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1. Introduction

The r -Whitney numbers of the first kind wm,r (n, k) and the second kind Wm,r (n, k) were
defined by Mező [29] as the connecting coefficients between some particular polyno-
mials. Note that the r -Whitney numbers of the second kind are exactly the same num-
bers defined by Ruciński and Voigt [45] and the (r, β)-Stirling numbers defined by
Corcino et al. [15].

For non-negative integers n, k and r with n ≥ k ≥ 0 and for any integer m > 0,

(mx + r)n =
n∑

k=0

mk Wm,r (n, k)xk (1)
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and

mn xn =
n∑

k=0

wm,r (n, k)(mx + r)k, (2)

where

xn =
{

x(x − 1) · · · (x − n + 1), if n ≥ 1;
1, if n = 0.

The r -Whitney numbers of the first kind and the second kind satisfy the following
recurrences, respectively [29]:

wm,r (n, k) = wm,r (n − 1, k − 1) + (m − nm − r)wm,r (n − 1, k), (3)

Wm,r (n, k) = Wm,r (n − 1, k − 1) + (km + r)Wm,r (n − 1, k). (4)

Moreover, these numbers have the following rational generating function [10]:

n∑

k=0

wm,r (n, n − k)xk =
n−1∏

k=0

(1 − (r + mk)x), (5)

∑

n�k

Wm,r (n, k)xn = xk

(1 − r x)(1 − (r + m)x) · · · (1 − (r + mk)x)
. (6)

Note that if (m, r) = (1, 0) we obtain the Stirling numbers [21], if (m, r) = (1, r)

we have the r -Stirling (or noncentral Stirling) numbers [7], and if (m, r) = (m, 1) we
have the Whitney numbers [5,6]. See [3,10,16,38] for combinatorial interpretations of
the r -Whitney numbers, [26–28] for their connections to elementary symmetric functions,
[13,14,17] for asymptotic expansions of Wm,r (n, k), [34,35] for their connections to matrix
theory, [29,39] for their relations with the Bernoulli and generalized Bernoulli polynomials
and [12,18,24,25,42,43] for their q and (p, q)-generalizations.

In this article, we study some families of combinatorial polynomials associated with the
r -Whitney numbers of the second kind. They are the r -Dowling polynomials, r -Whitney–
Fubini polynomials and the r -Eulerian–Fubini polynomials. They are defined by using
generating functions in a similar way as in the classical cases. Then we derive several
combinatorial results by using the algebraic method introduced by Rota in [44] and com-
binatorial arguments by means of (r, m, x)-partitions. Finally, we study the root structure
of the r -Dowling polynomials. In particular, we analyse the leftmost zero of these polyno-
mials and its asymptotic behavior. Additionally, we show that the sequence of r -Whitney–
Fubini polynomials is a log-convex sequence and we prove that these polynomials have
only negative real zeros in the interval ] − 1, 0[.

2. The r-Dowling polynomials

Cheon and Jung [10] defined the r -Dowling polynomials of degree n by

Dm,r (n, x) :=
n∑

k=0

Wm,r (n, k)xk .
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They found some combinatorial identities by means of Riordan arrays. In this section, we
use a technique from linear algebra introduced by Rota [44] to give an alternative proof of
some results of Cheon and Jung.

Theorem 1. The exponential generating function for the r-Dowling polynomials is

∞∑

n=0

Dm,r (n, x)
zn

n! = exp

(
r z + x

emz − 1

m

)
. (7)

Proof. Let V be the vector space of polynomials. It is clear that the following sequence is
a basis of V :

(
x − r

m

)l

, l � 0.

Let Lm,r be a linear transformation on V defined as

Lm,r

((
x − r

m

)l
)

= xl

ml
, l � 0.

The r -Whitney numbers of the second kind satisfy

xn =
n∑

l=0

(
x − r

m

)l

ml Wm,r (n, l). (8)

Then

Lm,r (xn) = Lm,r

(
n∑

l=0

(
x − r

m

)l

ml Wm,r (n, l)

)

=
n∑

l=0

xl Wm,r (n, l) = Dm,r (n, x).

