fy+cy, M
2z
d=z-x,

where f; and f,, refer to the focal length of the camera on the x and y
axes, ¢, and ¢, refer to the camera's aperture centre, s refers to the
depth map scaling factor.

Given (u, v, d), the derivation of (x, y, z) is as follows:

z=dls,
x=W—cy) - 2/ fr ?2)
x=W-c)-zlfy.

Given f,, ]fv, ¢y, and ¢y according to the above formula, a point
cloud can be built.

3.2 Proposed algorithm

3.2.1 Object recognition: Feature extraction. In this study, our
object detection based on the HOG algorithm uses a 64 x 64 pixel
window to scan in a raster image on a frame of the image. The
horizontal and vertical scanning steps are 8 pixels. The window is
divided by an 8 x 8 pixel cell to form 8 x 8 = 64 cells. We treat four
adjacent cells as a block, and one window contains ((64-16)/8 + 1)
X ((64-16)/8 + 1) =7 x 7=49 pixel blocks.

SVM [6, 9] is a popular linear classifier for classifiers based on
statistical learning theory [7]. The idea of classification is given to
a sample set containing positive and negative examples. The
purpose of the SVM is to find a hyperplane. Samples are split
based on positive and negative examples.

The two-category SVM multi-class classification methods
mainly include ‘one-versus-one’ [10], ‘one-versus-rest’ [11, 12],
directed acyclic graph-SVM [13] and error-correcting output codes
[14]. ‘one-versus-rest’ is a widely used multi-class classify-cation
method. For the ‘one-versus-rest’ algorithm, if there are k£ samples,
then £ binary classifiers need to be constructed, and each classifier
is used to separate one type from the rest. During the training, one
of them is a positive class, and the remaining k—1 is a negative
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class. In the judgment, the sequence of the samples to be tested is
obtained through & binary classifiers to obtain k output values f(x)
=sgn(g{x)), i=1, 2,..., k. If there is only one +1 in the decision
result, the sample class to be detected is the positive class of the
corresponding classifier. If there is more than one +1 in the
decision result, i.e. the phenomenon of classification overlap
occurs, the decision function value of the classifier whose output is
+1 need to be compared. The positive class of the classifier with
the largest value represents the class of the sample to be detected.
If the judgment is —1, the sample is considered inseparable.

In this study, the ‘one-versus-rest’ SVM is used to classify and
identify small devices based on HOG feature descriptors.

3.2.2 Object extraction: In this section, background subtraction
[15] is used to obtain 3D data of the object.

After the camera is fixed, the average of the depth information
of the previous frames is taken as the initial background image B
before the device is placed.

After the background image depth information is subtracted
from the current frame depth information, thresholding is
performed to extract 3D data of the object.

Get the depth information of the current frame that is used to
obtain the 3D data of the object.

3.2.3 Euclidean cluster segmentation: In this section, we
describe how to use Euclidean clustering to segment the point
clouds.

The point cloud segmentation is based on the characteristics of
space, geometry and textures to divide the point cloud so that the
point cloud within the same partition has similar characteristics.
The effective segmentation of point clouds is the premise for
feature extraction of target objects. Point cloud segmentation
algorithms which are commonly used include random sampling
consistency algorithms, region growth segmentation methods, and
so on [16-18].

Random sampling consistency segmentation can only segment a
model from a specific point cloud dataset and does not apply to
cloud segmentation of site points with multiple point cloud
clustering. The regional growth segmentation can segment the
clustering of point clouds well, but the algorithm has a large time
complexity and does not apply to real-time scenes. The
segmentation algorithm based on the minimum spanning tree
algorithm is very cumbersome. In the case of too many points in
the point cloud dataset, the algorithm is inefficient. Considering the
two factors of time complexity and segmentation effect, this study
uses the Euclidean cluster segmentation algorithm to segment the
point cloud data in the scene. The Euclidean cluster segmentation
algorithm is relatively easy to understand, i.e. the points whose
distance is within a certain threshold are classified as one type.

Examine m data points and define some kind of sparseness
relationship between points to divide clusters. The Euclidean-style
cluster segmentation defines the affinity property of the Euclidean

distance [19]
dprg) = Y (i = qw)’ 3)
£=1

where p;, ¢; € P, and P is a set of points.

Euclidean segmentation algorithm. The algorithm steps are as
follows:

(i) Create a k-dimensional tree for the input point cloud data set as
P.

(i1) Set an empty cluster C and a queue Q to store the set of points
to be examined.

(iii) For any point p; in point cloud P, perform the following steps:
Put p; in the current queue Q.

For each point p; belongs to O: with p; as the centre, a set of points
whose distance is less than the threshold 7 is placed into class Q.

If all points in Q have been processed, place all of them in the
clustering set and clear queue Q.
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(iv) When all the points in the point cloud P have been processed
and are in the clusters formed by the cluster set C, the algorithm
ends.

3.2.4 Least-square method: In this section, we use the least
squares method to obtain a plane's fitting plane.

Let M be the initial plane point cloud, assuming that the fitted
plane equation is P: Ax + By + Cz = 0, this equation can uniquely
represent the plane P, but the representation of P also has different
forms, such as Ax/2 + By/2 + Dz/2 + D/2 = 0 can also mean P.

