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Recognition of PSL(2, 2¢) by the orders of vanishing elements
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Abstract.  Here, we show that the simple groups PSL(2, 24), a > 2, are characterized
by the orders of vanishing elements.
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1. Introduction

Let G be a finite group and Irr(G) be the set of irreducible characters of G. Denote by
cd(G) the set of irreducible character degrees of G. The character degree graph of G
is defined as follows: the vertices of this graph are the prime divisors of the irreducible
character degrees of the group G and two distinct vertices p and g are joined by an edge if
there exists an irreducible character degree of G which is divisible by pg. This graph was
introduced in [12]. Recently, there has been much interest in the influence of arithmetical
conditions on degrees of irreducible characters of a group G on the structure of G. For
instance, Khosravi ef al. [10] have proved that PSL(2, p?) is uniquely determined by its
order and its character degree graph. Jiang et al. [9] proved that simple groups PSL(2, 2¢)
can be uniquely determined by its order and its character degree graph.

The goal of this paper is to introduce a new characterization for the finite group
PSL(2, 2%). Given a finite group G, a vanishing element of G is an element g € G
such that x(g) = 0 for some irreducible complex character x of G. Denote by 7.(G)
the set of orders of elements of G. We will denote the set of vanishing elements of G by
Van(G). Our aim in this paper is to analyse a particular subset of 7, (G), the set Vo(G) of
the orders of elements in Van(G). We know that Vo(G) encodes some information about
the structure of G (see [3,5,17]).

For a set €2 of positive integers, let 4 (£2) be the number of isomorphism classes of finite
group G such that 7, (G) = . For a given group G, we have h(7.(G)) > 1. A group G
is called characterizable (or recognizable) if h (7. (G)) = 1. We define the following.

DEFINITION 1.1

For a set 2 of positive integers, let v(£2) be the number of isomorphism classes of finite
group G such that Vo(G) = Q. For a given non-abelian group G, we have v(Vo(G)) >
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1. A non-abelian group G is called V-characterizable (or V-recognizable) if v(Vo(G))
=1.

In [16,17], it is shown that the following simple groups are V-recognizable: L,(q), where
q €1{5,7,8,17}, L3(4), A7, Sz(22’”+1). In this paper, we continue this work and obtain
the following result:

Main Theorem. Let G be a finite group. Then G = PSL(2,2%) (a > 2) if and only if
Vo(G) = Vo(PSL(2, 29)).

In this paper, G always denotes a finite group. Notation is standard and is taken from
[6] and [8].

2. Preliminary results

Given a finite set of positive integers X, the prime graph I1(X) is defined as the simple
undirected graph whose vertices are the primes p such that there exists an element of X
divisible by p, and two distinct vertices p and ¢ are adjacent if and only if there exists an
element of X divisible by p and ¢. For a finite group G, the graph I1(7.(G)), which we
denote by GK(G), is also known as the Gruenberg—Kegel graph of G. Denote the vertex
set of GK(G) by 7 (G). We denote the prime graph IT1(Vo(G)) by I'(G), which is called
the vanishing prime graph of G. The vanishing prime graph was introduced in [3,4]. The
following lemma provides some properties of the vanishing prime graph of a finite group
and its relationship with the Gruenberg—Kegel graph. In what follows, we shall denote by
V(G) the vertex set of a graph G, and by n(G) the number of connected components of G.

Lemma 2.1 [3,4]. Let G be a finite group. Then the following hold:

(1) If G is solvable, then T'(G) has at most two connected components.
(2) If G is nonsolvable and T'(G) is disconnected, then G has a unique non-abelian
composition factor S, and n(I'(G)) < n(GK(S)) unless G is isomorphic to A7.

Lemma 2.2 [2, Proposition 2.1]. Let G be a non-abelian simple group and p a prime
number. If G is of Lie type, or if p > 5, then there exists x € Irr(G) of p-defect zero.

In the following lemma, we collect some basic remarks relating to the vanishing elements
of a group G and the vanishing elements of the quotients of G. We shall freely use these
results.

Lemma 2.3 [3,5]. Let N be a normal subgroup of G.

