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Abstract. In this paper, we study Klein–Gordon–Zakharov equations which describe the propagation of strong
turbulence of the Langmuir wave in a high-frequency plasma. Using the symbolic manipulation tool Maple, the
classifications of symmetry algebra are carried out, and the construction of several local non-trivial conservation
laws based on a direct method of Anco and Bluman is illustrated. Starting with determination of symmetry algebra,
the one- and two-dimensional optimal systems are constructed, and optimality is also established using various
invariant functions of full adjoint action. Apart from classification and construction of several conservation laws,
the Painlevé analysis is also performed in a symbolic manner which describes the non-integrability of equations.

Keywords. Klein–Gordon–Zakharov equations; optimal systems; conservation laws; Painlevé analysis.

PACS Nos. 02.20.Qs; 02.20.Sv; 02.30.Jr; 11.30.j

1. Introduction

The symmetry analysis of partial differential equations
developed by Sophus Lie is the most powerful algorith-
mic technique as of now while studying some types of
geometric transformations that promised to have consid-
erable relevance in the subsequent study of symmetries.
It is a well-known fact [1,2] that the Lie group theory
is based on an inspirational idea taken from the the-
ory of algebraic equations given by Galois and Abel.
The first step in the Lie theory involves the determi-
nation of group of point transformations. Such a group
is also called a symmetry group. Any subgroup of a
symmetry group is capable of reducing the differential
equation into an equation with fewer number of inde-
pendent variables, which corresponds to group invariant
solutions, but not all subgroups generate group invari-
ant solutions [3]. As described by Olver [4], there exist
infinitely many subgroups of full symmetry group, such
that most of them turn out to be equivalent through group
of inner automorphism, thus leading to redundant group
invariant solutions. The group of inner automorphism
may be used to classify the given symmetry algebra into
classes of pairwise non-conjugate subalgebras. Such
a collection of pairwise non-conjugate subalgebras is
called optimal system.

The classification of Lie algebra was already known
to Lie himself [5] and subsequent work on the clas-
sification of Lie algebras can be seen in the excel-
lent review carried out by Boza et al [6]. Apart
from various methodologies developed for classifi-
cation of Lie algebras, the systematic study given
by Patera et al [7–9] in a series of papers is par
excellence. The complete classification of all Lie alge-
bras of dimension ≤4 into conjugacy classes can
be found in their subsequent work [10]. Around the
same period of time, based on global adjoint matrix,
Ovsiannikov [3] developed a technique to classify
Lie algebras into one-dimensional optimal system and
the approach is further generalised to construct the
higher dimensional optimal systems. Galas and Richter
[11] made further modifications in the technique of
Ovsiannikov by considering the quotient group of nor-
malisers. Apart from sophisticated techniques using
fundamentals of Lie algebra, Olver [4] developed a
very elementary method of reducing the general ele-
ment from the Lie algebra into conjugacy classes by
applying group of inner automorphisms (or adjoint
actions). He also discussed the importance of con-
sidering the Killing form for identification of rep-
resentatives of each equivalence class and the work
of Chou et al [12] and Chou and Qu [13] further
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strengthens the optimality of conjugacy classes by
introducing numerical invariants.

In this work, our aim is to study group classification
and integrability of Klein–Gordon–Zakharov (KGZ)
equations in (3+1)-dimension:

φt t − �φ + φ + φ ψ = 0,

ψt t − c2 �ψ − �|φ|2 = 0.
(1)

Here

� = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

is the Laplacian operator in R
3, φ = φ(x, y, z, t),

ψ = ψ(x, y, z, t) and c is the propagation speed of
a wave. System (1) describes the propagation of strong
turbulence of the Langmuir wave (rapid oscillations of
the electron density in conducting media such as plas-
mas or metals) in a high-frequency plasma [14]. The
function φ denotes the fast time scale component of
electric field raised by electrons and the function ψ

denotes the deviation of ion density from its equilibrium.
The functions φ and ψ are originally real vector val-
ued and real scalar valued, respectively. KGZ equations
have similar shape to Zakharov equations and Klein–
Gordon–Schrödinger equations. Ozawa et al [15], Tsu-
taya [16] and Ozawa et al [17] have studied the well
posedness in energy space, global existence and asymp-
totic behaviour of solutions for the Cauchy problem of
the KGZ equations. Equations (1) have been studied for
exact solutions by various researchers [18–22].

The paper is organised as follows. In §2, the Lie
symmetry analysis and group classification of Lie alge-
bra into one- and two-dimensional optimal subalgebras
are given, and the optimality is confirmed by the intro-
duction of several invariants of full adjoint action. In §3,
based on the direct method, we have demonstrated the
construction of local non-trivial conservation laws. In
§4, the package ‘wkptest’ is also implemented in order
to analyse the Painlevé property of equations. Finally in
§5, the conclusion is drawn.