Therefore,

∞∑

n=0

Dm,r (n, x)
zn

n! =
∞∑

n=0

Lm,r (xn)
zn

n! = Lm,r

( ∞∑

n=0

(xz)n

n!

)
= Lm,r (e

xz).

Note that exz = er z(emz)
x−r
m = er z (1 + u)

x−r
m , where u = emz − 1. Then by the binomial

theorem we get

Lm,r (e
xz) = er z Lm,r ((1 + u)

x−r
m ) = er z Lm,r

⎛

⎝
∞∑

j=0

(
x − r

m

) j u j

j !

⎞

⎠
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= er z
∞∑

j=0

( xu
m

) j

j ! = er ze
xu
m .

Then equation (7) follows. �

COROLLARY 2

The r-Dowling polynomials satisfy the relations:

• Dm,r+1(n, x) = ∑n
k=0

(n
k

)Dm,r (k, x).
• Dm,r (n, x) = ∑n

k=0

(n
k

)
(−1)n−kDm,r+1(k, x).

Proof. Since

ez
∞∑

n=0

Dm,r (n, x)
zn

n! = exp

(
(r + 1)z + x

emz−1

m

)
,

Cauchy’s product implies the identities. �

From the above corollary, we obtain the following identities:

Dm,r+s(n, x) =
n∑

k=0

(
n

k

)
sn−kDm,r (k, x),

Dm,r (n, x) =
n∑

k=0

(
n

k

)
(−s)n−kDm,r+s(k, x),

for any r, s ≥ 0.
This was proven in a particular case by Mihoubi and Belbachir [37] and before that in

an even more special case by Mező [32]. The combinatorial description that we are going
to introduce for Dm,r (n, x) makes the proof of this formula straightforward.

Now, we find an ordinary generating function of Dm,r (n, x). In order to determine
the ordinary generating function we need some other notions. The rising factorial (a.k.a.
Pochhammer symbol) is defined by

(x)n ≡ xn =
{

x(x + 1)(x + 2) · · · (x + n − 1), if n ≥ 1,

1, if n = 0.
(9)

It is obvious that (1)n = n!. Fitting our notations to the theory of hypergeometric functions
defined below, we apply the notation (x)n instead of xn . The next transformation formula

xn = (−1)n(−x)n . (10)

holds.
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The hypergeometric function (or hypergeometric series) is defined by

p Fq

(
a1, a2, . . . , ap

b1, b2, . . . , bq

∣∣∣∣ t

)
=

∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

tk

k! .

Note that the denominator of equation (6) can be transformed using the falling
factorial:

(1 − r x)(1 − (r + m)x) · · · (1 − (r + mk)x)

= (1 − x)(1 − 2x) · · · (1 − (r + mk)x)
∏r−1

i=1 (1 − i x)
∏m−1

i=1 (1 − (r + i)x) · · · ∏m−1
i=1 (1 − (r + (k − 1)m + i)x)

= xr+mk+1
( 1

x

)r+mk+1

xr+mk−k
( 1

x

)r ∏k−1
l=0

( 1
x − r − lm − 1

)m−1

= xk+1
( 1

x

)r+mk+1

( 1
x

)r ∏k−1
l=0

( 1
x − r − lm − 1

)m−1 .

Hence

∞∑

n=k

Wm,r (n, k)xn =
1
x

( 1
x

)r

( 1
x

)r+mk+1

k−1∏

l=0

(
1

x
− r − lm − 1

)m−1

.

From (9) and (10), we get

(
1

x

)r+mk+1

= (−1)r+mk+1
(

− 1

x

)

r+mk+1

= (−1)r+mk+1
(

− 1

x

)

r+1

(
− 1

x
+ r + 1

)

mk
.

Therefore

∞∑

n=k

Wm,r (n, k)xn = (−1)r+mk+1 1
x

( 1
x

)r

(− 1
x

)
r+1

(− 1
x + r + 1

)
mk

k−1∏

l=0

(
1

x
− r − lm − 1

)m−1

.

