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Spirooxindoles exist in a huge number of natural substances
and pharmaceutically interesting compounds.1 Thus, tremen-
dous efforts have been devoted to efficient protocols to
access these important motifs over the past years.1–5

Recently, we reported the synthesis of spirocyclohexadienyl-
2-oxindoles by 6π-electrocyclic ring closure (6π-ERC) of the
trienes, derived from Morita-Baylis-Hillman (MBH) adducts
of cinnamaldehyde and isatin (Scheme 1).2e Very recently,
we also reported the synthesis of dispirobisoxindole from
MBH carbonates of N-methylisatin (Scheme 1).3 During the
course of our study, we decided to examine the synthesis of
structurally related spirocyclohexadienyl-2-oxindoles4,5 with
different substitution pattern by 6π-ERC of the trienes,
derived from MBH carbonates of N-methylsatin and cinna-
maldehyde, as shown in Scheme 1.
At the outset of our experiment, the reaction of MBH

carbonate 1a and trans-cinnamaldenyde (2a, 1.1 equiv) in
1,2-dichlorobenzene (ODCB) was examined at 150�C in
the presence of PPh3 (1.0 equiv).3 To our delight,
spirocyclohexa-2,4-dienyl-2-oxindole 3a was obtained in
good yield (69%) in short time (2 h). The formation of the
other diastereomer (3a0, vide infra, Scheme 2) was not
observed. The structure of 3a was unequivocally confirmed
by its crystal structure (vide infra, Scheme 2).6 However,
two diastereomeric dispirobisoxindoles (see, Scheme 1)
have been formed as side products in appreciable yield
(23%), as in our previous paper.3 When we carried out the
reaction in refluxing p-xylene (5 h), the yield of 3a
increased to 74%, and the yield of dispirobisoxindoles
decreased (18%). The yield of 3a increased slightly (77%)
when we carried out the reaction in refluxing toluene; how-
ever, a long reaction time (24 h) was required. When we
used an excess amount of 2a (2.0 equiv) in refluxing xylene
(5 h), the yield of 3a increased up to 85%. In the reaction
mixture, the formation of only a trace amount (<5%) of dis-
pirobisoxindole was observed.7

Encouraged by the results we synthesized various spir-
ooxindoles 3b–3l, and the results are summarized in
Table 1. Various spirooxindoles 3b–3e were synthesized in

good to moderate yields (67–89%) by the reactions of
substituted isatin derivatives 1b–1e with 2a. The reaction of
1a and trans-3-(2-furyl)acrolein (2b) afforded 3f in moder-
ate yield (60%). The reaction of crotonaldehyde (2c) gave
3g in good yield (78%). In the reaction, we used an excess
amount of 2c (3.0 equiv) because the boiling point of 2c
(104�C) was lower than the reaction temperature (138�C).
The reactions of 1a with α-methyl-trans-cinnamaldehyde
(2d) and α-bromocinnamaldehyde (2e) afforded 3h and 3i
in good yields (68% and 84%, respectively). However, the
reactions with α-substituted aliphatic aldehydes, trans-2-
methyl-2-butenal (2f) and 1-cyclohexene-1-carboxaldehyde
(2g), produced the corresponding spirooxindoles 3j (23%)
and 3k (33%) in low yields with 3.0 equiv. of 2f or 2g. The
result might be due to sluggish reactivity in the Wittig reac-
tion of α-branched α,β-enals 2f and 2g.8 In addition, base-
catalyzed self-condensation of crotonaldehyde derivatives

Scheme 1. Synthesis of spirocyclohexadienyl-2-oxindoles.
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would be another plausible reason for the low yield.9 In
these regards, the yields of 3j (35%) and 3k (49%) were
improved by using an excess amount (5.0 equiv) of 2f or
2g. The reaction of acetyl derivative 1f and 2a gave 3l in
moderate yield (70%).
The reaction mechanism could be proposed, as shown in

Scheme 2. The reaction of 1a and PPh3 generated the

corresponding phosphorous ylide I.3,10 A following Wittig
reaction of I and 2a afforded the corresponding triene II as
a E/Z mixture at the α,β-position.11 A following thermal
double bond isomerization3,12 at the γ,δ-position would
afford II-EZE and II-ZZE. As noted above, only one diaste-
reomeric spirooxindole 3a was obtained. The result stated
that II-ZZE triene did not undergo the following 6π-ERC
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Scheme 2. Proposed mechanism.