2. Symmetry group of the KGZ equations

The procedure for determining symmetry algebra for
partial differential equations is well known [4,23–
25]. The procedure is so algorithmic that it has been
successfully implemented in symbolic languages such
as ‘Maple’ and ‘Mathematica’. The Maple package
‘PDEtools’ written by Cheb-Terrab and Von Bülow [26]
is so interactive and efficient that it becomes indispens-
able for researchers in the field of PDEs. The PDEtools
package can be applied by setting φ = u+ iv in (1). We
obtain

�1 = ψu + u + ut,t − ux,x − uy,y − uz,z = 0,

�2 = ψv + v + vt,t − vx,x − vy,y − vz,z = 0,

�3 = ψt,t − c2(ψx,x + ψy,y + ψz,z) − 2u2
x

−2uux,x − 2v2
x − 2vvx,x − 2u2

y − 2 uuy,y

−2v2
y − 2vvy,y − 2u2

z − 2uuz,z

−2v2
z − 2vvz,z = 0. (2)

The element of symmetry algebra for (2) may be written
as

V = ξ x∂x + ξ y∂y + ξ z∂z + ξ t∂t + ηu∂u + ηv∂v

+ ηψ∂ψ. (3)

The infinitesimals ξ ’s and η’s can be recovered from the
invariance criteria

pr(2) V · �i |�i=0 = 0, i = 1, 2, 3. (4)

Here pr(2) is the second-order prolongation of vector
field V and the related detailed discussion about the
prolongation of vector field can be seen in [23] (see
e.g. Theorem 2.4.2-1). The Maple package PDEtools
quickly gives out the nine-dimensional symmetry
algebra

V1 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ t

∂

∂t
− u

∂

∂u
− v

∂

∂v

+ (−2w − 2)
∂

∂w
,

V2 = y
∂

∂x
− x

∂

∂y
,

V3 = z
∂

∂x
− x

∂

∂z
, V4 = ∂

∂x
,

V5 = z
∂

∂y
− y

∂

∂z
, V6 = ∂

∂y
,

V7 = ∂

∂z
, V8 = ∂

∂t
, V9 = v

∂

∂u
− u

∂

∂v
.

(5)

The structure of Lie algebra (5) can be properly
identified from the non-zero commutation relations

[V1, V4] = −V4, [V1, V6] = −V6,

[V1, V7] = −V7, [V1, V8] = −V8, [V2, V3] = V5,

[V2, V4] = V6, [V2, V5] = −V3, [V2, V6] = −V4,

[V3, V4] = V7, [V3, V5] = V2,

[V3, V7] = −V4, [V5, V6] = V7, [V5, V7] = −V6.

(6)

Notice that the Lie algebra L = {Vi , i = 1, . . . , 9}
defined by (5) admits the Levi decomposition

L = S � rad(L) (7)

with semi-simple Levi subalgebra S = {V2, V3, V5}
and radical rad(L) = {V1, V4, V6, V7, V8, V9}. Any



Pramana – J. Phys. (2019) 92:1 Page 3 of 11 1

vector field in Lie algebra (5) is capable of generating
the Lie group of point transformations [4,27] through
exponentiation

T̃ = exp(ai Vi )T, i = 1, . . . , 9,

for T = T (x, y, z, t, u, v, ψ). (8)

Such transformation T̃ sometimes is also called as
one-parameter group of infinitesimal transformation.
The nine-parameter version of the Lie group of point
transformation may be expressed as

T̃ = exp

(
9∑

i=1

ai Vi

)
T . (9)

For each subgroup of symmetry group L there exists a
corresponding family of group invariant solutions. Since
there might be virtually infinite number of such sub-
groups, it would not be possible to list all such group
invariant solutions. Unfortunately, most of the group
invariant solutions obtained in that way would be equiv-
alent through transformation (8). Therefore, in order to
obtain inequivalent group invariant solutions under full
symmetry group L , an effective technique for the clas-
sification of group invariant solution is needed. Such a
technique is developed by Olver [4]. Define the adjoint
transformation

Adexp(εX) (Y ) = exp(−εX)Y exp(εX) = Ỹ (ε), (10)

where X is the general element of L and Y from any
subgroup of L . The adjoint transformation (10) ensures
that the group invariant solutions under Y and Ỹ can-
not be connected by transformation (8). The adjoint
transformation (10) can be written through commuta-
tors using Campbell–Hausdorff formula as

Adexp(εX) (Y ) = Y − ε[X, Y ] + ε2

2
[X, [X, Y ]] − · · · ,

(11)

where [. , .] is the Lie bracket defined by (6). Let X =∑9
i=1 ai Vi , and based on Lie brackets defined at (6)

and formula (11), a straightforward calculation using
the Maple programming shows that

Adexp(ε5V5) Adexp(ε3V3) Adexp(ε7V7)

×Adexp(ε4V4) Adexp(ε6V6) Adexp(ε1V1)

×Adexp(ε8V8) Adexp(ε2V2) Adexp(ε9V9) (X)

=
9∑

i=1

ãi Vi , (12)

where the coefficients ãi , i = 1, . . . , 9, are given
in Appendix B.

