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Abstract. In this paper, we study the torsion subgroup and rank of elliptic curves for
the subfamilies of Em,p : y2 = x3 − m2x + p2, where m is a positive integer and p
is a prime. We prove that for any prime p, the torsion subgroup of Em,p(Q) is trivial
for both the cases {m ≥ 1, m �≡ 0 (mod 3)} and {m ≥ 1, m ≡ 0 (mod 3), with
gcd(m, p) = 1}. We also show that given any odd prime p and for any positive integer
m with m �≡ 0 (mod 3) and m ≡ 2 (mod 32), the lower bound for the rank of Em,p(Q)

is 2. Finally, we find curves of rank 9 in this family.
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1. Introduction

Brown and Myers [2] constructed an infinite family Em : y2 = x3−x+m2 of elliptic curves
over Q with quadratic growth of parameter and the rank of the Mordell–Weil group at least
two. Antoniewicz [1] produced another family of elliptic curves Cm : y2 = x3 −m2x + 1
over Q with the rank of Mordell–Weil group at least three. Ekinberg [4], in his Ph.D.
thesis, studied the families Em and Cm and found some subfamilies of Em and Cm of
high rank. He also considered the family Dm : y2 = x3 − m2x + m2, and has shown
that the Mordell–Weil rank of Dm is 2 over Q(m) with generators (m,m), (0,m). Petra
Tadić carried out an interesting study of previously mentioned families Em and Cm over
function fields. In [15], Tadić proved that the torsion subgroup of Cm : y2 = x3 −m2x +1
over the function field C(m) is trivial, and rank of Cm is 3 and 4 over the function fields
Q(m) and C(m) respectively. Furthermore, Tadić derived a parametrization of Cm of rank
at least four over the function field Q(a, i, s, n, k), where s2 = i3 − a2i . Tadić [14] found
a subfamily of elliptic curves Em having rank ≥ 3 over the function field Q(a, i, s, n, k, l),
where s2 = i3 + a2. Additionally, Tadić applied the results of [14] to prove the existence
of two more families; the first with ranks ≥ 3 and ≥ 4 over the field of rational functions
in four variables and the second is a family of rank ≥ 5 parametrized by an elliptic curve
of positive rank.
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It is of particular interest to specifically study the family Em,p : y2 = x3 − m2x + p2

of elliptic curves parametrized by two rational parameters. The work of Brown–Myers
and Antoniewicz [1,2] is the source of inspiration for the problem of the presented work
and methodology developed in this article. The main object of this paper is to prove the
following results.

Theorem 1.1. Let

Em,p : y2 = x3 − m2x + p2,

be a family of elliptic curves, where p is a prime number and m is a positive integer. Then

Tors Em,p(Q) = {O}

if

(1) m �≡ 0 (mod 3),
(2) m ≡ 0 (mod 3) and gcd(m, p) = 1.

Theorem 1.2. Let

Em,p : y2 = x3 − m2x + p2

be a family of elliptic curves, where m is a positive integer such that m �≡ 0 (mod 3) and
m ≡ 2 (mod 32) with p an odd prime. Then

Rank Em,p(Q) ≥ 2.

Before we proceed for the proof of the above stated theorems, in the next section we develop
necessary background material needed for better exposition and clarity of presentation in
this paper.

2. Preliminaries: Notations, definitions and related known results

In reference to the notional convention, throughout this article, we denote the families of
elliptic curves y2 = x3−m2x+ p2 by Em,p. For the convenience of the reader, we describe
some related material from [13] that includes some basic concepts of elliptic curves over
rational field Q and well-known results.

An elliptic curve over the field Q of rational numbers is a curve E defined by a Weierstrass
equation

E : y2 = x3 + ax + b,

where a, b ∈ Z, and

� = − 16(4a3 + 27b2) �= 0.
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In other words, the above condition is equivalent to the cubic equation x3 +ax +b = 0,
having three distinct complex roots. In essence, an elliptic curve E can be thought of as a
curve in projective space P2, with homogeneous equation y2z = x3 + axz2 + bz3 and a
point, namely [0, 1, 0], at ‘infinity’ which we denote by ∞. Note that all the vertical lines
meet at the point ∞. Let

E(Q) := {(x, y) ∈ Q2 : y2 = x3 + ax + b} ∪ {∞}.

