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Abstract: Kidney injury molecule 1 (KIM-1) is a type I membrane protein, comprising an extracellular portion and 
a cytoplasmic portion. It is also named as HAVCR1 (Hepatitis A virus cellular receptor 1) or TIM1 (T-cell immuno-
globulin mucin receptor 1), and is expressed in the kidney, liver, and spleen. KIM-1 plays different roles via various 
molecular targets in immune diseases and kidney injury. KIM-1 is involved in HAV infections, autoimmunity, immune 
tolerance, and atopic diseases. The urinary KIM-1 level is closely related to its tissue level, and correspondingly 
related to kidney tissue damage. KIM-1 is not only an early biomarker of acute kidney injury (AKI), but also has a 
potential role in predicting the long-term renal outcome. In this review, we provide a summary of KIM-1’s activities, 
focusing on the latest studies concerning the important roles of KIM-1 in the immune system and kidney diseases.
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Introduction

The protein encoded by the KIM-1 gene is a 
membrane receptor for both human hepatitis  
A virus (HHAV) and T cell immunoglobulin and 
mucin domain containing 4 (TIMD4). Alternati- 
ve splicing of this gene results in multiple tr- 
anscript variants that are also known as HA- 
VCR1 (Hepatitis A virus cellular receptor 1)  
and TIM1 (T-cell immunoglobulin mucin recep-
tor 1) [1, 2]. HAVCR1 was first reported by 
Kaplan [3], and recognized as the receptor for 
hepatitis A virus (HAV) on the surface of the 
monkey’s kidney that promotes cellular entry of 
the virus under certain conditions. TIM1 is a  
co-stimulator of T cell activation that regulates 
the innate and adaptive immune system via 
related molecular mechanisms [4]. Thus there 
is a potential link between HAVCR1/TIM1 and 
immune susceptibility. 

Ichimura first reported that KIM-1, which is 
shed into urine after acute kidney damage, is a 
marker of renal tubular injury. Whereafter, their 
lab identified that KIM-1 overexpression also is 

a marker for the long-term prognosis of chronic 
kidney diseases [5-7]. 

Here, we first briefly review the comprehensive 
roles of HAVCR1/TIM1/KIM-1 in immune and 
kidney diseases. We then present a map of the 
potential relationships among them to aid 
future research. 

The structure of KIM-1

The human KIM-1 gene maps to chromosome 
5p33.3 and comprises 14 exons. The length of 
its mRNA is 1095 bp, encoding a 39 kDa type I 
membrane glycoprotein [7]. KIM-1 has signal 
peptide before the N-terminal domain, which 
may be directly responsible for KIM-1’s location 
on the cell surface. However, some studies 
showed that endogenous KIM-1 clusters mostly 
in the cytoplasm, and does not localize to the 
cell surface except under sustained cell activa-
tion. The cell-specific location of KIM-1 could 
affect its diverse cell functions [8, 9]. For exam-
ple, in kidney cells, KIM-1 trafficking to lyso-
somes can promote nuclear hormone receptor 
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NUR/77 (NUR77) degradation. In lymphoid ce- 
lls, KIM-1 in endosomes is required to sense 
enveloped viruses. Whereas in Jurkat T cells, 
intracellular KIM-1 may modulate antigen-dr- 
iven immune responses by locating to the 
immune synapse rather than the cell surface 
(Figure 1).

Its extracellular segment comprises a six-cy- 
steine immunoglobulin variable (IgV) domain 
and a threonine/serine/proline (TSP) rich mu- 
cin region, which is characteristic of mucin-li- 
ke glycosylated proteins [10, 11]. Considering 
the many glycosylation sites on the extrace- 
llular domain, including one putative N-glyco- 
sylation in IgV region, along with three putative 
N-glycosylation and multiple O-glycosylation 
sites in mucin region, the molecular mass of 
the mature form of KIM-1 is 104 kDa, conta- 
ining a 90 kDa soluble portion and a 14 kDa 
membrane-bound fragment [12]. The IgV do- 
main has a unique metal ion-dependent lig- 
and binding site (MILIBS). MILIBS can recog- 
nize phosphatidylserine (PtdSer) that is ex- 
posed on the outer leaflet of the apoptotic cell 
membrane [11]. Thus, cells expressing KIM-1 
can engulf and eliminate apoptotic cells [13], 
which is an essential process for cell home- 
ostasis and immune responses [14, 15]. Re- 
cent data suggested that the mucin domain on 
the cell surface participates in intracellular cal-
cium release [16]. During calcium stone forma-
tion, urinary mucin is decreased, which further 
enhances transient receptor potential cation 
channel subfamily V member 5 (TRPV5) chan-
nel activity to protect against kidney stones.

