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Abstract. Dielectric data of new [Ba(NdxTi1−2xNbx )O3]0.30[Na0.5Bi0.5TiO3]0.70 (x = 0.075) relaxor ceramic was
modelled using a new modified Lorentz equation (T and ω simultaneously) as proposed by us. The activation energy for
thermally activated orientation of dipoles and relaxation times were estimated. Dielectric resonance and anti-resonance
data as a function of temperature and angular frequency of other piezoelectric compound [Ba(Nd0.1Ti0.8Nb0.1)O3]0.35
[(Na0.5Bi0.5)TiO3]0.65 was also modelled using the modified Lorentz equation as proposed by us. It is shown that using this
equation, it is possible to obtain the polarizability, piezoelectric charge constant, piezoelectric voltage constant and activation
energy for resonance and anti-resonance.

Keywords. Dielectric relaxor; Lorentz equation; modified Lorentz equation; electromechanical coupling; piezoelectric
charge constant.

1. Introduction

In relaxor ferroelectrics, the temperature dependence of
dielectric constant is usually indirectly characterized from ω

and T by the Arrhenius law (ω = ω0 exp(−[Ea/(KBT )]))
and modified Arrhenius law (ω = ω0 exp(−[Ea/(KBT )]p))

[1] and also by Vogel–Fulcher’s relation (ω = ω0 exp(−[Ea/

(KB ∗ (Tm − Tf))])) [2,3]. These equations give information
about the activation energy for relaxation and long range inter-
actions and dipolar freezing temperature. It would be better
if one can describe the temperature dependence of dielec-
tric constant at different constant frequencies directly. This
has prompted us to propose a modified Lorentz equation to
describe the temperature dependence of dielectric constant
of normal [4] and relaxor [5,6] ferroelectrics in our previous
studies. The proposed modified Lorentz equation describes
the dielectric constant as a function of temperature only and
not with frequency. Hence, in the present study, we have re-
modified the Lorentz equation to include the term ((ωτ)2 +1)
along with T (as shown in equation (3)) as described in results
and discussion section and were successful in fitting the exper-
imental dielectric data with this new equation. By doing so,
we were successful in directly obtaining the activation energy
and relaxation time simultaneously.

In piezoelectric materials, estimation of piezoelectric
charge constant and piezoelectric voltage coefficient is gen-
erally carried out using sophisticated and costly equipment,
for example, like d33 meter. These studies give information

about how effectively a piezoelectric material produces strain
with the applied electric field [7–10]. This information is
useful in designing piezoelectric transducers and actuators.
It is also known that piezoelectric materials usually exhibit
electromechanical coupling and these are estimated exper-
imentally from the resonance and anti-resonance studies
using an impedance analyser. From the resonance and anti-
resonance frequency values and capacitance at 1 kHz, the
piezoelectric charge constant is also estimated using the stan-
dard piezoelectric formula [11], but this formula is arbitrary,
even though piezoelectric standards are followed. In view of
the above, in our previous studies, we have proposed a modi-
fied Lorentz equation to simulate the dielectric resonance and
anti-resonance data to obtain the polarizability, piezoelectric
charge constant and piezoelectric voltage constant and were
successful in fitting the experimental data using the modified
Lorentz equation very well and obtained the above param-
eters indirectly from the fitting [12–14]. But, this modified
Lorentz equation describes the variation of dielectric con-
stant with frequency only, but not with temperature. Hence,
in the present study, the Lorentz equation was re-modified to
describe the variation of dielectric constant with frequency
and temperature simultaneously and was successful in fitting
the experimental resonance and anti-resonance data. Inclu-
sion of T in equation (6) has made it possible to obtain the
activation energy for resonance and anti-resonance.