2.1 Construction of invariant functions

It is easily seen from full adjoint action and table 1 that
a1 and a9 are invariants. However, as described in [28],
the general invariant function can be obtained by solving
the system of PDEs given by

a1φa8 = 0, a1φa4 − a2φa6 − a3φa7 = 0,

a1φa6 + a2φa4 − a5φa7 = 0,

a1φa7 + a3φa4 + a5φa6 = 0,

a2φa3 − a3φa2 + a6φa7 − a7φa6 = 0,

− a2φa5 + a4φa7 + a5φa2 − a7φa4 = 0,

a3φa5 + a4φa6 − a5φa3 − a6φa4 = 0,

− a4φa4 − a6φa6 − a7φa7 − a8φa8 = 0.

The straightforward solution of the above system of
PDEs shows that the general invariant function must
be

φ = F(a1, a
2
2 + a2

3 + a2
5, a9), (13)

where F is an arbitrary function.
The particular invariant can also be obtained by the

Killing form. For X = ∑9
i=1 ai Vi , the straightforward

calculations show that

K(X, X) = 4a2
1 − 4a2

2 − 4a2
3 − 4a2

5,

K(X, X) = Killing form. (14)

The Killing form (see e.g. [3]) is defined in the following
manner:

K(X, X) = Trace(adX · adX), (15)

where

adX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 −a5 0 a3 0 0 0 0
0 a5 0 0 −a2 0 0 0 0
a4 a6 a7 −a1 0 −a2 −a3 0 0
0 −a3 a2 0 0 0 0 0 0
a6 −a4 0 a2 a7 −a1 −a5 0 0
a7 0 −a4 a3 −a6 a5 −a1 0 0
a8 0 0 0 0 0 0 −a1 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

Therefore, the Killing form gives invariant K(X) =
4(a2

1 − a2
2 − a2

3 − a2
5) of full adjoint action such that

K(Adg(X)) = K(X) for X = ∑9
i=1 ai Vi ∈ L and

g ∈ G, the Lie group generated by L .
Various invariants may be listed as follows:

η = a2
2 + a2

3 + a2
5,

as evident from the general invariant function (13),
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(17)

The last invariant C is clear from the full adjoint action
given in Appendix B. It is obvious that

ã2
2 + ã2

3 + ã2
5 = a2

2 + a2
3 + a2

5,

where ã2 = ã3 = ã5 = 0 if and only if a2 = a3 = a5 =
0. In a similar way,

D =
{

1, a2
4 +a2

6 +a2
7 +a2

8 �= 0, a1 =a2 =a3 =a5 =0,

0 otherwise
(18)

is also an invariant of full adjoint action given by
Appendix B. Further, it is pertinent to mention that the
construction of invariants obtained here has been dis-
cussed in detail in [12].

2.2 Construction of optimal system

The detection of invariants of full adjoint action is very
helpful in the classification of Lie algebra L into one-
dimensional optimal subalgebras. The invariant η is
always positive but still various restrictions on coeffi-
cients a2, a3 and a5 can be discussed. For example, for
a2 �= a3 �= a5 �= 0. A direct simplification in full adjoint
action (12) gives

Adexp(ε7V7) Adexp(ε4V4) Adexp(ε6V6) Adexp(ε8V8) (X)

=
9∑

i=1

ãi Vi , (19)

where

ã4 = −a1ε4 − a2ε6 − a3ε7 + a4,

ã6 = −a1ε6 + a2ε4 − a5ε7 + a6,

ã7 = −a1ε7 + a3ε4 + a5ε6 + a7.

ã8 = −a1ε8 + a8. (20)

These coefficients vanish on choosing
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ε4 = a2
1a4 − a1a2a6 − a1a3a7 + a2a5a7 − a3a5a6 + a4a2

5

a1(a2
1 + a2

2 + a2
3 + a2

5)
,

ε6 = a2
1a6 + a1a2a4 − a1a5a7 − a2a3a7 + a2

3a6 − a3a4a5

a1(a2
1 + a2

2 + a2
3 + a2

5)
,

ε7 = a2
1a7 + a1a3a4 + a1a5a6 + a2

2a7 − a2a3a6 + a2a4a5

a1(a2
1 + a2

2 + a3
2 + a2

5)
,

ε8 = a8

a1
.

(21)

Further actions by Adexp(ε2V2) and Adexp(ε3V3) and for
suitable selection of ε2 and ε3, X becomes

P1 = a1V1 + a2V2 + a9V9,

for some constants a1, a2 and a9. No further
simplifications are possible.

Proceeding in a similar fashion, the other members of
optimal system can be listed as follows:

Case 1: η �= 0.

P2 = a2V2 + a3V3 ± V6 + a8V8 + a9V9,

a1 = 0, a2 �= 0, a3 �= 0, a5 �= 0,

P3 = a1V1 + a3V3 + a9V9,

a2 = 0, a3 �= 0, a5 �= 0,

P4 = a2V2 + a5V5 ± V7 + a8V8 + a9V9,

a1 = 0, a2 �= 0, a3 = 0, a5 �= 0,

P5 = ±V4 + a5V5 + a8V8 + a9V9,

a1 = 0, a2 = 0, a3 = 0, a5 �= 0.