(1) Any character of G/ N can be viewed, by inflation, as a character of G. In particular,
if xN € Van(G/N), then xN C Van(G).

(2) If p € a(N) and N has an irreducible character of p-defect zero, then every element
of N of order divisible by p is a vanishing element of G.

(3) If N is a normal subgroup of G and m € Vo(G/N), then there exists an integer n
such that mn € Vo(G).

Lemma 2.4 [8, Theorem 8.17]. Let x € Irr(G) and suppose that p 1 |G|/ x (1) for some
prime p. Then x(g) = 0 whenever p|o(g).
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Remark 2.5. Let G be a simple group of Lie type. By Lemma 2.2, G has characters of
p-defect zero for every prime p, and hence by Lemma 2.4, every non-identity element of
G is a vanishing element. Hence Vo(G) = m.(G) — {1}.

Remark 2.6. By Remark 2.5, Vo(PSL(2, 2%)) = m.(PSL(2,2%)) — {1} = {2, all factors
of (24 — 1) and (2% + 1)} — {1}. Therefore the graph I"'(PSL(2, 2%)) has three connected
components and all connected components are complete graphs.

3. Proof of the main theorem

Lemma 3.1 [3, Proposition 2.10). Let S be a sporadic simple group, or an alternating
group on n letters with n > 8. Then S has an irreducible character ¢ which extends to
Aut(S) and an element g of order 6 such that ¢(g) = 0.

Lemma 3.2 [9, Lemma 2.6]. Let a, b be two negative integers witha > b > 2. If b | a,

then 22b_1 > b.

The proof of the main theorem uses the classification of non-solvable CIT-groups. A
group G is called a CIT-group if G is a group of even order containing no element of order
2p, with p an odd prime (see the introduction part of [14]). In the following, we give the
proof of the main theorem.

Proof of the main theorem. We assume that Vo(G) = Vo(PSL(2, 2%)). Then by Remark 2.6,
['(G) has three connected components. By part (1) of Lemma 2.1, G is non-solvable. Let
N be the solvable radical of G. Then by part (2) of Lemma 2.1, G has a normal series

1<N<MZ<QG,

where G/M is a solvable group, and M /N is a non-cyclic simple group. Now we consider
the group G := G/N. Denote by M the group M/N. As N is the solvable radical of G,
G < Aut(M) and G/M < Out(M).

Step 1. M is isomorphic to PSL(2, 27), for some positive integer b. Let M be a sporadic
simple group, or an alternating group on n letters with n > 8. Then, by Lemma 3.1, M
has an irreducible character ¢ which extends to Aut(M) and an element g of order 6 such
that ¢ (g) = 0. So g € Van(G), and thus Van(G) contains an element of order divisible by
6, a contradiction.

Now, we assume that M = A7. Then M = G, as otherwise G = §7, and hence G,
have vanishing elements of order divisible by 6, a contradiction. As M = A7 and M = G,
4 € Vo(G), and thus Van(G) contains an element of order divisible by 4, a contradiction.
By the classification theorem of finite simple groups, we can now suppose that M is a
simple group of Lie type (note that As = L»(5) and Ag = L2(9)). Then by Lemma 2.2,
for any prime divisor p of | M|, there exists x p € Irr(M) such that x p is of p-defect zero,
and so every element of M of order divisible by p is a vanishing element of G. Therefore,
every non-identity element of M is a vanishing element of G.

On the other hand, by Lemma 2.1, n(GK(M)) > 3. Considering (M) = {2}, we now
inspect the groups with > 3 prime graph components listed in [15, Tables Id and Ie] and
[11, Table 3]. We collect the connected components of (M) in Table 1.

Notice that 2B, (g) contains elements of order 4. As the elements of even order in M are
of order 2, it follows by [1] that M is isomorphic to PSL(2, 2b ), for some positive integer
b.
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Table 1. Connected components of T'(M).