In the present study, new ceramic composition [Ba(Ndx

Ti1−2xNbx )O3]0.30[Na0.5Bi0.5TiO3]0.70 (x = 0.075) is
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chosen for dielectric investigation. The experimental
dielectric resonance and anti-resonance data of another
[Ba(Nd0.1Ti0.8Nb0.1)O3]0.35[(Na0.5Bi0.5)TiO3]0.65 piezoelec-
tric ceramic was used for electromechanical coupling studies
[15]. The results on the modelling of dielectric and reso-
nance and anti-resonance data as a function of temperature
and angular frequency using equations (3 and 6), respectively,
are presented and discussed in this paper.

2. Experimental

A new [Ba(NdxTi1−2xNbx )O3] 0.30[Na0.5Bi0.5TiO3]0.70

dielectric relaxor ceramic with x = 0.075 was prepared
through a solid state sintering route. The calcination of pow-
der and final sintering temperature of prepared pellets are
900 (5 h) and 1175◦C (2 h), respectively. The dielectric mea-
surements as a function of temperature at different constant
frequencies were carried out using a HP4192A impedance
analyser on the above dielectric relaxor ceramic.

For electromechanical studies; capacitance resonance and
anti-resonance studies at different constant temperatures were
also carried out using the HP4192A impedance analyser on
another piezoelectric compound: Ba(Nd0.1Ti0.8 Nb0.1)O3]0.35

[(Na0.5Bi0.5)TiO3]0.65 which is under investigation.
Preparation of [Ba(Nd0.1Ti0.8Nb0.1)O3]0.35[(Na0.5Bi0.5)

TiO3]0.65 piezoelectric ceramic, its X-ray, dielectric and fer-
roelectric data were reported earlier [16].

3. Results and discussion

Figure 1a and b shows the variation of dielectric con-
stant with temperature at different constant frequencies for
[Ba(NdxTi1−2xNbx )O3]0.30[Na0.5Bi0.5TiO3]0.70 ceramic with
(x = 0.075). Dielectric relaxor behaviour is generally
characterized by dispersion of dielectric constant with a
frequency below Tmax and shifting of Tmax towards a higher
temperature side with the increase in frequency. It can be seen
from the figures that the present ceramic material exhibits
dielectric relaxor behaviour. Below Tmax, the dielectric con-
stant decreased with the increase in frequency in the range
of 10 kHz–1 MHz; whereas the dielectric constant increased
with the increase in frequency in the range of 1.5–3.5 MHz.
Different dielectric parameters obtained from the dielectric
data are tabulated in table 1. The dielectric loss increased
with the increase in frequency.

The Lorentz equation (equation (1)) is generally used to
characterize the dielectric data as shown in figure 2a and
b. The obtained parameters are tabulated in table 2. This
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Figure 1. (a and b) Dielectric constant vs. temperature at different constant frequencies for
[Ba(NdxTi1−2xNbx )O3]0.30[Na0.5Bi0.5TiO3]0.70 with x = 0.075.

Table 1. Parameters obtained from dielectric data for [Ba(Nd0.075Ti0.85Nb0.075)O3]0.30[(Na0.5Bi0.5)TiO3]0.70 ceramic.

Parameter

Frequency

f = 10 kHz f = 50 kHz f = 100 kHz f = 500 kHz f = 1 MHz

ε′
RT 139.15 133.74 130.98 124.78 122.18
Tmax 460.00 464.10 464.66 464.92 471.76
tan(δ) 0.033 0.039 0.042 0.044 0.040
ε′

max 149.17 147.84 147.19 146.80 147.31
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Figure 2. (a and b) Dielectric constant vs. temperature at different constant frequencies (experimental and
Lorentz equation fit (equation (1)) and (c and d) dielectric constant vs. temperature at different constant fre-
quencies (experimental and fitting using equation (3)) for [Ba(NdxTi1−2xNbx )O3]0.30[Na0.5Bi0.5TiO3]0.70
with x = 0.075.

Table 2. Parameters obtained from Lorentz equation (equation (1)) fitting to experimental dielectric data for [Ba(Nd0.075Ti0.85Nb0.075)

O3]0.30[(Na0.5Bi0.5)TiO3]0.70 ceramic.