A short cytoplasmic tail with a conservative 
tyrosine phosphorylation motif follows the 
transmembrane segment. Tyrosine phosphory-
lation of this tail may be related to the activa-
tion of downstream signaling pathways by 
engaging several protein kinases [17]. The cyto-

Kim-1 and immune diseases

Numerous studies have shown that KIM-1 is 
associated with control of viral infections, auto-
immunity, immune tolerance, and atopic dis-
eases [18-20]; which indicate that KIM-1 plays 
a major role in the immune system.

Initially, KIM-1 was identified as an entry re- 
ceptor for HAV and is expressed on the surface 
of different epithelial cells. It also promotes the 
entry of a wide range of viruses such as Zaire 
Ebola virus (EBOV), Lake Victoria Marburg vir- 
us, Plasmodium berghei ANKA, Dengue virus 
(DV), hepatitis C virus (HCV), and human im- 
munodeficiency virus (HIV) [21-25]. A recent 
report suggests that KIM-1 participates in the 
identification of alternative virus receptors. The 
interaction between a virus and KIM-1 indic- 
ates the entrance pathway for the virus [26]. 
Evidence for the HAV/KIM-1 interaction implies 
that both the IgV and mucin domains, especial-
ly the first N-glycosylation site, are required for 
HAV uncoating and subsequent cell infectivity 
[27, 28]. Other studies revealed that KIM-1 is 
incorporated into HIV virions and retains parti-
cles on the cell plasma membrane by interact-
ing with the virion-associated PtdSer [29, 30]. 
KIM-1 acts as a dual-attachment receptor for 
EBOV by interacting directly with viral glycopro-
tein (GP) and PtdSer on the viral envelope [31], 
inducing a cytokine storm phenomenon [32]. 

Kim-1 is also linked with many immune dys-
function diseases, including allergies, asthma, 
ectopic dermatitis, rheumatoid arthritis, and 
systemic lupus erythematosus (SLE) [2, 33-36]. 

KIM-1, previously named TIM-1, is expressed 
on CD4(+) T cells. In patients with SLE, the 
expression of interleukin (IL)10, which is a Th2 
immuno-modulatory cytokine, correlated posi-
tively with the increase in KIM-1 expression 

Figure 1. Structure of the Human KIM-1 protein. Schematic representation 
of KIM-1, showing the signal peptide, IgV, mucin, transmembrane, and cyto-
plasmic domains. The triangles are the predicted location of N-linked glyco-
sylation sites. KIM-1, kidney injury molecule-1; MLIBS, metal ion-dependent 
ligand binding site; T/S/P, threonine/serine/proline; TM, transmembrane. 

plasmic portion has two spli- 
ce variants, KIM-1a and KIM-
1b. KIM-1a is mainly expres- 
sed in the liver and lacks the 
tyrosine kinase phosphoryla-
tion motif. KIM-1b, which con-
tains two conserved tyrosine 
residues and a tyrosine kina- 
se phosphorylation motif, is 
mainly expressed in the kid-
ney [16].
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[37]. In patients with allergic rhinitis, after st- 
imulation by dust or lipopolysaccharide, The 
cells expressing KIM-1 differentiated into Th2 
cells, suggesting that KIM-1 plays an importa- 
nt role in regulating the Th2 immune response 
[38-40]. 

In asthma, TIM4 binding to KIM-1 increases the 
expression of silent information regulator 1 
(SIRT1) on CD4(+) T cells via the phosphati-
dylinositol-4,5-bisphosphate 3-kinase (PI3K)/
AKT kinase (AKT) signaling pathway and pr-  
omotes the proliferation of Th2 cells [41]. Their 
combination could also trigger T cells activa- 
tion via linker for activation of T cells (LAT), AKT, 
and extracellular regulated protein kinases 
(ERK1/2) signaling pathways and mediates T 
cell trafficking [40, 42], which was predomin- 
ant in inducing the Th2 immune response by 
increasing cell differentiation and decreasing 
apoptosis [11, 43-45]. Some reports indicated 
that KIM-1 acts as a costimulatory molecule 
during antigen presentation, amplifying T cell 
receptor (TCR) signaling with TCR complex co- 
mponents zeta chain of T cell receptor asso- 
ciated protein kinase 70 (ZAP-70) and CD3 
(T-cell receptor T3) [46]. KIM-1 combined with 
CD3 can be recruited to the TCR complex, thus 
increasing the activation signal of T cells, aided 
by activation of the PI3K pathway [47]. In a 
mouse transplantation experiment, KIM-1 re- 
gulated the endogenous Th2-immune respon- 
se, which provided new insights for the clini- 
cal treatment of graft rejection [48]. These 
reports showed that KIM-1 is predominantly 
associated with the Th2 immune response. 
However, in asthma, KIM-1 also serves as a 
pattern recognition receptor on invariant natu-
ral killer cells (iNKTs), where it mediates cell 
activation when iNKT cells bind to PtdSer on 
the surface of cells undergoing apoptosis [49]. 
KIM-1 is also a marker of regulatory B cells [50] 
and its signaling is required for B cells to aug-
ment antibody or IL10 production by enhanc- 
ing B cell proliferation and differentiation [51-
53]. KIM-1 on immune cells may be a useful 
therapeutic target to treat immune diseases. 