Table 1. Synthesis of spirooxindole 3.

a Substrates: 1a: X = H, EWG = COOMe; 1b: X = 5-Me, EWG = COOMe; 1c: X = 6-Cl, EWG = COOMe; 1d: X = 5-OMe, EWG = COOMe;
1e: X = 5,7-Me2, EWG = COOMe; 1f: X = H, EWG = COMe; 2a: R1 = Ph, R2 = H; 2b: R1 = 2-furyl, R2 = H; 2c: R1 = Me, R2 = H; 2d:
R1 = Ph, R2 = Me; 2e: R1 = Ph, R2 = Br; 2f: R1 = Me, R2 = Me; 2g: R1-R2 = −(CH2)4−.

b Conditions: 1 (0.5 mmol), 2 (2.0 equiv), PPh3 (1.0 equiv), p-xylene, reflux, given time in parenthesis.
c 2c (3.0 equiv).
d 2f (5.0 equiv) and 2g (5.0 equiv).
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presumably due to severe steric hindrance around the termi-
nal phenyl moiety.2e

The reaction of 1a and β-phenylcinnamaldehyde (2h)
produced the corresponding triene 4 in moderate yield
(71%), as shown in Scheme 3. The triene 4 was not con-
verted to the corresponding spirooxindole even under
refluxing phenyl ether solution (5 h) presumably due to ste-
ric effects in the 6π-electrocyclization.2e

In order to show the synthetic applicability of 3a, we
examined a double bond isomerization, as shown in
Scheme 4. To our delight, the isomerization of 3a in 1,2-
dichloroethane (DCE) in the presence of 1,8- diazabicyclo
[5.4.0]undec-7-ene (DBU, 0.1 equiv) at room temperature
for 12 h afforded spirocyclohexa-2,5-dienyl-2-oxindole5

5 in good yield (76%). In the above isomerization of 3a to
5, a small amount of 3a (11%) was remained even after a
long time. Actually, the reverse isomerization of 5 into 3a
in the presence of DBU (0.1 equiv) in DCE at room tem-
perature for 12 h produced 3a in low yield (10%) along
with recovered 5 (83%). The result stated that 3a and 5 are
in equilibrium in the presence of DBU. In the reaction, the
formation of spirocyclohexa-2,5-dienone13 6 was observed
in a trace amount (6%). This compound 6 could be synthe-
sized in good yield (77%) from 5 according to the reported
allylic oxidation method employing pyridinium dichromate

(PDC) and tBuOOH.14 The conversion was also conducted
in a reasonable yield (46%) by aerobic oxidation in the
presence of DBU under O2 balloon atmosphere.15 A typical
catalytic hydrogenation of 3a in the presence of Pd/C
afforded 7 in good yield (85%) in short time (2 h).2e,13f

In summary, various spirocyclohexadienyl-2-oxindoles
have been synthesized in good yields by thermal 6π-
electrocyclization of trienes, derived by the Wittig reaction
of MBH carbonates of N-methylisatin and α,β-unsaturated
aldehydes.

Experimental

Typical Procedure for the Synthesis of 3a: A solution of
1a (174 mg, 0.5 mmol), 2a (132 mg, 1.0 mmol), and PPh3
(131 mg, 0.5 mmol) in p-xylene (1.5 mL) was heated to
reflux for 5 h under N2 balloon atmosphere. Removal of
the volatiles and column chromatographic purification pro-
cess (n-hexane/EtOAc, 3:1) afforded 3a (147 mg, 85%) as
a white solid. Other compounds were synthesized similarly,
and all spectroscopic data including 3a are summarized in
Supporting Information.
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