Since
( 1

x

)r

(− 1
x

)
r+1

= (−1)r x

r x − 1
,

and from equation (10) we have

∞∑

n=k

Wm,r (n, k)xn = −1

r x − 1

(−1)k

( xr+x−1
x

)
mk

k−1∏

l=0

(
r + lm + 1 − 1

x

)

m−1
.
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We multiply both sides by zk and take summation over the non-negative integers:

∞∑

n=0

Dm,r (n, z)xn = −1

r x − 1

∞∑

k=0

(−z)k

( xr+x−1
x

)
mk

k−1∏

l=0

(
r + lm + 1 − 1

x

)

m−1

= −1

r x − 1

∞∑

k=0

(−z)k

(v)mk

(
m(m−1)k

( v

m

)

k

(
v + 1

m

)

k
· · ·

(
v + m − 2

m

)

k

)

= −1

r x − 1

∞∑

k=0

(−z)k

(v)mk

(
(v)mk

mk ((v + m − 1)/m)k

)

= −1

r x − 1

∞∑

k=0

(−z/m)k

((v + m − 1)/m)k
,

where v = r + 1 − 1
x . Therefore we have the following theorem.

Theorem 3. The ordinary generating function of r-Dowling polynomials is

∞∑

n=0

Dm,r (n, z)xn = −1

r x − 1
1 F1

(
1

r x+mx−1
mx

∣∣∣∣ − z/m

)
.

Note that if m = 1, we obtain the ordinary generating function of r -Bell polynomials
(see [32,37])

∞∑

n=0

Dr (n, z)xn = −1

r x − 1 1 F1

(
1

r x+x−1
x

∣∣∣∣ − z

)
= −1

r x − 1

1

ez 1 F1

( r x−1
x

r x+x−1
x

∣∣∣∣ z

)
.

The last equality follows by Kummer’s formula [1, p. 505].

Theorem 4. The r-Dowling polynomials Dm,r (n, x) satisfy the recurrence relation

Dm,r (n + 1, x) = rDm,r (n, x) + x
n∑

j=0

(
n

j

)
mn− jDm,r ( j, x). (11)

Proof. Note that

(
x − r

m

)l

= x − r

m

(
x − r

m
− 1

)l−1

.

Then for any polynomial P(x), we get

Lm,r ((x − r)P(x − m)) = x Lm,r (P(x)).

Indeed, if P(x) is a polynomial of degree n then it can be written as

P(x) = b0

(
x − r

m

)0

+ b1

(
x − r

m

)2

+ · · · + bn

(
x − r

m

)n

.
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Therefore

Lm,r ((x − r)P(x − m)) = Lm,r

(
(x − r)

(
n∑

i=0

bi

(
x − m − r

m

)i
))

= Lm,r

(
m

(
n∑

i=0

bi
(x − r)

m

(
x − r

m
− 1

)i
))

= Lm,r

(
m

(
n+1∑

i=1

bi−1

(
x − r

m

)i
))

= m

(
n+1∑

i=1

bi−1
xi

mi

)
= x

(
n∑

i=0

bi
xi

mi

)
= x Lm,r (P(x)).

In particular, if P(x) = (x + m)n we obtain

Lm,r (xn+1 − r xn) = x Lm,r
(
(x + m)n)

�⇒ Lm,r (xn+1) − r Lm,r (xn) = x Lm,r

⎛

⎝
n∑

j=0

(
n

j

)
mn− j x j

⎞

⎠

�⇒ Lm,r (xn+1) = r Lm,r (xn) + x
n∑

j=0

(
n

j

)
mn− j Lm,r

(
x j

)

�⇒ Lm,r (xn+1) = r Lm,r (xn) + x
n∑

j=0

(
n

j

)
mn− jDm,r ( j, x) .