By contrast, in allergic inflammation, applica-
tion of an anti-KIM-1 antibody induced T cells 
that markedly increased the production of pro-
inflammatory IL4. This indicated that immuno-
therapies that regulate KIM-1 might inhibit 
immune tolerance [54]. KIM-1 on NKT cells and 

mast cells also enhanced Th2-type cytokine 
production of IL-4, IL-5, and IL-13 [37, 55]. 
Moreover, in a mouse model of asthma, the 
production of IL4 induced by KIM-1 might have 
resulted from the elevation of Th2 transcription 
factor GATA binding protein 3 (GATA3) [39]. 
KIM-1 can promote macrophages to produce  
a dramatic increase of proinflammatory cyt- 
okines, including tumor necrosis factor alpha 
(TNFα) and IL6 [56]. KIM-1 is a major P-selectin 
ligand and is involved in a pivotal trafficking 
mechanism for Th1 and Th17 cells during 
inflammation, which are potent inducers of in- 
flammation and autoimmunity. These observ- 
ations suggested that interference with KIM-1 
activity might provide a therapeutic approach 
in T cell-mediated diseases [57]. KIM-1 is also 
constitutively expressed on dendritic cells 
(DCs), where it confers pro-inflammatory prop-
erties [58]. In a DC-induced allergy model, dis-
ruption of the KIM-1/TIM4 interaction was pro-
moted as a therapeutic strategy [59].

Patterns of variation in KIM-1 have been 
shaped by both positive and balancing natural 
selection in the course of primate evolution 
[60]. For example, the levels of polymorphisms 
in exon 4 of KIM-1 are unusually high in humans 
or among human, chimp, and gorilla, which rep-
resents evidence that natural selection may 
have applied to preserve functional variation in 
exon 4, suggesting that KIM-1 can adapt to a 
continually changing environment under long-
range pressure. Several studies have shown 
that cells containing polymorphic KIM-1 are 
susceptible to HAV infection and immune dis-
eases [34, 35, 61-65]. For example, a 6-amino-
acid-encoding insertion in KIM-1 (157insMT- 
TTVP) is associated with HAV-induced severe 
liver disease [61]. Moreover, KIM-1 gene po- 
lymorphisms (-416G>C and -1454G>A) were 
observed to be related to allergic rhinitis sus-
ceptibility in a Han Chinese population [63]. 
However, HAV infection induces the production 
of the short-form KIM-1 protein, which has the 
low efficiency to combine with HAV and limits 
its entry into cells [66, 67]. In acquired immu-
nodeficiency syndrome (AIDS), patients carry-
ing the KIM-1 D3-A haplotype have lower 
expression levels of KIM-1, resulting in better 
survival rates compared with other patients 
because of their higher CD4 cell count [68]. 
These data prove a correlation between KIM-1 
and immune-related diseases, confirming that 
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both genetic and environmental factors play a 
role in such pathologies.

Expression and secretion of KIM-1 in the kid-
ney

Normal kidney tissues rarely express KIM-1, 
except in the acute injury resulting from isch-
emia, hypoxia, toxicity, or some renal tubular 
interstitial, and polycystic kidney disease [69-
71]. Under conditions of acute kidney injury, uri-
nary and renal KIM-1 levels are significantly 
elevated in a short period of time, and correlate 
with the extent of kidney damage. KIM-1 is 
mainly expressed in differentiated proximal 
renal tubular epithelial cells, which can regen-
erate after injury, especially in the proximal 
tubule S3 outer medulla area because of its 
sensitivity to ischemia, hypoxia, and toxicity.