Case 2: η = 0.

P6 = 1V1 + a9V9, a2 = 0, a3 = 0, a5 = 0,

P7 = ± V7 + a8V8 + a9V9,

a1 = 0, a2 = 0, a3 = 0, a5 = 0.

Case 3: Since a1 and a9 are invariants of full adjoint
action as also cleared from table 1. So remaining mem-
bers of optimal system are given by

P8 = V1, P9 = V9.

The values of invariants obtained in §2.1 are
calculated for every member of the optimal system
{Pi , i = 1, . . . , 9}. These values of invariants are
depicted in table 2 and the mutual inequivalence among
Pi’s can be easily seen from table 2.

2.3 Two-dimensional optimal system

In order to construct the two-dimensional optimal
subalgebra, we follow the procedure developed by
Ovsiannikov [3] (see e.g. p. 199) and its implementation

by various researchers [11,27,29,30]. We list a pair of
two-dimensional subalgebras of the form 〈X, Y 〉, such
that [X, Y ] = λX +μY , for X = Pi , i = 1, . . . , 9. For
precise selection, Y can be selected from the normaliser
NorL(X) = {Y ∈ L| [X, Y ] ∈ X}, i.e. [X, Y ] = λX .
As suggested by Galas and Richter [11], one can avoid
the occurrence of X in Y by selecting Y from the factor
algebra NorL(X)/X , where the normaliser NorL(X) can
be obtained by setting⎡
⎣X,

9∑
j=1

a j Vj

⎤
⎦ = λX, (22)

where λ is an arbitrary constant. From relation (22)
we can find all possible non-zero ai ’s that constitute
NorL(X) and NorL(X)/X can be constructed by remov-
ing all linear combinations of X in the normaliser. In the
following, we give a list of two-dimensional subalgebras
with this construction:

M1 = 〈a1V1 + a2V2, V9〉, a2 �= 0, a9 = 0,

M2 = 〈a1V1 + a9V9, b1V2 + b2V3 + b3V5〉,
a2 = 0, a9 �= 0,

M3 = 〈a2V2 + a3V3 ± V6 + a8V8 + a9V9, a2a3V2

+ a2
3V3 + a2V7〉,

M4 = 〈a2V2 + a3V3 ± V6 + a8V8 + a9V9, a2V2

+ a3V3 + V6〉,
M5 = 〈a1V1 + a3V3, V9〉, a9 = 0,

Table 2. Invariants of full adjoint action (12).

η A B C D

P1 a2
2 a1 a9 1 0

P2 a2
2 + a2

3 0 a9 1 0
P3 a2

3 a1 a9 1 0
P4 a2

2 + a2
5 0 a9 1 0

P5 a2
5 0 a9 1 0

P6 0 a1 a9 0 0
P7 0 0 a9 0 1
P8 0 a1 0 0 0
P9 0 0 a9 0 0
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Table 3. Invariants of the general vector λX1 + μX2 in M = 〈X1, X2〉.
η A B C D

M1 (λa2)
2 λa1 μ 1 0

M2 μ2(b2
1 + b2

2 + b2
3) λa1 λa9 1 0

M3 (λ + μa3)
2(a2

2 + a2
3) 0 λa9 1 0

M4 (λ + μ)2(a2
2 + a2

3) 0 λa9 1 0
M5 (λa3)

2 λa1 μ 1 0
M6 (λa2)

2 + (λ + μ)2a2
5 0 λa9 1 0

M7 (λ + μa2)
2(a2

2 + a2
5) 0 λa9 1 0

M8 (λa5)
2 0 μ 1 0

M9 (λa5)
2 0 λa9 1 0

M10 (λa5)
2 0 μb2 1 0

M11 (μb1)
2 0 λa9 1 0

M12 μ2(b2
1 + b2

2 + b2
3) λ μa9 1 0

M6 = 〈a2V2 + a5V5 ± V7 + a8V8

+ a9V9, a5V5 + a2V7〉,
M7 = 〈a2V2 + a5V5 ± V7 + a8V8 + a9V9, a

2
2V2

− a5V4 + a2a5V5〉,
M8 = 〈V4 + a5V5 + a8V8, V9〉, a9 = 0,

M9 = 〈V4 + a5V5 + a9V9, V8〉, a8 = 0,

M10 = 〈V4 + a5V5, b1V8 + b2V9〉, a8 = 0, a9 = 0,

M11 = 〈V7 + a8V8 + a9V9, b1V2 + b2V4 + b3V6〉,
M12 = 〈V1, b1V2 + b2V3 + b3V5 + b4V9〉,
M13 = 〈V9, P

∗
i 〉.

Here

P∗
i = Pi (without centre V9, i �= 1, 8, 9).

It remains to show that Mi ’s are mutually inequiv-
alent. In view of the well-known fact [3,12,13], any
two-dimensional subalgebra 〈X1, X2〉 can be written as

X = λX1 + μX2.

