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1. Introduction

Let G be a finite group. A real matrix representation (for convenience, we say ‘represen-
tation’ in the sequel) of G is a group homomorphism

ρ : G −→ GLd(R), (1)

where GLd(R) is the general linear group of rank d (d ∈ N). We also say that d is the
degree of ρ. (Here we set GL0(R) to be the trivial group consisting of the empty matrix.)
Two representations ρ and η are said to be similar (denoted by ρ ∼ η), if there exists an
invertible square matrix P such that

η(g) = P−1ρ(g)P, ∀ g ∈ G. (2)

It is easy to see that similarity of representations is an equivalence relation. The equivalence
classes are called similarity classes. The similarity class of ρ is denoted by ρ̄. The direct
sum ρ̄ ⊕ η̄ of two similarity classes ρ̄ and η̄ is defined by ρ̄ ⊕ η̄ = ρ ⊕ η, where

ρ ⊕ η : G −→ GLd(R) × GLd ′(R) � GLd+d ′(R). (3)
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The real representation ringR(G) is the group completion of the monoid (under direct
sum ⊕) of similarity classes of representations of G. Its addition and multiplication are
induced by direct sum and tensor product of matrices, respectively. By [5], R(G) is a
commutative ring with an identity element. Its underlying group is a finitely generated
free abelian group with basis on the similarity classes of irreducible representations.

The notion of degree of a representation induces a ring homomorphism

φ : R(G) −→ Z. (4)

This homomorphism is called the augmentation map. Its kernel �(G) is called the aug-
mentation ideal of R(G). Let �n(G) and Qn(G) denote the n-th power of �(G) and the
n-th consecutive quotient group �n(G)/�n+1(G), respectively.

It is an interesting problem to determine the structures of �n(G) and Qn(G) since they
have many connections with other algebraic branches. A related problem of recent interest
has been to settle the same problem for the complex representation ring R(G,C). Chang
and collaborators [1–3] solved it for dihedral groups, point groups and generalized quater-
nion groups respectively. In fact, they proved in [1] that, for any finite abelian group G,

R(G,C) ∼= ZG, Qn(G,C) ∼= I n/I n+1, (5)

where Qn(G,C) and I denote the n-th augmentation quotient for R(G,C) and the aug-
mentation ideal of ZG, respectively. Karpilovsky raised the problem of determining the
isomorphism type of the groups I n/I n+1 in [6]. Chang and Tang [4] solved it, thereby
solving the problem for the groups Qn(G,C).

The goal of this article is to give an explicit Z-basis for each �n(Cm) and determine the
isomorphism class of each Qn(Cm), where Cm is the cyclic group of order m.

The result also computes TorR(Cm )
1 (R(Cm)/�n(Cm),R(Cm)/�(Cm)) because for any

finite group G, Qn(G) ∼= TorR(G)
1 (R(G)/�n(G),R(G)/�(G)).

2. Preliminaries

In this section, we provide some useful results about Qn(G) and finite generated free
abelian groups. Chang et al. [1] proved similar properties for complex representation
rings. Here we omit their proofs since they are almost identical to the proofs in [1].

Theorem 2.1. For any natural number n, Qn(G) is a finite abelian |G|-torsion group.

COROLLARY 2.2

For each positive integer n, �n(G) has free rank r(G) − 1, where r(G) is the free rank of
R(G).

Theorem 2.3. If Q⊗ZR(G) has trivial Jacobson radical, then there exist positive integers
n0 and π such that

Qn(G) ∼= Qn+π (G) (6)

for any n � n0.
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It is well known that any two representations with the same character are similar. More-
over, there is an injective ring homomorphism

χ : R(G) −→ R
G (7)

which sends ρ̄ to its character χρ for each representation ρ of G.
At last, we recall a classical result about finite generated free abelian groups.

Lemma 2.4. Let H be a finite generated free abelian group of rank N. If the N elements
g1, . . . , gN generate H , then they form a basis of H.

3. Necessary tools

In this section, we construct a basis of �(Cm) and show some of its basic properties. Since
the real and complex representation rings of C1 (and C2) are isomorphic, we shall assume
m � 3 in the sequel. Denote by g the generator of Cm . Then each representation ρ of Cm

depends only on its value at g. Therefore, we use ρ(g) denote ρ.
The following theorem found in [5] classifies the similarity classes of all irreducible

representations of Cm .