After injury to renal tubular cells, the extracel-
lular section of KIM-1 is released into the renal 
tube cavity and is further shed into the urine, 
mediated by mitogen-activated protein kinase 
(MAPK) signaling pathways [72]. This shedding 
of KIM-1 is also based on the activation of ty- 
pe I and III membrane matrix metalloproteina- 
ses (MT-MMPS) [73, 74] and a disintegrin and 
metalloprotease (ADAM) [75], which lead to its 
detection in urine. Measuring the expression 
level of KIM-1 in urine is sensitive for the early 
diagnosis of acute kidney disease (AKI) and 
chronic kidney diseases (CKD) [76], as well as 
useful to effectively assess renal pathological 
damage and disease progression [77].

KIM-1 and acute kidney injury 

In patients with acute renal tubular injury, the 
KIM-1 expression level in the kidney is signifi-
cantly elevated compare with that in the healthy 
population. The proposed mechanism is that 
acute renal damage initiates ERK1/2 and sig-
nal transducer and activator of transcription 3 
(STAT3) phosphorylation. Then, nuclear STAT3 
binds to the KIM-1 promoter and increases its 
mRNA and protein levels [78, 79]. Shedding of 
the extracellular domain leads to greatly 
increased levels of KIM-1 in blood and urine, 
which can be used to diagnose acute renal 
tubular dysfunction after renal transplant [80]. 
The KIM-1 level is also significantly correlated 
with the decline of the estimated glomerular fil-
tration rate (eGFR) and kidney damage [81]. 

Acute overexpression of KIM-1 in proximal renal 
tubular epithelial cells after ischemia, hypoxia, 
and toxicity promotes transformation of the 
cells into “semi-professional” phagocytic cells, 
with the help of KIM-1’s mucin domain. KIM-1 is 
a phosphatidylserine receptor on the surface of 
the liposome that can identify the apoptosis 
body and phosphatidylserine, which mediates 
further phagocytosis [82]. 

Thus, KIM-1 plays a role in the removal of apop-
totic cells and necrotic tissue fragments. 
Furthermore, KIM-1 phosphorylation, and its 
interaction with p85, enhance cell autophagy 
to degrade KIM-1 phagosomes relying on Unc-
51 like autophagy activating kinase 1 (ULK1, 
also known as ATG1) phosphorylation and 
maintain self-tolerance by the presentation of 
antigens on the proximal tubule cell [83]. In kid-
ney diseases of protein overload, KIM-1 can be 
used to increase the phagocytosis of albumin 
by renal tubular epithelial cells, which alleviates 
the tubular damage [84]. 

In addition to its role in mediating phagocyto-
sis, KIM-1 is also involved in the repair process 
after injury to renal tubular epithelial cells. In 
vitro, transient KIM-1 overexpression can pro-
mote the migration and proliferation of renal 
tubular epithelial cells by activation of the ERK/
MAPK signaling pathway. KIM-1 serves as a 
therapeutic target to facilitate the renal repair 
process after AKI [85]. Other studies have 
reported that after the acute kidney ischemia 
injury in mice, KIM-1 and G Protein Alpha 12 
(Gα12) interact directly. At the same time, 
Gα12 can inhibit the activation of downstream 
Ras homolog gene family, member A (RhoA). 
Through these signaling events, endocytosis is 
negatively regulated by Gα12 in acute renal 
ischemic injury [86]. Upregulation of KIM-1 can 
protect against kidney ischemia damage by 
suppressing Gα12 activation and blocking GTP 
loading [87]. Thus, accumulated evidence has 
demonstrated the beneficial effects of the KIM-
1-related renal tubular protection mechanism 
in the early stages of kidney injury.

KIM-1 and chronic kidney disease 

KIM-1 also is a sensitive biomarker for chronic 
proximal tubular injury [88]. Studies showed 
that in urine samples from adults and children, 
the level of KIM-1 correlates highly with the inci-
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dence and prognosis of CKD [89-91]. In the 
progression of IgA nephropathy, a higher level 
of KIM-1 in urine leads to more serious and 
rapid disease progression [92]. In protein-ov- 
erload nephropathy, increasing KIM-1 levels 
are associated with inflammation of the renal 
tubules [93]. KIM-1 is the only effective clinical 
biomarker for CKD associated with hyperten-
sion [94]. In more severe CKD, KIM-1 is an inde-
pendent risk factor for progression to end-
stage renal disease (ESRD) [95]. 