One can define the law of addition for the points on the elliptic curve which, in literature,
is known as chord-tangent law of addition (for details, see [13]). The set of all points of an
elliptic curve E forms an abelian group, of which E(Q) is a subgroup. In particular, the
point at ∞ is the identity element and inverse of A = (x, y) ∈ E(Q) is −A := (x,−y).

The fundamental Mordell theorem [9] says that the group E(Q) of all rational points of
an elliptic curve E is a finitely generated abelian group, which means that

E(Q) = Zr + Tors E(Q),

where r is an uniquely determined non-negative integer called the rank of elliptic curve
and Tors E(Q) is the finite abelian group consisting of all elements of finite order in E(Q).

The torsion subgroup of E(Q) is ‘well-understood’. Nagell–Lutz theorem [6,11] and
Mazur theorem [7] gave complete classification of a torsion subgroup of an elliptic curve
over the rational field. The notion of the rank of an elliptic curve has been studied. However,
its characterization is, in general, a difficult task. A primary reason of this difficulty is that
the rank can not be obtained effectively from the coefficients a, b of the curve’s equation.
Now in search of either an exact rank of E(Q) or a lower bound on rank of E(Q), in
literature, plenty of computational ways have been developed, many of them being either
computationally complex or exploit heavy mathematical machinery.

3. Torsion subgroup of Em, p

In this section, our main aim is to prove Theorem 1.1. A technique that we use here is
to reduce Em,p over finite fields. Let E : y2 = x3 + ax + b be an elliptic curve, where
a, b ∈ Z. For a given prime p, E is treated as a ‘curve’ over the finite field Fp, where
a, b, x, y ∈ Fp. Let �(E) = − 16(4a3 + 27b2) be the discriminant of elliptic curve E .
Now if p � �(E), then the roots of cubic equation x3 + ax + b are all distinct and in that
case E becomes an elliptic curve over Fp. Essentially this is an instance when one says
that at p, E has a good reduction and E(Fp) is known as the group of Fp-points of E .
Now given a good reduction of E at p, the application of Theorem 3.1 gives an injective
map from the group of rational torsion points Tors E(Q) into the group E(Fp).

The following theorem and lemmas will be the main ingredients for proving Theorem
1.1.

Theorem 3.1 ([5], Theorem 5.1). The restriction of the reduction homomorphism
rp |Tors E(Q)

: Tors E(Q) −→ Ep(Fp) is injective for any odd prime p, where E has
a good reduction and r2|Tors E(Q) : Tors E(Q) −→ E2(F2) has kernel at most Z/2Z when
E has a good reduction at 2.
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Lemma 3.2. There is no point of order two in Em,p(Q) for every positive integer m and
every prime p.

Proof. Let A = (x, y) be a point in Em,p(Q) of order two. Then 2A = 0 ⇔ A = − A ⇔
y = 0 and x �= 0. Thus

x3 − m2x + p2 = 0.

Since A has finite order, x must be an integer (by Nagell–Lutz theorem). Therefore the
above equation gives

m2 = x2 + p2

x
,

which implies that x ∈ {± 1,± p,± p2}. Hence m2 ∈ {1 ± p2, p2 ± p, p4 ± 1}, which
contradicts that m is an integer. �

By doubling a point on the elliptic curve, we mean adding the point to itself (see [13]).
On Em,p, if P = (x, y) is any point, then by the addition law, we get the doubling of P ,
denoted 2P = (x ′, y′), and is given by

x ′ = x4 + 2m2x2 + m4 − 8xp2

4(x3 − m2x + p2)
(1)

and

y′ = − y − 3x2 − m2

2y
(x ′ − x). (2)

Lemma 3.3. Em,p(Q) does not contain any point of order 3 for any positive integer m
with m �≡ 0 (mod 3) and for any prime p.