Theorem 3.1. Let ρ1 = (1), ρ2 = (−1) and

ηk =
(

cos(2kπ/m) sin(2kπ/m)

− sin(2kπ/m) cos(2kπ/m)

)
, k ∈ Z. (8)

Then all distinct similarity classes of irreducible representations of Cm are

• ρ̄1, η̄k , 1 � k � (m − 1)/2, when m odd,
• ρ̄1, ρ̄2, η̄k , 1 � k � m/2 − 1, when m even.

For later use, we remind that, by Corollary 2.2 and Theorem 3.1, for each natural number
n, �n(Cm) has free rank (m − 1)/2 or m/2 according to m is odd or even, respectively.

Now we construct a basis of �(Cm). For convenience, we fix the following notation:

• F = ρ̄1 − ρ̄2, Yk = η̄k − η̄k−1, k ∈ Z.
• For any subset S ⊂ R(Cm), denote by ZS the set of all Z-linear combinations of

elements of S.

Lemma 3.2. �(Cm) is the free abelian group based on Bm , where

Bm =
{ {Y1, . . . ,Y(m−1)/2}, if m odd,

{F, Y1, . . . ,Ym/2−1}, if m even.
(9)

Proof. Note that Bm is contained in �(Cm) and it has a free rank |Bm |. So by Lemma 2.4,
we only need to show Bm generates �(Cm). When m is an odd number, let

ω = a1ρ̄1 +
(m−1)/2∑
k=1

ck η̄k ∈ �(Cm). (10)
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Then a1 + 2
∑(m−1)/2

k=1 ck = 0. The short calculations show that η̄0 = 2ρ̄1. So

ω =
(m−1)/2∑
k=1

ck(η̄k − η̄0) =
(m−1)/2∑
k=1

ck

k∑
j=1

Y j ∈ ZBm . (11)

When m is an even number, let

ω = a1ρ̄1 + a2ρ̄2 +
m/2−1∑
k=1

ck η̄k ∈ �(Cm). (12)

Then a1 + a2 + 2
∑m/2−1

k=1 ck = 0. Hence,

ω = a2(ρ̄2 − ρ̄1)+
m/2−1∑
k=1

ck(η̄k − η̄0) = −a2F +
m/2−1∑
k=1

ck

k∑
j=1

Y j ∈ ZBm . (13)

Together (11) and (13) finish the proof. �

PROPOSITION 3.3

Regarding elements of �(Cm), we have

(1) Yk depends only on the residue class of k modulo m, and Yk = −Ym+1−k ,
(2) YkYl = (Yk+l − Yk+l−1) − (Yk−l+1 − Yk−l) = ∑l−1

j=−l+1 Yk+ j Y1.

In addition, the following identities hold when m even.

(3) Fn = 2n−1F , FYk = Yk + Ym/2+1−k .

Proof. One can easily verify (1) and (3) by calculating the characters of relative represen-
tations. For (2), a short calculation shows that χηkχηl = χηk+l + χηk−l . So

η̄k η̄l = η̄k+l + η̄k−l . (14)

Hence,

YkYl = (η̄k − η̄k−1)(η̄l − η̄l−1)

= η̄k+l + 2η̄k−l − 2η̄k+l−1 − η̄k−l+1 − η̄k−l−1 + η̄k+l−2

= (Yk+l − Yk+l−1) − (Yk−l+1 − Yk−l)

=
l−1∑

j=−l+1

[
(Yk+ j+1 − Yk+ j ) − (Yk+ j − Yk+ j−1)

]

=
l−1∑

j=−l+1

Yk+ j Y1, (15)

as required. �
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Recall that the first goal of this article is to provide an explicit Z-basis for each �n(Cm).
By Lemma 2.4, we just need to find a generating set of �n(Cm) whose cardinality equals
(m−1)/2 or m/2 according to m is odd or even, respectively. Due to Lemma 3.2, �n(Cm)

is generated by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
n∏

i=1
Yki

∣∣1 � ki � (m − 1)/2

}
, if m odd,{

F j
n− j∏
i=1

Yki
∣∣0 � j � n, 1 � ki � m/2

}
, if m even.

Hence, due to Proposition 3.3, �n(Cm) is generated by{
{YkY n−1

1 |1 � k � m}, if m odd,

{F jYkY
n− j−1
1 |0 � j � n − 1, 1 � k � m} ∪ {Fn}, if m even.

For later use, we fix the following notation and prove two useful identities about them.
Throughout, n and N are natural numbers.

• Sn,0(N ) = {YkY n−1
1 |1 � k � N }.