In vivo animal models of unilateral ureteral ob- 
struction (UUO) showed that continued chronic 
expression of KIM-1 in renal tubular promoted 
the secretion of monocyte chemotactic protein 
1 (MCP-1), which enhanced macrophage che-
motaxis, thus further promoting the occurrence 
of fibrosis [5]. In addition to these rodent mod-
els, the expression level of KIM-1 was also 
increased in human renal proximal tubule epi-
thelial cells (HK2) under conditions of chronic 
hypoxia. This led to activation of mononuclear 
macrophages and the occurrence of renal 
tubule interstitial inflammation [96]. Moreover, 
KIM-1 plays a crucial role in macrophage acti-
vation via the MAPK signaling pathway in kid-
ney disease, inducing macrophages to differen-
tiate into the M1 type. The renal mRNA expres-

sion levels of the M1-dependent genes IFNG 
(interferon gamma) and INOS (nitric oxide sy- 
nthase 2) markedly increased. This was cons- 
istent with the increases of proinflammatory 
macrophage cytokines in blood, such as TNF-α 
and IL-6. In contrast, the expression levels of 
M2-dependent genes (MR (mineralocorticoid 
receptor) and Arg1 (arginase 1)) and cytokines 
(IL-4 and IL-10) decreased [97]. 

In addition, when HK2 cells were cultured in 
high glucose, the expression levels of KIM-1 
and LC3II (microtubule associated protein 1 
light chain 3 alpha, a marker of autophagy) 
increased. Autophagy and apoptosis are initi-
ated in high glucose at the same time, which 
leads to cell death. Meanwhile, silencing of 
KIM-1 resulted in the inhibition of the glucose-
induced production of LC3II, autophagy, and 
apoptosis, followed by a reduction in cell death. 
This indicated that blocking KIM-1 in a high glu-
cose environment helps to maintain cellular 
homeostasis via autophagy and apoptosis [98]. 
Observation of kidney pathological sections 
revealed a more severe extent of renal tubular 
injury, inflammation reaction, and fibrosis in the 
area where KIM-1 was markedly expressed 
[99]. These findings indicated that KIM-1 is 
involved in regulating the development of CKD 
and renal fibrosis.

Figure 2. The role of KIM-1 in different diseases. In the immune system, KIM-1 is related to viral infections and auto-
immunity. In acute kidney injury (AKI), KIM-1 is involved in cell phagocytosis, repair processes, and anti-inflamation, 
and is shed into urine. However, KIM-1 can promote renal fibrosis, tubular apotosis, and inflammatory response 
in chronic kidney disease (CKD). KIM-1, kidney injury molecule-1; TIM-1, T-cell immunoglobulin mucin receptor 1.
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In the early stage of diabetic kidney disease 
(DKD), the expression of KIM-1 in the glomeru- 
li is significantly elevated, mainly in the prolif-
erative parietal epithelium of the capsule. The 
expression of KIM-1 increases along with the 
development of the disease and correlates wi- 
th decreased numbers of podocytes [100]. 
Moreover, glomerular KIM-1 expression was 
elevated in proportion to the extent of protein-
uria and podocytopenia in diabetic animals; 
supporting the view that it could be used as a 
potential biomarker for glomerular injury in pro-
teinuria kidney disease. In anti-neutrophil cyto-
plasmic antibodies (ANCA)-associated glomer-
ulonephritis, the levels of both KIM-1 and 
MCP-1 in the urine can reflect inflammation and 
are related to prognosis evaluation of the glom-
eruli [101].

Conclusions

In summary, KIM-1 has a wide variety of physi-
ological and pathological functions in different 
diseases (Figure 2). The earliest identified 
homolog of KIM-1, HAVCR1, which is the recep-
tor for HAV, is involved in cell entry and patho-
genesis of HAV, as well as other viruses. In 
immune system related diseases, TIM1 (a vari-
ant of KIM-1) is a co-stimulator of T cell activa-
tion and plays an important role in regulating 
the Th2 reaction. TIM4 and CD3 as ligands can 
promote the proliferation and activation of Th2 
cells, as well as inducing the production of cyto-
kines IL4, IL5, IL-10, and IL13, which play 
important roles in immune system activation. 
With the help of metalloproteinases, the 
ectodomain of KIM-1 is shed into the renal tube 
cavity and is excreted in the urine and blood, 
acting as an indicator of kidney injury. 
Furthermore, the function of KIM-1 in AKI and 
CKD is different. In the early stage of renal 
tubular damage, the increased expression of 
KIM-1 promotes cell phagocytosis, repairs 
tubular injury, and inhibits the renal inflamma-
tory response. By contrast, the continuous 
increase in KIM-1 levels is not a protective fac-
tor in CKD, which in turn promotes the occur-
rence and development of renal fibrosis.

In this review, we provided an overview of KIM-
1. Further studies are required to determine its 
function to develop effective and suitable ther-
apeutic methods to treat immune and renal dis-
eases by directly targeting KIM-1. 
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