The subalgebra 〈X1, X2〉 is inequivalent to subalgebra
〈Y1, Y2〉 if it is impossible to write Yi = λi X1 + μi X2
for any λi , μi , i = 1, 2. As an illustration, we show that
M1 and M8 are inequivalent. On the contrary, let V4 +
a5V5+a8V8 be mapped to someλ(a1V1+a2V2)+μ(V9).
In terms of invariant A, 0 = A(V4 + a5V5 + a8V8) =
A(λ(a1V1 + a2V2) + μ(V9)) = λa1; therefore λ = 0.
This further implies that V4 +a5V5 +a8V8 is equivalent
to V9, which is impossible. Therefore, M1 and M8 are
inequivalent. Similarly, it is straightforward to see from
table 3 that all {Mi , i = 1, . . . , 12} are inequivalent
and inequivalence from M13 is justified from table 2.

3. Conservation laws

So many methods are available for the construction of
conservation laws [31]. Among all such methods, the

technique of Ibragimov [32] is quite popular, but the
recent comments from Anco [33] confirm the incom-
pleteness of the theorem. In particular, the formulation
proposed by Ibragimov can generate trivial conservation
laws and does not always yield all non-trivial conserva-
tion laws.

So in this section, we follow a more reliable method
for constructing conservation laws. The method is called
the direct method, which was first proposed by Anco and
Bluman [34] using multipliers given by Olver [4]. The
method is well established and the details can be seen
in [34–36].

Before proceeding towards the construction of
non-trivial local conservation laws, we need to famil-
iarise with some of the basic terminologies used in the
direct method. In the following, we state some of the
definitions and theorems.

DEFINITION 1

The Euler operator with respect to dependent variable
u j is the operator defined by

Eu j = δ

δu j
= ∂

∂u j
+

∞∑
s=1

(−1)s Di1 . . . Dis
∂

∂u j
i1...is

,

for each j = 1, . . . ,m, (23)

where Di is the total differentiation with respect to
independent variable x = (x1, . . . , xn). The Euler oper-
ator defined by (23) has an interesting property that it
can annihilate any divergence expression Di�

i (u), and
this property establishes the following theorem.

Theorem 1. The equation Eu j F(x, u, ∂u, . . . , ∂ pu) ≡
0 holds if and only if
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F(x, u, ∂u, . . . , ∂ pu) ≡ Di�
i (x, u, ∂u, . . . , ∂ p−1u),

i = 1, . . . , n, (24)

holds for some functions � i (x, u, ∂u, . . . , ∂ p−1u).

Proof. The proof of the theorem is given in [37]. 
�
Theorem 1 aids in the construction of local conservation
laws through multipliers, and so the second theorem is
stated as follows.

Theorem 2. A set of non-singular multipliers {�σ(x,
u, ∂u, . . . , ∂ lu)}Nσ=1 yields a local conservation law for
PDE system Rσ (x, u, ∂u, . . . , ∂ku) = 0 if and only if

Eu j (�σ (x, u, ∂u, . . . , ∂ lu)Rσ (x, u, ∂u, . . . , ∂ku))

≡ 0, j = 1, . . . ,m. (25)

Proof. The proof of the theorem is given in [37]. 
�
The set of eqs (25) are linear determining equations for
all local conservation law multipliers up to order l. Solv-
ing the determining equations (25) is the same as solving
the determining equations for infinitesimals in the Lie
symmetry analysis. When all the multipliers are deter-
mined, the divergence expression (24) may be written
as

�σ(u)Rσ [u] = Di�
i [u], (26)

which gives local conservation laws

Div �[u] = 0, (27)

holding on the solution space of system Rσ [u] =
Rσ (x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . For
a given set of multipliers, the divergence expression
(26) may be solved for fluxes � i [u] in several ways.
In one of the ways, when the multipliers are sim-
ple, the fluxes can be obtained by equating deriva-
tives (26) and sometimes inversion of the divergence
expression (26) for fluxes is too complex to handle. In
such cases, the homotopy operator may be used to invert
the divergence expression (26). The detailed discussion
and implementation of the homotopy operator is given
in [38] and references therein.

Now we shall use Theorem 1 to construct conservation
law multipliers for (2). We consider zero-order mul-
tipliers �1(x, y, z, t, u, v, ψ), �2(x, y, z, t, u, v, ψ),

�3(x, y, z, t, u, v, ψ), and such multipliers are given
by determining equations (25). So we have

Eu j [�1(x, y, z, t, u, v, ψ)�1

+ �2(x, y, z, t, u, v, ψ)�2

+ �3(x, y, z, t, u, v, ψ)�3] ≡ 0,

j = 1, 2, 3, (28)

where Eu j is the Euler operator (23) for u1 = u, u2 = v

and u3 = ψ . The determining equations (28) split with
respect to partial derivatives of u, v and ψ . This yields a
linear determining system for �’s, which can be solved
by the same algorithmic method used for solving the
determining equations for infinitesimal symmetries. The
solution of such determining equations gives

�1 = − v, �2 = u, �3 = 0, (29a)

�1 = 0, �2 = 0,

�3 = t exp(ax + by) sin(
√
a2 + b2 z), (29b)