Then equation (11) follows. �

2.1 Combinatorial proof of Theorem 4

It is not hard to find the combinatorial meaning of the values of theDm,r (n, x) polynomials,
at least when x is a positive integer.

Recall that a partition of a set A is a class of disjoint subsets of A such that the union
of them covers A. The subsets are often called blocks. Any fixed partition can be written
uniquely: we order the elements in the blocks in increasing order and we put the blocks
into increasing order with respect to their first elements. This representation is called the
partition’s standard form.

For instance, the below partition is in standard form

{1, 7, 9}, {2}, {3, 4, 5, 8}, {6}, {10, 11}.
We introduce two more notions to describe our proof in a simpler form. Let r, n ≥ 0 be

integers, and let us consider the set

An,r := {1, 2, . . . , r, r + 1, . . . , n + r}.
The elements 1, 2, . . . , r will be called distinguished elements by us. A block of a partition
of the above set is called distinguished if it contains a distinguished element. Then the above
mentioned interpretation is as follows:
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Let n, r ≥ 0 and m, x ≥ 1 be positive integers, and let us write all the partitions of the
set An,r into the standard form. Then Dm,r (n, x) is the number of the partitions of An,r

such that

• the elements 1, 2, . . . , r are in distinct blocks (i.e., any distinguished block contains
exactly one distinguished element),

• all the elements but the last one in non-distinguished blocks are coloured with one of
m colours independently (note that the last element is also the maximal in the block,
thanks to the standard form),

• the non-distinguished blocks are coloured with one of x colours independently,
• neither the elements in the distinguished blocks nor the distinguished blocks are

coloured.

The partitions of An,r satisfying the above assumptions will be called (r, m, x)-
partitions.

To take an example, let r = x = 2 and m = 3. The m = 3 different colours of the
elements will be fixed as blue, red and green, while the blocks will be coloured with x = 2
colors: yellow and cyan. Then a typical (2, 3, 2)-partition of A11,2 looks like

{1, 7, 9}, {2}, {3, 4, 5, 8}, {6}, {10, 11}.
(The distinguished elements are underlined.) We are now ready to prove Theorem 4.

Second proof of Theorem 4. Let n, m, x ≥ 1 and r ≥ 0. Then a typical (r, m, x)-partition
of An+1,r can be constructed recursively as follows:

• If the last element n + 1 of the set An+1,r happens to be in a distinguished block, then
we have r possible such cases, because there are r distinguished blocks. The other
elements previously goes to an (r, m, x) partition in Dm,r (n, x) ways. Altogether we
have rDm,r (n, x) possibilities.

• If the last element of the set An+1,r is in a non-distinguished block (this can happen,
because n ≥ 1), then its block, say B, might contain other elements as well. Let us
suppose that B contains j elements plus n+1. These j elements are non-distinguished,
so 0 ≤ j ≤ n. We have

(n
j

)
possibilities to fill up the block B. These j elements are

not maximal, and hence are needed to be coloured with one of the m colours. To
perform this colouring we have m j possibilities. The remaining n − j + r elements
preliminarily must form an (r, m, x)-partition and this can be done in Dm,r (n − j, x)

ways. One more step remains: since B is not distinguished, it must be coloured with
one of the x colours. All of these together give x

(n
j

)
m jDm,r (n − j, x) possibilities.

Summing over the disjoint possibilities j = 0, 1, . . . , n, we are done.

�

In [4], the authors consider the case when x is a real or complex number.

2.2 Dobinski’s formula

There exist several formulas to calculate the Bell numbers. One of them is by using the
Dobinski’s formula [11,19,21,40]

Bn = 1

e

∞∑

k=0

kn

k! .

The following theorem generalizes this identity to our case.



Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:27 Page 9 of 25 27

Theorem 5. The r-Dowling polynomials satisfy the identity

Dm,r (n, mx) = 1

ex

∞∑

s=0

(ms + r)n

s! xs,

for s an integer. In particular,

Dm,r (n, m) = 1

e

∞∑

s=0

(ms + r)n

s! .