Proof. Assume, on the contrary that, there exists a point A = (x, y) ∈ Em,p(Q) such that
3A = O ⇔ 2A = − A ⇔ x-coordinate of 2A = x-coordinate of A. Therefore

x4 + 2x2m2 + m4 − 8xp2

4(x3 − m2x + p2)
= x,

equivalently

3x4 − 6m2x2 + 12p2x − m4 = 0. (3)

If m �≡ 0 (mod 3), then under modulo 3, equation (3) has no solution, which implies that
equation (3) has no rational solution. Thus Em,p(Q) has no point of order 3 for m �≡ 0
(mod 3) and for any prime p. �
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Lemma 3.4. Em,p(Q) does not contain a point of order 3 for any positive integer m with
m ≡ 0 (mod 3), and for any prime p with gcd(m, p) = 1.

Proof. The initial part of the proof of this lemma is quite similar to the proof of Lemma
3.3 till equation (3). From equation (3), it is clear that x |m4. Now here two cases arise:

Case 1. When x ≡ 0 (mod 3). Suppose the prime factorization of x contains 3a and the
prime factorization of m contains 3b. Then it is clear that b ≥ a. Now, write equation (3)
as

34a+1(a1) − 32b+a+1(a2) + 3a+1(a3) − 34b(a4) = 0, (4)

where a1, a2, a3 and a4 are some integers. Under modulo 3(a+2), (4) has no solution which
implies that (3) too has no rational solution.

Case 2. When x �≡ 0 (mod 3). Equation (3) can be written as

(m2)2 + (6x2)m2 − (3x4 + 12p2x) = 0, (5)

which is quadratic in m2 with discriminant

� = 48x(x3 + p2).

Equation (5) also gives

m2 = −6x2 + √
�

2
,

a further simplification leads to � = (2m2 + 6x2)2. By comparing both values of �, we
get

(2m2 + 6x2)2 = 48x(x3 + p2). (6)

Equation (6) implies that there exists n ∈ N such that x(x3 + p2) = 3n2. Now gcd(x, x3 +
p2) = 1 or p or p2. If gcd(x, x3 + p2) = p or p2, then from (3), p|m contradicts that
gcd(m, p) = 1. Therefore, gcd(x, x3 + p2) = 1 and we can factor the right-hand side of
equation (6) as

Case (a).

{
x = α2,

x3 + p2 = 3β2,

or

Case (b).

{
x = 3α2,

(α3)2 + p2 = 3β2.
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Case (a) can be rewritten as

(α3)2 + p2 = 3β2. (7)

Since equation (7) has no solution under modulo 3, hence equation (3) too has no rational
solution. Given that x �≡ 0 (mod 3), Case (b) is impossible. Hence we conclude that
Em,p(Q) does not have a point of order 3 for m ≡ 0 (mod 3), and for any prime p with
gcd(m, p) = 1. �

We are now equipped with much of the needed machinery and ready to prove Theorem
1.1.

Proof of Theorem 1.1. We split the proof into two cases which together complete the proof
of this theorem.

Case 1. When p �= 5. In this case, 5 � � = − 16(− 4m6 + 27p4), hence Em,p has a good
reduction at 5. Reducing Em,p over F5, results in the following:

(i) If p2 ≡ 1 (mod 5). Depending upon whether m2 ≡ 0, 1 or 4 (mod 5), Em,p reduces
to y2 = x3+1, y2 = x3−x+1, y2 = x3−4x+1 respectively with the corresponding
cardinality of Em,p(F5) being 6, 8, 9.

(ii) If p2 ≡ 4 (mod 5). Em,p reduces to y2 = x3 +4, y2 = x3 − x +4, y2 = x3 −4x +4
according to m2 ≡ 0, 1 or 4 (mod 5) respectively with the corresponding cardinality
of Em,p(F5) being 6, 8, 9.

An application of Theorem 3.1 and Lagrange theorem, furnishes the complete list of
possible orders of Tors Em,p(Q) as 1, 2, 3, 6, 8 and 9 only. Lemmas 3.2, 3.3 and 3.4
guarantee that the curve Em,p does not have points of order 2 and 3. Thus we conclude
that Tors Em,p(Q) = {O}.
Case 2. When p = 5. Note that 3 � � and 7 � �, hence Em,5 : y2 = x3 − m2x + 25 has
good reductions at 3 and 7. Reducing Em,p over F3 and F7, we have

(iii) Over F3, we get Em,5 : y2 = x3 + 1 or y2 = x3 − x + 1, depending upon whether
m2 ≡ 0 or 1 (mod 3) and in that case the corresponding cardinality of Em,5(F3) is 4
and 7 respectively. Thus in this case, we have |Tors Em,5(Q)| = 1, 2, 4 or 7 of which
the only probable values are 1 and 7 because of Lemma 3.2.