Parameters

Frequency

f = 10 kHz f = 50 kHz f = 100 kHz f = 500 kHz f = 1 MHz

y0 36.03 22.36 47.89 67.54 69.59
xc(K) 450.60 458.38 463.11 477.08 484.03
w (K) 850.85 804.89 671.29 524.83 491.68
A (K) 151026.10 158407.72 104617.17 65444.61 60222.84
R2 0.98992 0.99644 0.99698 0.99748 0.99680

equation does not give much information except for area
under, the curve, width and peak positions. Hence, in our
earlier studies, we proposed a modified Lorentz equation
(equation (2)) [4–6] and were successful in fitting the dielec-
tric data. Here, εs is the static dielectric constant, ε∞ is the
infinite dielectric constant and Eact is the activation energy for

thermally activated orientation of dipoles. But, this equation
describes the variation of dielectric constant with temperature
only. It is desirable to propose a new equation which describes
the temperature dependence of dielectric constant with
frequency also. Hence, in the present case, the term ((ωτ)2

+ 1) is incorporated into equation (2) and is shown in
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Table 3. Parameters obtained from the modified Lorentz equation (equation (3)) fitting to experimental dielectric data for [Ba (Nd0.075
Ti0.85Nb0.075)O3]0.30[(Na0.5Bi0.5)TiO3]0.70 ceramic.

Parameters

Frequency

f = 10 kHz f = 50 kHz f = 100 kHz f = 500 kHz f = 1 MHz

εs 165.04 178.82 212.17 198.20 190.11
ε∞ 129.20 156.28 164.49 130.71 120.96
Eact (meV) 25.25 38.38 96.21 200.74 132.70
ω (Hz) 62857.14 314285.71 628571.42 3142857.14 6285714.28
τ (ms) 4.66 1.41 1.77 0.76 0.25
A (K) 151026 158407.72 104617.17 65444.61 60222.84
w (K) 850.85 804.89 671.29 524.83 491.68
R2 0.95298 0.98468 0.99543 0.95033 0.95625

equation (3). This modification allows us to describe the
temperature dependence of dielectric constant at different fre-
quencies and also helps us to estimate the activation energy
for thermally activated orientation of dipoles and relaxation
times simultaneously.

y = y0 + 2A

π

w

4(x − xc)2 + w2
, (1)

ε′ = (εs − ε∞) + 2A

π

w

4((T − Tc)KB/Ea)2 + w2
, (2)

ε′ = (εs − ε∞)

+2A

π

w

4((T−Tc)KB/Ea)2 ∗ ((ω ∗ τ)2+1)+w2
. (3)

Figure 2c and d shows the temperature-dependent dielec-
tric plots at different frequencies and the fitted curves using
equation (3). Equation (3) is found to be best fit to the
experimental dielectric data. The regression values for the
fitting and other parameters obtained are tabulated in table 3.
It can be seen from table 3 that the activation energy for
dipolar relaxation is 25.25 meV for dielectric data at f =
10 kHz and with the increase in frequency, the activation
energy is increased showing a value of 132.70 meV at
f = 1 MHz. It can also be seen from table 3 that relax-
ation time for dielectric data at f = 10 kHz is 4.66 ms
and with the increase in frequency the relaxation time
decreases and the value of relaxation time is 0.25 ms at
f = 1 MHz.

Figure 3a shows the variation of dielectric constant as a
function of angular frequency at different constant temper-
atures studied under clamped state (in jig with unknown,
but constant spring constant) for [Ba(Nd0.1Ti0.8Nb0.1)O3]0.35

[(Na0.5Bi0.5)TiO3]0.65 ceramic. It can be seen from this
curve that broad resonance and anti-resonance behaviour was
observed. It can also be seen from figure 3b that resonance
frequency decreased with the increase in temperature up to
398 K; there after it increases slightly with the increase
in temperature; whereas anti-resonance frequency decreased

with the increase in temperature. From the resonance and
anti-resonance frequencies, the thickness mode of electrome-
chanical coupling factor (Kt) was estimated using the standard
formula on piezoelectricity [11] and the values are tabulated
in table 4. Figure 3c shows that the value of Kt decreases with
the increase in temperature from 323 to 498 K. The high values
of electromechanical coupling factor may be due to the stress-
induced stretched relaxations. The decrease of electrome-
chanical coupling factor with the increase in temperature may
be ascribed to the decrease of stress in the ceramic sample,
which in turn is due to clamping of ceramic sample in jig.