Proof. From equation (1) we have for any integer s,

(ms + r)n =
n∑

k=0

mk Wm,r (n, k)sk =
n∑

k=0

mk Wm,r (n, k)
s!

(s − k)! .

Then

(ms + r)n

s! =
n∑

k=0

mk Wm,r (n, k)

(s − k)! .

In the next step, we multiply both sides by xs and sum from m = 0 to ∞. Then

∞∑

s=0

(ms + r)n xs

s! =
∞∑

s=0

n∑

k=0

k!mk

s! Wm,r (n, k)

(
s

k

)
xs

=
∞∑

l=0

n∑

k=0

k! mk

(l + k)!Wm,r (n, k)

(
l + k

k

)
xl+k

= ex
n∑

k=0

mk Wm,r (n, k)xk = exDm,r (n, mx).

�

If x = 1/m in the above theorem, then the r -Dowling numbers Dm,r (n, 1) := Dm,r (n)

satisfy the identity

Dm,r (n) = 1

e1/m

∞∑

s=0

(ms + r)n

mss! .

2.3 An integral representation

In 1885, Cesàro [9] found a remarkable integral representation of the Bell numbers (see
also [2,8]):

Bn = 2n!
πe

Im
∫ π

0
eeeiθ

sin(nθ)dθ.



27 Page 10 of 25 Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:27

It is not hard to deduce the ‘r -Dowling version’.

Theorem 6. The r-Dowling numbers have the integral representation

Dm,r (n, 1) = Dm,r (n) = 2n!
πe1/m

Im
∫ π

0
e

emeiθ

m ereiθ
sin(nθ)dθ.

Proof. We need the following identity [8]:

Im
∫ π

0
e jeiθ

sin(nθ)dθ = π

2

jn

n! .

The r -Whitney numbers can be represented in closed form [29]

Wm,r (n, k) = 1

mkk!
k∑

j=0

(
k

j

)
(−1)k− j (mj + r)n . (12)

From the above equation, we get

Wm,r (n, k) = 2n!
π

1

k!mk

k∑

j=0

(
k

j

)
(−1)k− j Im

∫ π

0
e(mj+r)eiθ

sin(nθ)dθ

= 2n!
π

1

k!mk
Im

∫ π

0
(emeiθ − 1)kereiθ

sin(nθ)dθ.

Therefore

∞∑

k=0

Wm,r (n, k) = 2n!
π

Im
∫ π

0

( ∞∑

k=0

(emeiθ − 1)k

mkk!

)
ereiθ

sin(nθ)dθ

= 2n!
πe1/m

Im
∫ π

0
e

emeiθ

m ereiθ
sin(nθ)dθ.

�

2.4 Spivey’s formula

Spivey [47] proved a formula for the (n + m)-th Bell number

Bn+m =
n∑

k=0

m∑

j=0

jn−k S(m, j)

(
n

k

)
Bk,

where S(m, j) is the Stirling number of the second kind with parameters m and j . This
identity was generalized by Xu in [50]. From Theorem 4 of [50], we obtain Spivey’s
formula to r -Dowling polynomials:
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Dm,r (n + h, x) =
n∑

k=0

h∑

j=0

(
n

k

)
Dm,r (k, x)Wm,r (h, j)x j jn−kmn−k .

Finding the combinatorial proof is an easy task by the generalization of Spivey’s argu-
ment. Namely,Dm,r (n+h, x) calculates the (r, m, x)-partitions of An+h,r . Such a partition
can be formed in the following way: We fix a k ∈ {0, 1, . . . , n} and make an (r, m, x)-
partition of A ⊂ An,r (there are

(n
k

)
different such subsets) in one of the Dm,r (k, x) ways

and another (r, m, x)-partition B of {1, . . . , r, n + r + 1, . . . , n + r + h} with some, say
j + r , blocks in x j Wm,r (h, j) ways. We consider the unification of A and B such that
we take the union of the distinguished blocks, and the other blocks remain disjoint and
separated. For example, if n = 10, h = 5 and (r, m, x) = (2, 2, 2) with element colors
blue and red and block colors yellow and cyan, then the unification of