�1 = 0, �2 = 0,

�3 = t exp(ax + by) cos(
√
a2 + b2 z), (29c)

where a = ±1 and b = ±1.
Each multiplier from set (29a)–(29c) determines a

local conservation law (27) in the format Dx�1(x, y, z,
t, u, v, ψ)+ Dy�2(x, y, z, t, u, v, ψ)+ Dy�3(x, y, z,
t, u, v, ψ) + Dt�4(x, y, z, t, u, v, ψ) = 0 with the
characteristic form

�1(x, y, z, t, u)�1 + �2(x, y, z, t, u)�2

+ �3(x, y, z, t, u)�3

= Dx�1(x, y, z, t, u, v, ψ)

+ Dy�2(x, y, z, t, u, v, ψ)

+ Dz�3(x, y, z, t, u, v, ψ)

+ Dt�4(x, y, z, t, u, v, ψ). (30)

The inversion of divergence expression (30) can be
carried out by four-dimensional homotopy operator
[38], and results read as follows:

• �1 = −v, �2 = u, �3 = 0.

�1 = uvx − uxv,

�2 = uvy − uyv,

�3 = uvz − uzv,

�4 = utv − uvt .

• �1 = 0, �2 = 0, �3 = t exp(ax + by)
× sin(

√
a2 + b2 z).

�1 = t eax+by sin(
√
a2 + b2z)

× (ac2ψ + au2 + av2 − c2ψx − 2uux
− 2vvx ),

�2 = t eax+by sin(
√
a2 + b2z)

× (bc2ψ + bu2 + bv2 − c2ψy − 2uuy

− 2vvy),

�3 = t eax+by(cos(
√
a2 + b2z)

√
a2 + b2c2ψ

+ cos(
√
a2 + b2z)

√
a2 + b2u2
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+ cos(
√
a2 + b2z)

√
a2 + b2v2

− sin(
√
a2 + b2z)c2ψz

− 2 sin(
√
a2 + b2z)uuz

− 2 sin(
√
a2 + b2z)vvz),

�4 = eax+by sin(
√
a2 + b2z) (twt − ψ) .

• �1 = 0, �2 = 0, �3 = t exp(ax + by)
× cos(

√
a2 + b2 z).

�1 = t eax+by cos(
√
a2 + b2z)

× (ac2ψ + au2 + av2 − c2ψx

− 2uux − 2vvx ),

�2 = t eax+by cos(
√
a2 + b2z)

× (bc2ψ + bu2 + bv2 − c2ψy

− 2uuy − 2vvy),

�3 = −t eax+by(
√
a2 + b2 sin(

√
a2 + b2z)c2ψ

+
√
a2 + b2 sin(

√
a2 + b2z)u2

+
√
a2 + b2 sin(

√
a2 + b2z)v2

+ cos(
√
a2 + b2z)c2ψz

+ 2 cos(
√
a2 + b2z)uuz

+ 2 cos(
√
a2 + b2z)vvz),

�4 = eax+by cos(
√
a2 + b2z) (twt − ψ).

4. Painlevé analysis of KGZ equation

To investigate the singularity structure of (2), the
local Laurent expansion in a neighbourhood of non-
characteristic manifold g(z1, . . . , zn) = 0 can be used
[39].

The Laurent expansion can be taken in the form

u = gα

∞∑
j=0

u j g
j , v = gα

∞∑
j=0

v j g
j ,

ψ = gα
∞∑
j=0

ψ j g
j , (31)

where g = g(x, y, z, t).
The leading order analysis can be carried out by letting

u = u0 gα1, v = v0 gα2, ψ = ψ0 gα3 . Inserting into (2)
and balancing the most dominant terms, we obtain four
branches as follows:

First branch

α1 = −1, α2 = −1, α3 = −2,

ψ0 = −2(g2
t − g2

x − g2
y − g2

z ),

u0 = 1

g2
x + g2

y + g2
z
(−(g2

x + g2
y + g2

z )

× (−2g2
x g

2
t c

2 − 2g2
yg

2
t c

2

− 2g2
z g

2
t c

2 + 2g4
xc

2 + 4g2
x g

2
yc

2

+ 4g2
x g

2
z c

2 + 2g4
yc

2 + 4g2
yg

2
z c

2

+ 2g4
z c

2 + 2g4
t − 2g2

x g
2
t − 2g2

yg
2
t

− 2g2
z g

2
t + g2

xv
2
0 + g2

yv
2
0

+ g2
z v

2
0))1/2,

(32)

where v0 is arbitrary.

Second branch

α1 = −1, α2 = −1, α3 = −2

ψ0 = −2(g2
t − g2

x − g2
y − gz

2),

u0 = − 1

g2
x + g2

y + g2
z
(−(g2

x + g2
y + g2

z )

× (−2g2
x g

2
t c

2 − 2g2
yg

2
t c

2

− 2g2
z g

2
t c

2 + 2g4
xc

2 + 4g2
x g

2
yc

2

+ 4g2
x g

2
z c

2 + 2g4
yc

2 + 4g2
yg

2
z c

2

+ 2g4
z c

2 + 2g4
t − 2g2

x g
2
t − 2g2

yg
2
t

− 2g2
z g

2
t + g2

xv
2
0 + g2

yv
2
0 + g2

z v
2
0))1/2,

(33)

where v0 is arbitrary.