• Sn, j (N ) = {F jYkY
n− j−1
1 |1 � k � N }, m is even, n � 2, 1 � j � n − 1.

PROPOSITION 3.4

For any n � 2 and each positive integer N , we have

ZSn,0(N ) = Z{(Yk − (2k − 1)Y1)Y
n−2
1 |2 � k � N + 1}. (16)

Moreover, the following identity holds for 0 � j � n − 2 when m even.

ZSn, j (N ) = Z{F j (Yk − (2k − 1)Y1)Y
n− j−2
1 |2 � k � N + 1}. (17)

Proof. Due to Proposition 3.2, we get

YkY1 = (Yk+1 − Yk) − (Yk − Yk−1). (18)

Recall that Y0 = −Y1. So for each natural number N ∈ N,

O2
N

⎛
⎜⎜⎜⎝

Y1Y1
Y2Y1

...

YNY1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Y2 − 3Y1
Y3 − 5Y1

...

YN+1 − (2N + 1)Y1

⎞
⎟⎟⎟⎠ , (19)

where

ON =

⎛
⎜⎜⎜⎝

1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

⎞
⎟⎟⎟⎠

N×N

∈ GLN (Z). (20)
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Therefore,

ZS2,0(N ) = Z{Yk − (2k − 1)Y1 |2 � k � N + 1}. (21)

From this, the proposition follows. �

4. Structure of Qn(Cm)

This section is divided into three subsections according to when m is odd or m is even and
m ≡ 0(mod 4) or m ≡ 2(mod 4).

4.1 m is an odd number

We first give a basis of �n(Cm) as a free abelian group. Recall that we have assumed
m � 3, so (m − 1)/2 is a positive integer.

Theorem 4.1. �n(Cm) is the free abelian group based on Sn,0((m − 1)/2).

Proof. Note that Sn,0((m − 1)/2) has cardinality (m − 1)/2. So by Lemma 2.4, we only
need to show that it generates �n(Cm). Recall that we have already proved that �n(Cm)

is generated by Sn,0(m). Note that Yk = −Ym+1−k , in particular, Y(m+1)/2 = 0. Then

Sn,0(m) ⊂ ZSn,0

(m − 1

2

)
, (22)

as required. �

Now we come to the main result of this subsection.

Theorem 4.2. When m is an odd number,

Qn(Cm) ∼= Cm (23)

for each positive integer n.

Proof. By Theorem 4.1 and its proof, we get, for any natural number n,

�n+1(Cm) = ZSn+1,0

(m − 1

2

)

= Z

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m + 1

2

}

= Z

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m − 1

2

}
+ mZYn

1 . (24)

Meanwhile, it is easy to see that �n(Cm) has the basis

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m − 1

2

}
∪ {Yn

1 }. (25)
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Therefore,

Qn(Cm) ∼= ZYn
1

mZYn
1

∼= Cm . (26)

�

4.2 m is a multiple of 4

We study this case using the same method as in the above subsection.

Lemma 4.3. For any n � 2,

Fn ∈ ZSn,n−1(m). (27)

Proof. Brief calculations show that η̄m/2 = 2ρ̄2. Hence,

m/4∑
k=1

FYk =
m/2∑
k=1

Yk = η̄m/2 − η̄0 = −2F = −F2. (28)

Then the lemma follows. �

Lemma 4.4. For any n � 3 and 2 � j � n − 1,

Sn, j (m) ⊂ ZSn, j−1(m). (29)

Proof. It is easy to see that we only need to show S3,2(m) ⊂ ZS3,1(m). By Proposition
3.4, we get

F(Yk − (2k − 1)Y1) ∈ ZS3,1(m), 2 � k � m/2 + 1. (30)

Note that FYm/4+1 = FYm/4 in this case. So

F2Y1 = F
(
Ym/4 −

(m
2

− 1
)
Y1

)
− F

(
Ym/4 −

(m
2

+ 1
)
Y1

)
(31)

lies in ZS3,1(m/2). Hence F2Yk does since it equals

2F(Yk − (2k − 1)Y1) + (2k − 1)F2Y1. (32)

Recalling the definition of S3,2(m/2), we are done. �

Theorem 4.5. For any n � 2, �n(Cm) is the free abelian group based on

Sn,0

(m
4

)
∪ Sn,1

(m
4

)
. (33)
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Proof. We just need to show that (33) generates �n(Cm) since it has cardinality m/2.
Recall that, for any n � 2, �n(Cm) is generated by