(iv) Over F7, we get y2 = x3 + 4, y2 = x3 − x + 4, y2 = x3 − 2x + 4 or y2 = x3 −
4x + 4 according as m2 ≡ 0, 1, 2, or 4 (mod 7) respectively, with the cardinality of
Em,5(F7) being 3, 10, 10, 10 respectively. Thus the possible values for the cardinality
of Tors Em,p(Q) are 1, 2, 3, 5 or 10 of which 2, 3 and 10 are again not possible by
the same reasoning as in the previous cases. Thus | Tors Em,p(Q)| = 1 or 5.

The two subcases (iii) and (iv) together imply that 5 and 7 cannot be the cardinality
of Tors Em,p(Q) because in the former case, all the non-trivial points must have order 5,
whereas the same in the latter case would be 7, leading to a contradiction. We thus conclude
that Tors Em,p(Q) = {O}. �

Remark. The condition gcd(m, p) = 1 has been imposed in the proof of Theorem 1.1
because we have an example of an elliptic curve, namely y2 = x3 − 9x + 9, which has its
torsion subgroup isomorphic to Z3. However, we did not find any other example for which
the torsion subgroup is non-trivial.
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4. The rank of Em, p

In this section, we produce a subfamily of minimum rank 2. To achieve this, it is sufficient
to find at least two independent points, say Am,p and Bm,p on each curve in Em,p.

First, we note that the point Bm,p = (m, p) lies on every curve Em,p and the x-coordinate
of 2Bm,p is (m4 − 2mp2)/p2. Thus if gcd(m, p) = 1, then the order of Bm,p is infinite,
and hence we get a subfamily of Em,p of rank at least one. To get a subfamily of minimum
rank two, we will use the following result.

Theorem 4.1 ([3], p. 78). Let E(Q) (respectively 2E(Q)) be the group of rational points
(respectively, double of rational points) on an elliptic curve E , and suppose E has trivial
rational torsion. Then the quotient group E(Q)/2E(Q) is an elementary abelian 2-group
of order 2r , where r is the rank of E(Q).

On each curve in Em,p, one can find the obvious points namely,

Am,p = (0, p), Bm,p = (m, p).

We will now construct a subfamily of Em,p for which the above two points will be
linearly independent. We first prove few results which will help us in achieving this.

Lemma 4.2. Let A = (x ′, y′) and B = (x, y) be points in Em,p(Q) such that A = 2B
and x ′ ∈ Z. Then

(1) x ∈ Z,
(2) x ≡ m (mod 2).

Proof. Substituting x = u
s , gcd(u, s) = 1 in (1) and after simplifying, we get

(m4 − 4p2x ′)s4 + (4m2x ′ − 8p2)us3 + 2m2u2s2 − 4x ′u3s + u4 = 0. (8)

From (8), it is clear that s|u4, so s ∈ {−1, 1}, and hence x ∈ Z.
Again, we can write equation (1) as

(x2 + m2)2 = 4(x ′(x3 − m2x + p2) + 2xp2),

which implies that 2|(x2 + m2), i.e., x ≡ m (mod 2). �

Lemma 4.3. The point Am,p = (0, p) is an element of Em,p(Q) \ 2Em,p(Q) for any
positive integer m with m ≡ 2 (mod 32) and any odd prime p.

Proof. Suppose Am,p = 2C for some C = (x, y) ∈ Em,p(Q). Then we have

x4 + 2m2x2 + m4 − 8xp2

4(x3 − m2x + p2)
= 0

or

x4 + 2m2x2 + m4 − 8xp2 = 0. (9)
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The simplification of the above equation leads to

(x2 + m2)2 = 8xp2. (10)

From equation (10), we observe that x = 2k2 for some k ∈ Z, i.e., x is an even number.
Substituting the value of x in equation (9), we get

16k8 + 8m2k4 + m4 − 16k2 p2 = 0. (11)

It follows that for any integer k, under modulo 32, equation (11) has no solution. Conse-
quently, equation (11) has no rational solution. Therefore, Am,p /∈ 2Em,p. �

Lemma 4.4. The point Bm,p = (m, p) is an element of Em,p(Q) \ 2Em,p(Q) for any
positive integer m with m ≡ 2 (mod 4) and for any prime p.