A = {1, 5, 9} ∪ {2, 4, 11} ∪ {7, 8, 12}
and

B = {1, 13, 15} ∪ {2, 14} ∪ {16, 17} ∪ {18}
is

{1, 5, 9, 13, 15} ∪ {2, 4, 11, 14} ∪ {7, 8, 12} ∪ {16, 17} ∪ {18}.
Then, continuing the construction, we take the n − k elements stayed out from An,r \
{1, . . . , r} and put down one by one into one of the j non-distinguished blocks of the
partition of B in jn−k ways. Note that our unification process is bijective but putting these
elements into the distinguished blocks would lose the bijectivity.

At the end of this process we have to colour the former block-maximal elements of B
in mn−k ways.

Going back to our example, we have that k = 1, j = 2 and the elements 3, 6, 10 ∈ A10,r

stayed out. We must put these into the last two blocks, so we get

{1, 5, 9, 13, 15} ∪ {2, 4, 11, 14} ∪ {7, 8, 12} ∪ {3, 10, 16, 17} ∪ {6, 18}.
We must colour these three elements in 23 = 8 ways to finalize the construction.

{1, 5, 9, 13, 15} ∪ {2, 4, 11, 14} ∪ {7, 8, 12} ∪ {3, 10, 16, 17} ∪ {6, 18}.
Note that knowing the values k, n, h, we can decipher the original sets A and B and the
set outlier set {3, 6, 10}, too.

2.5 A congruence for r-Dowling numbers

Gessel [20] introduced a method to study sequences defined by exponential generating
functions. In particular, he proved that there exists a sequence {ai }n

i=0 such that

Bm+n + an−1 Bm+n−1 + · · · + a0 Bm ≡ 0 (mod n!).
Rahmani [41] used this method to find a congruence analogue to Dowling numbers. Using
the same ideas it is not difficult to show the following theorem.

Theorem 7. Let n, i be non-negative integers, we have

n∑

k=0

R(m,r)
n,k (t)Dm,r (i + k, t) ≡ 0 (mod n!),
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where

R(m,r)
n,m (t) =

n∑

j=0

(−1) j
(

n

j

)
wm,r (n − j, k)t j ,

and wm,r (n, k) is a r-Whitney number of the first kind.

3. The root structure of the r-Dowling polynomials

In this section, we study the structure of zeros of the r -Dowling polynomials. It is
known [10] that all the zeros of the r -Dowling polynomials are real and negative for
any r, m, n > 1. Cheon and Jung [10] also proved that the zeros of two consecutive r -
Dowling polynomials are interlacing. Here, we are going to study the asymptotic growth
of the leftmost roots, i.e., the unique (negative) zero with maximal absolute value.

In particular, we will use the definition

D̂m,r (n, x) :=
n∑

k=0

Wm,r (n, k)mk xk

in order to facilitate the calculations. Note that D̂m,r (n, x) = Dm,r (n, mx).
From this consideration it comes readily that the leftmost (unique) zeros of D̂m,r (n, x)

steadily grow as n grows. This leftmost zero of D̂m,r (n, x) will be denoted by z∗
n,m,r . In

this section, we would like to study how z∗
n,m,r grows asymptotically.

Note that identity (12) can be expressed as

Wm,r (n, k) = mn−k 1

k!
k∑

j=0

(−1)k− j
(

k

j

) (
j + r

m

)n = mn−k
{

n + r
m

k + r
m

}

r
m

.

(13)

Here

{
n + r
k + r

}

r
is an r -Stirling number of the second kind [7] which has the following

generating function:

∞∑

n=0

{
n + r
k + r

}

r

zn

n! = er z

k! (ez − 1)k .

This generating function of the r -Stirling numbers permits us to substitute rational numbers
in place of r . We would think that for non-integer rational r the combinatorial description
loses its meaning but – as (13) shows – via the r -Whitney numbers this combinatorial
meaning is recovered.