{Fn} ∪ Sn,0(m) ∪ Sn,1(m) ∪ · · · ∪ Sn,n−1(m). (34)

Hence, due to Lemma 4.3 and Lemma 4.4, �n(Cm) is generated by

Sn,0(m) ∪ Sn,1(m) (35)

Note that Yk = −Ym+1−k . So (35) can be replaced by

Sn,0

(m
2

)
∪ Sn,1

(m
2

)
. (36)

To finish the proof, recall that Yk = −Ym/2+1−k + FYk . This implies

Sn,0

(m
2

)
⊂ ZSn,0

(m
4

)
+ ZSn+1,1

(m
2

)
. (37)

In addition, it is easy to verify that

Sn+1,1

(m
2

)
⊂ ZSn,1

(m
2

)
= ZSn,1

(m
4

)
. (38)

It follows that �n(Cm) is generated by (33). �

Theorem 4.6. When m is a multiple of 4,

Qn(Cm) ∼= C2 ⊕ Cm (39)

for each natural number n.

Proof. Due to Proposition 3.4, we get

ZSn+1,0

(m
4

)
= Z

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m

4
+ 1

}
. (40)

Note that

(
Ym/4 −

(m
2

− 1
)
Y1

)
+

(
Ym/4+1 −

(m
2

− 1
)
Y1

)
= FYm/4 − mY1. (41)

So by Theorem 4.5,

�n+1(Cm) = Z

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m

4

}
+ mZYn

1

+ZSn+1,1

(m
4

)
. (42)
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We compute Q1(Cm) first. Thanks to (28), we have

�2(Cm) = Z

{
Yk − (2k − 1)Y1|2 � k � m

4

}
+ mZY1 + ZS2,1

(m
4

)

= Z

{
(Yk − (2k − 1)Y1)|2 � k � m

4

}
+ mZY1

+Z

{
FYk |2 � k � m

4

}
+ 2ZF. (43)

Meanwhile, it is easy to verify that �(Cm) has the basis

{
Yk − (2k − 1)Y1|2 � k � m

4

}
∪ {Y1} ∪

{
FYk |2 � k � m

4

}
∪ {F}. (44)

Thus

Q1(Cm) ∼= ZY1

mZY1
⊕ ZF

2ZF
∼= C2 ⊕ Cm . (45)

Secondly, by Proposition 3.4 and (31), we get, for any n � 2,

ZSn+1,1

(m
4

)
= Z

{
F(Yk − (2k − 1)Y1)Y

n−2
1 |2 � k � m

4
+ 1

}

= Z

{
F(Yk − (2k − 1)Y1)Y

n−2
1 |2 � k � m

4

}
+ 2ZFYn−1

1 .(46)

Hence,

�n+1(Cm)= Z

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m

4

}
+ mZYn

1

+Z

{
F(Yk − (2k − 1)Y1)Y

n−2
1 |2 � k � m

4

}
+ 2ZFYn−1

1 . (47)

Moreover, it is easy to see that �n(Cm) has the basis

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m

4

}
∪ {Yn

1 } ∪{
F(Yk − (2k − 1)Y1)Y

n−2
1 |2 � k � m

4

}
∪ {FYn−1

1 }. (48)

Therefore,

Qn(Cm) ∼= ZYn
1

mZYn
1

⊕ ZFYn−1
1

2ZFYn−1
1

∼= C2 ⊕ Cm . (49)

Together (45) and (49) finish the proof. �

4.3 m ≡ 2(mod 4)

This case is much more complex than the others.
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Lemma 4.7. When m ≡ 2(mod 4), we have

Y(m+2)/4 ∈ �2(Cm), S2,1(m) ⊂ �3(Cm). (50)

Proof. Recall that η̄m/2 = 2ρ̄2. So

Y(m+2)/4 +
(m−2)/4∑
k=1

FYk =
m/2∑
k=1

Yk = −2F = −F2. (51)

Then

Y(m+2)/4 = −F2 −
(m−2)/4∑
k=1

FYk ∈ �2(Cm) (52)

Hence, by the fact FY(m+2)/4 = 2Y(m+2)/4, we get

FYk = Yk + Ym/2+1−k − 2Y(m+2)/4 + FY(m+2)/4

= (η̄(m+2)/4−k − η̄0)Y(m+2)/4 + FY(m+2)/4

= −(η̄(m+2)/4−k − η̄0 + F)

⎛
⎝F2 +

(m−2)/4∑
k=1

FYk

⎞
⎠

∈ −F3 + ZS3,1(m/2) + ZS3,2(m/2), (53)

as required. �

Lemma 4.8. For any n � 2, �n(Cm) is generated by

{Fn−2Y(m+2)/4} ∪ Sn,0

(m − 2

4

)
∪ Sn,1

(m + 2

4

)
(54)

as an abelian group.