M Ty b)) 73 74

L>(9) 2 5 3

A1(q) 2 (g —1 (g +1)

Ar(2) 2 7 3

Ary(4) 2 7 5 3

?B1(q) 2 (g —1) m(g =24+ 1) 7(q +~2q+ 1)

Step 2. N = 1. Assume that N > 1. Let 1 < V < N such that N/V is a chief factor
of G. Then N/V is an elementary abelian p-group, for some prime p. Now, we consider
the group G := G/ V. As M/N M/N = PSL(2,2"), it follows by Remark 2.5 that
for any prime p in n(M /N), M/N has an irreducible character of p-defect zero, and so
every element of M /N of order divisible by p is a vanishing element of G. Hence > every
non-identity element of M / Nisa vanishing element of G, and thus M \N C Van(G). On
the other hand, we have that Vo(G) = {2, all factors of (2 — 1) and (2% + 1)} — {1}.
Therefore, since every element of Vo(G) is a factor of some element in Vo(G), we get

7.(M\N) C {2, all factors of 2* — 1) and 2° + 1)}.
Notice that N is an elementary abelian p-group. Thus we infer
Te(M) = woe(M\N) U 71.(N) = . (M\N) U {1, p}.

Hence, M is a CIT-group, then by [14, III, Theorem 5], we obtain that p = 2. For any
element x in M\IY, we get thato(x) = o(xN),or2-0(xN). Note that M /N =PSL(2, 2by,
therefore, since M /N does not contain elements of order 4, we get

7o (M) = {2, all factors of (2° — 1) and (2° + 1)}.

Then by [13], M = PSL(2, 2"), a contradiction. Hence N = 1.

Step 3. M isomorphic to PSL(2,2%). As N = 1, M = PSL(2, 2%). It is well-known that
Out(M) = Cp. Hence G/M < Cjp. Now, we show that b = a. Assume that b < a. Since
any non-identity element of M is a vanishing element of G and Vo(G) = {2, all factors of
(2% — 1) and (2% + 1)} — {1}, it is easy to see that 2” — 1|2¢ — 1. Let a = bg + r, where
0 <r < b. Then we have

24 1 =202 —2r 42" — 1
=272 11+ @2 - 1)
=22 = DIRHT 2P 1+ 2 - D).
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Hence, by P | [2¢ — 1, we get that 2b 1 |2" — 1, and so r = 0, namely, b | a. On the
other hand, we easily get

29 — (2% + 1
G/M| > ( )24+ 1)
20 -1 +1)
22a—1
= o1 > b (see Lemma 3.2).
Hence we obtain a contradiction (note that G/M < Cjp).

Step 4. G isomorphic to PSL(2, 2%). Assume that G > M. First, we suppose that there
exists an odd prime r such that r | |G/M]|. By [7, Chap. XI. Theorem 5.10], M has an
unique irreducible character w such that w(1) = |M|,, and so w is invariant in G.

Let R be a normal subgroup of G with M < R < G and |R/M| = r (note that the outer
automorphism group of M is cyclic). As w is invariant in G, it is also invariant in R. So it
follows by [8, Corollary 11.22] that w is extensible to R, namely, there exists v € Irr(R)
such that vg = w. Hence v is of 2-defect zero, and every element of R of order divisible by
2 is a vanishing element of G. So it follows by hypothesis that R is a CIT-group. Therefore,
R has a normal 2-group U such that R/ U is isomorphic to one of the following groups
(see [14, III, Theorem 5]): L2(g), g = 2k k>2or q = p is a Fermat prime or Mersenne
prime, or ¢ = 9; Sz(22"1+1), ny > 1; L3(4); Mo.

Then by Jordan—Holder theorem, we obtain that r = 2, a contradiction, which implies
that |G /M| is a power of 2. For any odd prime factor s of |G|, there exists an element o
in Irr(M) such that « is of s-defect zero. Let B be an irreducible constituent of «¢. Then
we get that B is of s-defect zero. So it follows by the hypothesis that G has no element
of order 2s. In consideration of the arbitrariness of s, we conclude that G is a CIT-group.
Note that N is the solvable radical of G and N = 1; it follows by [14, III, Theorem 5])
that M = G, and so G isomorphic to PSL(2, 2¢). The proof is complete. ]
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