Third branch

α1 = −2, α2 = −2, α3 = −2,

ψ0 = −6(g2
t − g2

x − g2
y − g2

z ), u0 = iv0,
(34)

where v0 is arbitrary.

Fourth branch

α1 = −2, α2 = −2, α3 = −2,

ψ0 = −6(g2
t − g2

x − g2
y − g2

z ),

u0 = −iv0,

(35)

where v0 is arbitrary.
The next step is to determine the resonant points cor-

responding to each branch. For the branch given by (32),
we substitute

u = u0 g
−1 + u j g

j−1, v = v0 g
−1 + v j g

j−1,

ψ = ψ0 g
−2 + ψ j g

j−2 (36)

into (2) and retaining the most singular part. The reso-
nance points read as
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r = −1, 0, 2, 3, 4. (37)

The first resonance is called Fuch index, and it is
always there because of the arbitrary nature of sin-
gularity manifold g(x, y, z, t). Same resonant points
are found for branch (33) but unfortunately reso-
nant points for branches (34) and (35) cannot be
calculated.

Further, we consider the generalised Laurent
expansions corresponding to first branch (32) in the
form

u = u0

g
+ u1 + u2 g + u3 g

2 + u4 g
3,

v = v0

g
+ v1 + v2 g + v3 g

2 + v4 g
3,

ψ = ψ0

g2 + ψ1

g
+ ψ2 + ψ3 g + ψ4 g

2, (38)

where u j , v j , ψ j ( j = 0, . . . , 4) are analytic functions
of (x, y, z, t) in the neighbourhood of singularity man-
ifold g. Substitution of (38) into (2) leads to complex
recursion relations for u j , v j , ψ j . Further, the simpli-
fied analysis can be carried out using Kruskal’s ansätz
[39]

g(x, y, z, t) = x + y + z − h(t),

u j = u j (t), v j = v j (t), ψ j = ψ j (t),

for j = 0, . . . , 4.

(39)

This simplification is justifiable by the implicit function
theorem whenever singular manifold is non-
characteristic. Substituting (38) and (39) into (2) and
collecting the coefficient of g corresponding to reso-
nance r = 2 lead us to the compatibility condition

−216g5
t gt,t,t c

4 − 108g4
t g

2
t,t c

4 + 192g7
t gt,t,t c

2

+192 g6
t g

2
t,t c

2 − 40g9
t gt,t,t − 20g8

t g
2
t,t

−144g3
t gt,t c

4 + 972g3
t gt,t,t c

4 + 1566 g2
t g

2
t,t c

4

+240g5
t gt,t c

2 − 960g5
t gt,t,t c

2 − 1872g4
t g

2
t,t c

2

+212g7
t gt,t,t + 242 g6

t g
2
t,t − 1512 gt gt,t c

4

−756 gt gt,t,t c
4 − 378g2

t,t c
4 − 168g3

t gt,t c
2

+984g3
t gt,t,t c

2 + 1548g2
t g

2
t,t c

2 − 244 g5
t gt,t,t

−154g4
t g

2
t,t + 84 gtc

2gt,t,t + 42g2
t,t c

2

−28g3
t gt,t,t + 42g2

t g
2
t,t = 0,

which is clearly not satisfied for arbitrary g. Therefore,
the KGZ equation fails to pass the Painlevé test for the
first branch (32), and it is presumably not integrable.
Same can also be verified for the second branch (33).
Since the Painlevé property fails at both the branches, it
is irrelevant to discuss the remaining branches (34) and
(35) for the Painlevé property.

Remark 3. In the Painlevé analysis, the leading order
and resonant points have been determined using the
Maple package ‘wkptest’ [40]. Although this package
quickly gives out the desired results, due to the com-
plexity of system (2) it failed to verify compatibility
conditions at resonant points. To encounter this problem,
we have used Kruskal’s ansätz (39) which considerably
simplified the complex algebraic calculations.

5. Conclusion

In summary, the Lie symmetry analysis is performed
in a symbolic manner to investigate the symmetries
of KGZ equations. The corresponding Lie algebra is
classified into one- and two-dimensional optimal subal-
gebras. Beside the Killing form, some more invariants
are introduced in (17) and (18) to verify the optimality
of the derived systems. Apart from the usual symme-
try analysis and classifications, we have demonstrated
the construction of several local non-trivial conservation
laws based on the direct method of Anco and Bluman. It
is pertinent to mention here that unlike the new conserva-
tion theorem of Ibragimov [32], which sometimes give
trivial conservation laws, the direct method has given
non-trivial conservation laws in a straightforward man-
ner. Further, the package ‘wkptest’ built for ‘Maple’ and
detailed manual calculations show that the equations
under study are not Painlevé integrable. Although eqs
(2) are not Painlevé integrable, the other integrable prop-
erties such as Bäcklund transformations and Lax pairs
can still be explored, which we intend to explore in our
future study.
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Appendix A. Maple code for full adjoint action