To standardise the expression of the space plane equations, it is
assumed that the plane is not the origin of the coordinates. Here,
the standard space plane equation is defined as (4), where x, y, and
z are three coordinate axes, and a, b, and c are the three coefficients
of the equation of the spatial planes, respectively

p(x,y,2) =ax+by+cz+1=0. 4)
Set pOint as M{()Cl, y17 Zl): (x25 y25 Z2)’ ---s(xns y}’la Zn)}, ltS beSt

fitting plane should be satisfied e.g. (5)

2 lp(.y.2) = pxi. 3. )I = min, 5)

i=1

where p(x, y, z) = 0, then

f = (@xi+by;+cz+17 = min . (6)

i=1

To make formula (6) set up, we need to take the partial derivative
of a b, ¢ with respect to 0 and satisfy
(0f10a) = 0,(af/0b) = 0,(df/oc) =0, e.g. (7)
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The solution to the coefficient of the plane equation is as follows:

X=0"K. )
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Fig. 2 Devices images used in this study

Ll

Fig. 3 Depth data in different views

The standard deviation of accuracy evaluation is shown as

(10)

where di is the distance from a point to a fitting plane; d is the
average distance from a point to the fitting plane.

For specific parts, four marked points of the plane are calibrated
to obtain the plane of the device surface.

After the image is binarised, thresholding is performed to
extract the calibration point. Then the contour and its centre can be
found. Also, finally, the coordinates of the marker point can be
obtained.

After filtering and eliminating the discrete points, the least-
square method is used to obtain the fitting plane, and then we the
background plane equation can be obtained.

4 Experiments and analysis

In this section, we firstly describe the datasets collected using
iPhone X. Then we can evaluate the proposed method on our
datasets, and finally report the experimental results and analysis.

4.1 Datasets and protocols

In our experiment, 520 device images with their depth data maps
were collected using the TrueDepth camera of the iPhone X in
different views or backgrounds. Also, experiments were carried out
on the data shown in Figs. 2 and 3. 400 images were chosen as the
training dataset, and 120 images as the test dataset from our
database.

4.2 Experiment process

In this part, the datasets are used to train the SVM classifier. After
the training, our SVM classifier is tested on the test datasets. The
resulting confusion matrix is shown in Table 1. The correct
recognition rate of device 1 is lower than that of other devices.
Also, device 1 is easily misjudged as devices 2 and 3. From Table 1
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Table 1 Classification accuracy confusion matrix

@ 0.92 0.04 0.04
@ 0.00 0.99 0.00
® 0.00 0.02 0.98
@ 0.02 0.00 0.04
® 0.00 0.00 0.00
® 0.00 0.00 0.00
— @ @ ©

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.94 0.00 0.00
0.01 0.99 0.00
0.00 0.00 1.00
@ ® ®

Fig. 4 Object detected result

Fig. 5 Original image and threshold image

we can find that the correct recognition rate of devices 3, 5, and 6
reaches 0.99. On the whole, the correct recognition rate of the data
is 0.97. From Table 1 we can see that the accuracy is high enough
to classify the devices, thus the classifier can be used to detect the
object from the background. The object detected experiment result
is shown in Fig. 4.

We mark the four points on the surface of the part, as is shown
in Fig. 5. on the left, the location of the marked points can be
obtained through our processing. After detecting the object from
the visible light image, the depth data is used to calculate the angle
and distance of the object. Each collected point cloud data contains
230,400 sampling points. However, the point cloud data we collect
is usually of uneven density. In addition, errors in measurements
can produce sparse outliers, making the effect worse. Therefore,
the filter in the point cloud library needs to be used to filter the
data.

A statistical analysis is performed on the neighbourhood of each
point and points that do not meet certain criteria are pruned. Our
sparse outlier removal method is based on the calculation of the
distance distribution from point to point in the input data. For each
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a b

Fig. 6 Pointcloud data
(a) Captured devices from the depth data map, (b) Segmented plane

Fig. 7 Devices’ orientation by using the directed bounding box

point, its average distance to all its neighbours is calculated. The
hypothetical result is a Gaussian distribution whose shape is
determined by the mean and standard deviation. Points, where the
average distance is outside the standard range, can be defined as
outliers and can be removed from the dataset. Also, the average
distance defined by the global distance mean and variance. Only
after the collected cloud data is filtered and denoised can we use
the background subtraction method to perform target extraction.
Therefore, before filtering the point cloud using the filter provided
in the point cloud library, the original data is shown in Fig. 6a.

Then, the Euclidean cluster segmentation algorithm is used to
segment the target cloud data after extraction to obtain multiple
point cloud PCD files. The results obtained after visualisation are
shown in Fig. 6b.

We calculate the normal vector of the plane from the point on
the plane and get the angle between the device and the plane. Then,
the bounding box of the object is calculated based on the normal
vector of the object surface and display the result. Finally, each
device distance and orientation is obtained. The final result is
shown in Fig. 7. The experiment results are compared with the real
data shown in Table 2. Comparing the above results, we can see
that the consumer-level structure light proposed in this study can
identify and measure the small devices.
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Table 2 Comparison between the experiment data and the real data

device Device normal vector Plane normal vector Theta Ans Real Ans
1 (0.002, 0.648, 5.018) -(0.124, 0.921, 5.217) 3.0898 2.9681° 0°
2 (0.173, -3.08, 2.311) -(0.124, 0.921, 5.217) 2.0403 63.1020° 60°
3 (0.457, 1.128, 5.688) -(0.124, 0.921, 5.217) 3.0374 5.9710° 0°
4 (0.540, 0.381, 2.729) -(0.124, 0.921, 5.217) 2.9678 9.9575° 15°

5 Conclusion

A 3D measurement algorithm for the micro devices based on the
consumer-level sensors is proposed. We describe how to use the
TrueDepth camera of the iPhone X to obtain the depth data of the
device and design a process to classify and segment them using the
depth data. Then some points are selected, after morphological
processing, the distance and orientation information can be
obtained. Experiments show that this method can perform well in
the simple scenery. Future works will focus on verifying the
effectiveness of our method in wider applications.
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