Proof. Suppose Bm,p = (m, p) = 2C for some C = (x, y) ∈ Em,p(Q). Then

x4 + 2m2x2 + m4 − 8xp2

4(x3 − m2x + p2)
= m.

Simplifying it, we get

x4 − 4mx3 + 2m2x2 + (4m3 − 8p2)x + m4 − 4p2m = 0,

which can be rewritten as

(x − m)4 − 4(x − m)2m2 − 8(x − m)p2 − 12p2m + 4m4 = 0. (12)

Taking Lemma 4.2 into consideration, we substitute x −m = 2s, which results in simpli-
fication of (12) as

(2s2 − m2)2 = (4s + 3m)p2.

The above equation holds only if (4s+3m) = w2 for some w ∈ Z. Since m ≡ 2 (mod 4),
4s + 3m ≡ 2 (mod 4) leads to a contradiction that it is a perfect square. This completes
the proof. �

Lemma 4.5. The point Am,p + Bm,p = (−m, p) is an element of Em,p(Q) \ 2Em,p(Q)

for any positive integer m with m ≡ 2 (mod 4) and for any prime p.

Proof. With arguments similar to Lemma 4.4, we can say that Am,p + Bm,p = (−m, p) /∈
2Em,p(Q) for m ≡ 2 (mod 4) and for any prime p. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. To show that Rank Em,p(Q) ≥ 2, we first claim that H = {[O],
[Am,p], [Bm,p], [Am,p] + [Bm,p]} is a subgroup of Em,p/2Em,p of order 4, for the values
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Table 1. Ranks of some Em,p:y2 = x3 − m2x + p2.

Rank [m, p]

7 [4, 1931][8, 3299], [13, 7589], [17, 2003], [37, 1481], [53, 2087], [79, 2713], [89, 4933],
[92, 4591], [107, 1427], [107, 3257], [118, 2309], [121, 3613], [134, 3109], [157, 811],
[167, 1559], [172, 1811], [181, 1709], [182, 881], [188, 2063], [188, 5737], [194, 1721],
[197, 2393], [202, 467], [206, 1699], [218, 1481], [233, 1669], [245, 4799], [248, 2311],
[248, 8861], [257, 1597], [278, 2521], [312, 1063], [332, 5167], [338, 3877], [342, 593],
[353, 911], [312, 1063], [332, 5167], [338, 3877], [342, 593], [353, 911], [356, 4363],
[382, 4871], [409, 5503], [419, 2801], [443, 6917], [444, 5669], [476, 6833], [479, 5503],
[482, 3457], [485, 2633], [488, 5113], [602, 8861], [624, 9649], [713, 7589], [1033, 1151],
[1123, 9029], [1194, 2683], [1204, 8081], [1237, 2063], [1431, 5167], [1226, 2633],
[2077, 8389], [3787, 9281], [8321, 8377], [4649, 1453],

8 [58, 8581], [278, 9437], [461, 281], [548, 1559], [673, 7351], [689, 7529], [718, 2309],
[721, 8317], [761, 4451], [872, 1759], [898, 6673], [913, 659], [919, 7253], [922, 7517],
[992, 6343], [1069, 9043], [1297, 8269], [1400, 7489], [1402, 6299], [1403, 5441],
[1427, 6737], [1468, 6271], [1468, 3697], [1482, 2213], [1502, 7573], [1576, 8681],
[1613, 1483], [1646, 9311], [1718, 2646], [1733, 3607], [1774, 6883], [1778, 6733],
[1823, 8273], [1838, 2143], [1847, 6791], [1876, 3037], [1913, 5711], [1940, 229],
[2113, 7541], [2353, 5783], [2977, 4787], [3242, 1009], [2042, 5881], [2107, 2953],
[2246, 5849], [2257, 8863], [2459, 8273], [3083, 8219], [3188, 5903], [3419, 9397],
[3463, 1009], [3523, 7537], [3595, 3571], [3733, 1117], [4133, 1483], [4738, 8887],
[4773, 8837], [5191, 2011], [5612, 7937], [6247, 2801], [6397, 3191], [6607, 3671],
[8432, 2953], [6743, 631], [7823, 9539]