Proof. Note that (34) still generates �n(Cm). Due to (52), the generator Fn can be replaced
by Fn−2Y(m+2)/4. Moreover, thanks to (53), we get

n−1⋃
j=1

Sn, j (m) ⊂ ZFn+1 + Z

⎛
⎝ n⋃

j=1

Sn+1, j (m)

⎞
⎠

= ZFn−1Y(m+2)/4 + Z

⎛
⎝ n⋃

j=1

Sn+1, j (m)

⎞
⎠ . (55)

Hence

n−1⋃
j=1

Sn, j (m) ⊂ ZFn−1Y(m+2)/4 + Z

⎛
⎝2n−3⋃

j=1

S2n−2, j (m)

⎞
⎠ . (56)
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It is easy to see that

S2n−2, j (m) ⊂ ZSn,1(m), 1 � j � n − 1. (57)

For n � j � 2n − 3, we have

S2n−2, j (m) = 2n−2Sn, j−n+2(m) ⊂ ZSn,1(m), (58)

since 2Sn,∗+1(m) ⊂ Sn,∗(m) in this case (like Lemma 4.4). So

n−1⋃
j=1

Sn, j (m) ⊂ 2n−1
ZY(m+2)/4 + ZSn,1(m). (59)

Therefore, �n(Cm) is generated by

{Fn−2Y(m+2)/4} ∪ Sn,0(m) ∪ Sn,1(m) (60)

Note that

Sn,0(m) ⊂ ZSn,0

(m
2

)
⊂ ZSn,0

(m + 2

4

)
+ ZSn,1(m). (61)

In addition, brief calculations show that

Y(m+2)/4Y1 = FY(m−2)/4 − FY(m+2)/4 ∈ ZS2,1(m). (62)

Then the lemma follows from the fact that

Sn,1(m) ⊂ ZSn,1

(m
2

)
= ZSn,1

(m + 2

4

)
. (63)

�

COROLLARY 4.9

For any n � 2, �n+1(Cm) is generated by

{Fn−1Y(m+2)/4} ∪ Sn+1,0

(m − 2

4

)
∪ Sn,1

(m + 2

4

)
. (64)

as an abelian group.

Proof. It is easy to see that

Sn+1,1

(m + 2

4

)
⊂ ZSn,1

(m + 2

4

)
. (65)
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So by Lemma 4.8, we just need to show

Sn,1

(m + 2

4

)
⊂ �n+1(Cm), (66)

which is a direct corollary of Lemma 4.7. �

Theorem 4.10. For any n � 2, there exist three integers an, bn, dn with 2n−1bn+andn = 1
such that �n(Cm) is the free abelian group based on

{Xn} ∪ Sn,0

(m − 2

4

)
∪ Sn,1

(m − 2

4

)
, (67)

where Xn = anFn−2Y(m+2)/4 + bnFY(m+2)/4Y
n−2
1 .

Proof. Note that (67) is contained in �n(Cm) and has cardinality m/2. So we just need
to show it generates �n(Cm). Moreover, we only need to show it generates Fn−2Y(m+2)/4

and FY(m+2)/4Y
n−2
1 by comparing it with (54). The theorem is trivial for n = 2 by setting

b2 = 0 and a2 = d2 = 1. For n � 3, by (19), we get

4

⎛
⎜⎜⎜⎝

FY1
FY2

...

FYm+2
4

⎞
⎟⎟⎟⎠ = MO2

m+2
4

⎛
⎜⎜⎜⎝

FY1Y1
FY2Y1

...

FYm+2
4
Y1

⎞
⎟⎟⎟⎠ , (68)

where

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
0 −1
4 −3

)
, if m = 6,

(
0 0

4I m−2
4

0

)
+

⎛
⎜⎜⎜⎝

0 · · · 0 1 0 −1
0 · · · 0 3 0 −3
...

...
...

...
...

0 · · · 0 m
2 0 −m

2

⎞
⎟⎟⎟⎠ , if m � 10.

(69)

From this it follows that

2n−1

⎛
⎜⎜⎜⎝

Fn−2Y1

Fn−2Y2
...