The Lorentz equation for two peaks (equation (4)) is
generally used to characterize the dielectric resonance and
anti-resonance data as shown in figure 4a and b. The obtained
parameters are tabulated in table 5. This equation does not
give much information except for area under the curve, width
and peak positions. Hence, in our earlier studies, we have
proposed modified Lorentz equation (equation (5)) [12–14]
and were successful in fitting the dielectric resonance and
anti-resonance data. Here, εs is the static dielectric constant,
ε∞ is the infinite dielectric constant, NA is the Avogadro
number, ρ is the experimental density, α is the polariz-
ability, M is the molecular weight, d33 is the piezoelectric
charge constant, g33 is the piezoelectric voltage constant, ω

is the angular frequency, ωc1 is the angular resonance fre-
quency, ωc2 is the angular anti-resonance frequency and τ ,
τc1 and τc2 are the relaxation times. By fitting equation (5)
to the experimental data, it is possible to obtain the polar-
izability, d33 and g33 indirectly. However, equation (5) is a
function of ω only and does not incorporate the temperature.
Since the dielectric constant is frequency- and temperature-
dependent, it is better to modify equation (5) to describe the
dielectric dependence on ω and T simultaneously. Hence,
in the present study, the terms ((T ∗ KB/Eact_R)2) + 1) and
((T ∗ KB/Eact_AR)2) + 1) are incorporated into equation (5)
and is shown as equation (6). The incorporation of these terms
in equation (5) allow us to determine the activation energy for
resonance (Eact_R) and activation energy for anti-resonance
(Eact_AR) along with the previously obtained parameters like
d33 and g33.
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Figure 3. (a) Dielectric constant vs. angular frequency at different constant temperatures plots, (b) reso-
nance and anti-resonance angular frequency vs. temperature plot and (c) thickness mode of electromechanical
coupling factor vs. temperature plot for [Ba(Nd0.1Ti0.8Nb0.1)O3]0.35[(Na0.5Bi0.5)TiO3]0.65 ceramic.

Table 4. Resonance and anti-resonance angular frequency and electromechanical coupling factor values for [Ba(Nd0.1Ti0.8Nb0.1)O3]0.35
[(Na0.5Bi0.5)TiO3]0.65 ceramic in clamped state.

Parameters

Temperature (K )

300 323 348 373 398 423 448

ωr (Hz) 5.69 × 107 5.16 × 107 4.90 × 107 4.82 × 107 4.82 × 107 4.90 × 107 4.97 × 107

ωa (Hz) 7.12 × 107 6.52 × 107 6.11 × 107 5.84 × 107 5.69 × 107 5.69 × 107 5.73 × 107

Kt 0.63 0.64 0.63 0.60 0.56 0.54 0.53
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π
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Figure 4. (a and b) Dielectric constant vs. angular frequency at different constant temperatures (experi-
mental and Lorentz equation fit using equation (4)) and (c and d) dielectric constant vs. angular frequency
at different constant temperatures (experimental and modified Lorentz equation fit using equation (6)) for
[Ba(Nd0.1Ti0.8Nb0.1)O3]0.35[(Na0.5Bi0.5)TiO3]0.65 ceramic.

Table 5. Parameters obtained from Lorentz equation (equation (4)) fitting to experimental data of [Ba (Nd0.1 Ti0.8 Nb0.1)O3]0.35[(Na0.5
Bi0.5)TiO3]0.65 ceramic in clamped state.