9 [2212, 7727], [2557, 3767], [3517, 9239], [3533, 8429], [6053, 3541], [7484, 1049],
[7484, 7817], [7189, 7309], [8644, 4337], [9319, 967], [9343, 1951], [4975, 6691],
[5093, 1913], [5383, 6917], [5692, 3769], [5915, 1289], [6053, 3541], [6271, 4133],
[6299, 2281], [8509, 4943], [6719, 619]

of m and p satisfying the conditions of Theorem 1.2. We have to show that the elements
of H are all distinct. To this end, we first observe that [Am,p] �= [O], [Bm,p] �= [O]
and [Am,p + Bm,p] �= [O]. Now suppose [Am,p] = [Bm,p]. Then [Am,p + Bm,p] =
[Am,p] + [Bm,p] = [2Am,p] = [O], which is a contradiction. Similarly, it can be shown
that [Am,p] �= [Am,p + Bm,p] and [Bm,p] �= [Am,p + Bm,p]. Hence H is a subgroup of
Em,p/2Em,p of order 4.

Secondly, we claim that Am,p and Bm,p are linearly independent points in Em,p(Q).
Suppose, on the contrary, there exist integers u and v such that uAm,p + vBm,p = O.
Without loss of generality, we may further assume that u is the smallest positive integer
with this property. Now we have the following cases:

(1) If u is even and v is odd, then [O] = [uAm,p + vBm,p] = u[Am,p] + v[Bm,p] or
[O] = [Bm,p], which contradicts Lemma 4.4.
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(2) If u is odd and v is even, then [O] = [uAm,p + vBm,p] = u[Am,p] + v[Bm,p] or
[O] = [Am,p], again contrary to what Lemma 4.3 asserts.

(3) If u and v are both odd, then [O] = [Am,p + Bm,p], and this contradicts Lemma 4.5.
(4) If u and v are even, then u = 2u′, v = 2v′ for some u′, v′. We have 2[u′Am,p +

v′Bm,p] = [O]. This implies that u′Am,p + v′Bm,p is a rational point of order 2. But
Em,p(Q) has only trivial torsion point. Therefore, u′Am,p + v′Bm,p = O, but then
this contradicts the minimality of u.

We have thus shown that Am,p and Bm,p are linearly independent points in Em,p(Q). Now
by Theorem 4.1, the cardinality of Em,p/2Em,p is 2r , where r is the rank of Em,p(Q). By
our first claim, Em,p(Q) has at least 4 points which means that the rank r of Em,p(Q) is
at least 2 for any positive integer m, with m �≡ 0 (mod 3) and m ≡ 2 (mod 32) and p an
odd prime. This concludes the theorem. �

5. Examples of curves with high rank

Over the rational field Q, one typical way to find elliptic curves with high rank is to
construct the families of elliptic curves with high generic rank and thereafter, we search
for an adequate specialization together with effective sieving tools. The Mestre–Nagao
sum is used very often [8,10]. Over Q, let E be an elliptic curve and p be a prime. Set
ap = ap(E) = p + 1 − |E(Fp)|. Given a fixed integer N , the Mestre–Nagao sum is
defined as

S(N , E) =
∑

p≤N ,p prime

(
1 − p − 1

E(Fp)

)
log(p)

=
∑

p≤N ,p prime

−ap + 2

p + 1 − ap
log(p).

There do exist experimental verification that one generally expect that those are the larger
values of S(N , E) to which high rank curves correspond. In this hope, we searched for
curves E = Em,p in the range 1 ≤ m ≤ 10000; 1 ≤ p ≤ 10000, for which S(523, E) >

32, S(1979, E) > 42.
After this initial sieving, we calculated the rank of the remaining curves with SAGE

[12]. Table 1 comprehensively summarizes the results.
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