Fn−2Ym+2
4

⎞
⎟⎟⎟⎠ =

(
MO2

m+2
4

)n−2

⎛
⎜⎜⎜⎜⎝

FY1Y
n−2
1

FY2Y
n−2
1

...

FYm+2
4
Yn−2

1

⎞
⎟⎟⎟⎟⎠ . (70)
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Hence

2n−1Fn−2Ym+2
4

= (0, · · · , 0, 1)
(
MO2

m+2
4

)n−2

⎛
⎜⎜⎜⎜⎝

FY1Y
n−2
1

FY2Y
n−2
1

...

FYm+2
4
Yn−2

1

⎞
⎟⎟⎟⎟⎠ . (71)

Short calculations show that

MO2
m+2

4
≡

⎛
⎜⎜⎜⎝

0 · · · 0 1
0 · · · 0 1
...

...
...

0 · · · 0 1

⎞
⎟⎟⎟⎠ (mod Mm+2

4
(2Z)). (72)

Hence

(
MO2

m+2
4

)n−2 ≡

⎛
⎜⎜⎜⎝

0 · · · 0 1
0 · · · 0 1
...

...
...

0 · · · 0 1

⎞
⎟⎟⎟⎠ (mod Mm+2

4
(2Z)). (73)

Denote by dn the integer in the lower right hand corner of

(
MO2

m+2
4

)n−2

. Then there exist

two integers an, bn such that 2n−1bn + andn = 1 since dn is an odd number. Therefore,
either

Fn−2Y(m+2)/4 = dn Xn + bn Zn (74)

or

FY(m+2)/4Y
n−2
1 = 2n−1Xn − an Zn (75)

is generated by (67), where

Zn = 2n−1Fn−2Y(m+2)/4 − dnFY(m+2)/4Y
n−2
1 ∈ ZSn,1

(m − 2

4

)
, (76)

as required. �

Theorem 4.11. When m ≡ 2(mod 4), we have

Qn(Cm) ∼= C2 ⊕ Cm/2 ∼= Cm . (77)

Proof. We compute Q1(Cm) first. By Theorem 4.10, we get
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�2(Cm) = ZY(m+2)/4 + ZS2,0

(m − 2

4

)
+ ZS2,1

(m − 2

4

)

= ZY(m+2)/4 + Z

{
Yk − (2k − 1)Y1|2 � k � m + 2

4

}

+ZS2,1

(m − 2

4

)

= ZY(m+2)/4 + Z

{
Yk − (2k − 1)Y1|2 � k � m − 2

4

}

+ (m/2)ZY1 + ZS2,1

(m − 2

4

)
. (78)

Hence, (51) implies

�2(Cm) = 2ZF + Z

{
Yk − (2k − 1)Y1|2 � k � m − 2

4

}

+ (m/2)ZY1 + ZS2,1

(m − 2

4

)
. (79)

Meanwhile, it is easy to verify that �(Cm) has the basis

{F} ∪
{
Yk − (2k − 1)Y1|2 � k � m − 2

4

}
∪ {Y1} ∪ S2,1

(m − 2

4

)
. (80)

So

Q1(Cm) ∼= ZF

2ZF
⊕ ZY1

(m/2)ZY1∼= C2 ⊕ Cm/2. (81)

Suppose n � 2. Due to Corollary 4.9, (62), (74), (75) and the fact that dn is an odd number,
we get

�n+1(Cm) = ZFn−1Y(m+2)/4+Z

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2�k� m − 2

4

}

+ (m/2)ZYn
1 + ZSn,1

(m − 2

4

)
+ ZFY(m+2)/4Y

n−2
1

= 2dnZXn + Z

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m − 2

4

}

+ (m/2)ZYn
1 + ZSn,1

(m − 2

4

)
+ 2n−1

ZXn
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= 2ZXn + Z

{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m − 2

4

}

+ (m/2)ZYn
1 + ZSn,1

(m − 2

4

)
. (82)

Like (80), �n(Cm) has the basis

{Xn} ∪
{
(Yk − (2k − 1)Y1)Y

n−1
1 |2 � k � m − 2

4

}
∪ {Yn

1 } ∪ Sn,1

(m − 2

4

)
.

(83)

Hence,

Qn(Cm) ∼= ZXn

2ZXn
⊕ ZYn

1

(m/2)ZYn
1

∼= C2 ⊕ Cm/2. (84)

Together (81) and (84) finish the proof. �
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