Let Mi, j be (i, j)th entry in table 1.
> F := (i, j) → Mi, j:
> M := Matrix(9, F):
This command will assign M the adjoint matrix equiv-
alent to adjoint table 1.
> ε := E:
> J := [0, 9, 2, 8, 1, 6, 4, 7, 3, 5]:
The order in J should be reversed when writing full
adjoint action.
> G0 := add(ak · Vk, k = 1, . . . , 9)
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G0 := a1V1 + a2V2 + a3V3 + a4V4 + a5V5 + a6V6
+ a7V7 + a8V8 + a9V9

> for j from 2 to nops(J ) do
k := J j

Fk := expand(Tk · GJj−1)

for i i to 9 do for j j to 9 do
Fk := expand(algsubs(Tii · Vj j = Mii, j j , Fk))
od od

Gk := expand(algsubs(E = εk, Fk))
od
This final procedure will produce full adjoint action
given by (12). For writing full adjoint in matrix format,
the following procedure can be used:
> SM:= proc(ex, V, A)

Matrix(map(t → [seq(coeff(t, Ai ), i = 1 . . . nops(A))],
map2(coeff, ex, V )))

end proc;
> SM(G5, [seq(Vi , i = 1 . . . 9)], [seq(ai , i = 1 . . . 9)])

Appendix B

ã1 = a1,

ã2 = − cos(ε2) cos(ε5) sin(ε3)a5

+ sin(ε2) cos(ε5) sin(ε3)a3

+ cos(ε2) sin(ε5)a3 + sin(ε2) sin(ε5)a5

+ cos(ε5) cos(ε3)a2,

ã3 = cos(ε2) sin(ε5) sin(ε3)a5

− sin(ε2) sin(ε5) sin(ε3)a3

+ cos(ε2) cos(ε5)a3 + sin(ε2) cos(ε5)a5

− sin(ε5) cos(ε3)a2,

ã4 = a4 cos(ε2)e
ε1 cos(ε3) + a3 cos(ε2)ε4 sin(ε3)

+ a5 cos(ε2)ε6 sin(ε3) − a3 cos(ε2)ε7 cos(ε3)

+ a6 sin(ε2)e
ε1 cos(ε3) − a3 sin(ε2)ε6 sin(ε3)

+ a5 sin(ε2)ε4 sin(ε3) − a5 sin(ε2)ε7 cos(ε3)

+ a7eε1 sin(ε3) − a1ε7 sin(ε3)

− a1ε4 cos(ε3) − a2ε6 cos(ε3),

ã5 = a5 cos(ε2) cos(ε3) − a3 sin(ε2) cos(ε3)

+a2 sin(ε3),

ã6 = − cos(ε2)e
ε1 sin(ε5) sin(ε3)a4

+ cos(ε2) sin(ε5) sin(ε3)a3ε7

+ cos(ε2) sin(ε5) cos(ε3)a3ε4

+ cos(ε2) sin(ε5) cos(ε3)a5ε6

− sin(ε2)e
ε1 sin(ε5) sin(ε3)a6

+ sin(ε2) sin(ε5) sin(ε3)a5ε7

− sin(ε2) sin(ε5) cos(ε3)a3ε6

+ sin(ε2) sin(ε5) cos(ε3)a5ε4

+ cos(ε2)e
ε1 cos(ε5)a6 − cos(ε2) cos(ε5)a5ε7

− sin(ε2)e
ε1 cos(ε5)a4 + sin(ε2) cos(ε5)a3ε7

+ eε1 sin(ε5) cos(ε3)a7

+ sin(ε5) sin(ε3)a1ε4 + sin(ε5) sin(ε3)a2ε6

− sin(ε5) cos(ε3)a1ε7

− cos(ε5)a1ε6 + cos(ε5)a2ε4,

ã7 = − cos(ε2)e
ε1 cos(ε5) sin(ε3)a4

+ cos(ε2) cos(ε5) sin(ε3)a3ε7

+ cos(ε2) cos(ε5) cos(ε3)a3ε4

+ cos(ε2) cos(ε5) cos(ε3)a5ε6

− sin(ε2)e
ε1 cos(ε5) sin(ε3)a6

+ sin(ε2) cos(ε5) sin(ε3)a5ε7

− sin(ε2) cos(ε5) cos(ε3)a3ε6

+ sin(ε2) cos(ε5) cos(ε3)a5ε4

− cos(ε2)e
ε1 sin(ε5)a6 + cos(ε2) sin(ε5)a5ε7

+ sin(ε2)e
ε1 sin(ε5)a4

− sin(ε2) sin(ε5)a3ε7 + eε1 cos(ε5) cos(ε3)a7

+ cos(ε5) sin(ε3)a1ε4

+ cos(ε5) sin(ε3)a2ε6 − cos(ε5) cos(ε3)a1ε7

+ sin(ε5)a1ε6 − sin(ε5)a2ε4,

ã8 = −eε1a1ε8 + eε1a8,

ã9 = a9.
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