Parameter

Temperature (K )

300 323 348 373 398 423 448

y0 558.85 307.64 331.42 354.81 334.20 310.99 298.53
xc1 (Hz) 6.02 × 107 5.18 × 107 4.82 × 107 4.71 × 107 4.80 × 107 4.87 × 107 4.97 × 107

w1 (Hz) 2.51 × 107 1.96 × 107 1.51 × 107 1.40 × 107 1.69 × 107 1.61 × 107 1.55 × 107

A1 (Hz) 1.1 × 1011 3.5 × 1010 2.2 × 1010 2.5 × 1010 5.2 × 1010 5.7 × 1010 5.7 × 1010

xc2 (Hz) 6.71 × 107 6.28 × 107 6.28 × 107 6.06 × 107 5.57 × 107 5.54 × 107 5.59 × 107

w2 (Hz) 2.92 × 107 3.27 × 107 3.06 × 107 3.02 × 107 2.69 × 107 2.39 × 107 2.26 × 107

−A2 (Hz) 1.4 × 1011 5.2 × 1010 4.2 × 1010 4.7 × 1010 7.0 × 1010 7.2 × 1010 7.1 × 1010

R2 0.99277 0.97804 0.96014 0.94758 0.94184 0.93576 0.93346

Figure 4c and d shows the experimental and simulated
data using equation (6). Equation (6) is found to be best
fit to the experimental data as evidenced by regression

value as shown in table 6. The other parameters obtained
from the simulation are tabulated in table 6. Figure 5a
shows the variation of static and infinity dielectric constant
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Figure 5. (a) Static and infinity dielectric constants vs. temperatures plots, (b) polarizability
vs. temperature plot and (c) piezoelectric charge and voltage constant vs. temperature plot for
[Ba(Nd0.1Ti0.8Nb0.1)O3]0.35[(Na0.5Bi0.5)TiO3]0.65 ceramic.

as a function of temperature. At lower temperatures, the
static dielectric constant is higher than the infinity dielec-
tric constant indicating frequency-dependence relaxation
behaviour. At higher temperatures, both the static and
infinity dielectric constants approach each other indicat-
ing disappearance of space charge polarization. Figure 5b
shows the temperature dependence of polarizability. There
is no systematic variation with temperature. The change in
slopes in polarizability vs. temperature plot is due to the
contribution of different polarizable species present in the
ceramic sample which gets activated at different temper-
ature regions with different activation energies. Figure 5c
shows the variation in d33 and g33 with temperature. The
d33 values at 300 and 448 K are 1.3 × 10−9 and 3.9 ×
10−9 m V−1, respectively. The d33 value varies a little with
temperature from 300 to 373 K and thereafter it shows a
dip and with further increase in temperature, it increases.
Logarithm of d33 is plotted as a function of 1000/T

(figure is not shown here). From the two slopes, the
activation energy is estimated by a linear fit to the data.
The activation energy is found to be 0.20 and 1.19 eV in
the temperature range of 300–373 and 398–448 K, respec-
tively. The activation energy obtained from the log(d33) vs.
1000/T plot may be ascribed to the switching of polar-
ization in different directionally polarized domain regions
separated by domain walls. It is known that 1800 domains
switching requires higher activation energy when compared
to 900 domain switching. The activation energy of 1.19 eV
in the temperature region 398–448 K may be ascribed to
the switching of domains separated by domain wall hav-
ing polarization in the opposite direction i.e., 1800 to be
in unidirectional. Table 6 shows the other useful parame-
ters obtained from the modelling of dielectric resonance and
anti-resonance data using equation (6). The activation energy
for resonance and anti-resonance at 300 K is estimated to be
0.03 and 0.03 eV, respectively.
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Table 6. Parameters obtained from modified Lorentz equation (equation 6) fitting to experimental data of [Ba(Nd0.1Ti0.8Nb0.1) O3] 0.35
[(Na0.5Bi0.5)TiO3]0.65 ceramic in clamped state.

Parameter

Temperature (K )

300 323 348 373 398 423 448

εs 1044.40 973.46 864.91 906.97 932.51 846.48 796.66
ε∞ 655.28 740.52 698.53 723.90 721.21 860.04 891.81
α (F m2) 2.9 × 10−37 1.1 × 10−37 2.8 × 10−37 2.8 × 10−37 2.0 × 10−37 2.7 × 10−37 6.3 × 10−37

d33 (m V−1) 1.3 × 10−9 1.8 × 10−9 1.5 × 10−9 1.6 × 10−9 8.0 × 10−11 2.9 × 10−9 3.6 × 10−9

g33 (m2 C−1) 1.5 × 10−10 1.5 × 10−10 1.5 × 10−10 1.0 × 10−10 7.9 × 10−12 1.6 × 10−11 7.2 × 10−11

τ (s) 0.75 0.65 0.74 0.77 0.75 0.42 0.59
τc1(s) 0.79 0.66 0.73 0.75 0.75 0.42 0.59
τc2 (s) 0.71 0.63 0.76 0.80 0.73 0.41 0.57
Eact_R (eV) 0.03 0.02 0.04 0.04 0.04 0.02 0.03
Eact_AR (eV) 0.03 0.02 0.04 0.04 0.04 0.02 0.03
A1 (Hz) 1.1 × 1011 3.5 × 1010 2.2 × 1010 2.5 × 1010 5.2 × 1010 5.7 × 1010 5.7 × 1010

w1 (Hz) 2.51 × 107 1.96 × 107 1.51 × 107 1.40 × 107 1.69 × 107 1.61 × 107 1.55 × 107

−A2 (Hz) 1.4 × 1011 5.2 × 1010 4.2 × 1010 4.7 × 1010 7.0 × 1010 7.2 × 1010 7.1 × 1010

w2 (Hz) 2.92 × 107 3.27 × 107 3.06 × 107 3.02 × 107 2.69 × 107 2.39 × 107 2.26 × 107

ωc1 (Hz) 5.69 × 107 5.16 × 107 4.90 × 107 4.82 × 107 4.82 × 107 4.90 × 107 4.97 × 107

ωc2 (Hz) 7.12 × 107 6.52 × 107 6.11 × 107 5.84 × 107 5.69 × 107 5.69 × 107 5.73 × 107

R2 0.99271 0.97807 0.96099 0.94837 0.94198 0.93535 0.93302

4. Conclusions

[Ba(NdxTi1−2xNbx )O3]0.30[Na0.5Bi0.5TiO3]0.70 with (x =
0.075) piezoelectric ceramic was prepared through a solid-
state sintering route. Dielectric relaxor behaviour was obser-
ved in the temperature dependence of dielectric plots. The new
modified Lorentz equation (equation (3)) as proposed by us,
was used to describe the dielectric data with temperature and
frequency simultaneously to obtain activation energy for ther-
mally activated orientation of dipoles and relaxation times.
The activation energy for dipolar relaxation is 25.25 meV
for dielectric data at f = 10 KHz and with the increase
in frequency, the activation energy is increased showing a
value of 132.70 meV at f = 1 MHz. A new modified
Lorentz equation (equation (6)) is proposed to describe/model
the dielectric resonance and anti-resonance data as a func-
tion of temperature and angular frequency simultaneously
and this equation is found to be best fit to the experimen-
tal data of [Ba(Nd0.1Ti0.8Nb0.1)O3]0.35[(Na0.5Bi0.5)TiO3]0.65

piezoelectric ceramic. Using this equation, it is shown that it
is possible to obtain polarizability, piezoelectric charge con-
stant, piezoelectric voltage constant and activation energy
for resonance and anti-resonance. From the above studies,
it is concluded that equation (6) proposed by us may also be
used to model the dielectric resonance and anti-resonance
data with T and ω for other piezoelectric materials and
this equation will be helpful in obtaining useful parameters
which in turn would be helpful in designing a piezoelectric
transducer.
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