Using the fact that

{
n + r
k + r

}

r
∼ (k + r)n

k! ,
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we have

mk Wm,r (n, k) ∼ (mk + r)n

k! as n → ∞.

For a first approximation, we use Lagrange’s estimation [36], which in our particular case,
for zeros of r -Dowling polynomials says that

z∗
n,m,r ≤ Rm,r + ρm,r ,

where Rm,r and ρm,r are respectively the maximal and second maximal elements of the
set

{(
(m(n − k) + r)n

(n − k)!
) 1

k : k = 1, 2, . . . , n

}
.

One can easily verify that the partial derivative

∂

∂k
k

√
(m(n − k) + r)n

(n − k)!

is always negative on [1, n] and that k
√

(m(n−k)+r)n

(n−k)! is maximal at k = 1 and the second
maximal element occurs at k = 2. It has been computed in [33] that

{
n + r
n + r − 1

}

r
=

(
n

2

)
+ rn,

{
n + r
n + r − 2

}

r
= g(n, r),

where

g(n, r) := 1

2

(
n − 1

2

)2

+
(

r2 +
(

r + 1

3

)
n − 1

2

) (
n − 1

2

)
+ r2(n − 1).

Hence,

Rm,r = mn−1Wm,r (n, n − 1) = mn
{

n + r
m

n + r
m − 1

}

r
m

= mn
((

n

2

)
+ r

m
n

)
= mn

(
n

2

)
+ mn−1rn

ρm,r =
√

mn−2Wm,r (n, n − 2) =
√

mn

{
n + r

m
n + r

m − 2

}

r
m

=
√

mng
(

n,
r

m

)
.

Thus a rough estimate for the zeros of r -Dowling polynomials is given by

z∗
n,m,r ≤ mn

(
n

2

)
+ mn−1rn +

√
mng

(
n,

r

m

)
.

However, Samuelson’s result [46] states that all the zeros in a given polynomial

p(x) = xn + a1xn−1 + · · · + an−1x + an
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are contained in the interval [x−, x+], where

x± = −a1

n
± n − 1

n

√
a2

1 − 2n

n − 1
a2.

Using this result, we obtain the following improved estimation.

Theorem 8. For the leftmost zero z∗
n,m,r of the r-Dowling polynomials D̂m,r (n, x), we

have that

|z∗
n,m,r | <

1

n
Rm,r + n − 1

n

√
R2

m,r − 2n

n − 1
g

(
n,

r

m

)
.

Note that, after some algebra, from this result it follows that

|z∗
n,m,r | = O(mnn2).

4. A definition of the r-Whitney–Fubini polynomials

DEFINITION 9

The r -Whitney–Fubini polynomials of degree n are defined as

Fm,r (n, x) :=
n∑

k=0

Wm,r (n, k)(k + r)!(mx)k .

Note that the r -Dowling and r -Whitney–Fubini polynomials are connected by the relation
∫ +∞

0
Dm,r (n, mxt)e−t tr dt = Fm,r (n, x).

Note that if (m, r) = (1, 0), we recover the Fubini polynomials (see, e.g. [48]). If
(m, r) = (1, r), we obtain the r -Fubini polynomials [30,31] and if (m, r) = (m, 1) we
obtain a slight variation of the Whitney–Fubini polynomials defined by Benoumhani in [5].

Having the notion of (r, m, x)-partitions in mind, it is easy to interpret Fm,r (n, x):
for positive integer x , the positive integer number Fm,r (n, x) is the number of (r, m, x)-
partitions of An,r such that

• the blocks are ordered, thanks to the factor (k + r)!,
• the last elements in the non-distinguished blocks are coloured. This is so by the presence

of the factor mk : there are k non-distinguished blocks and their last (maximal) elements
will be coloured with one of the m colours.

Such partitions will be called ordered (r, m, x)-partitions.

Theorem 10. The exponential generating function for the r-Whitney–Fubini polynomials
is

∞∑

n=0

Fm,r (n, x)
zn

n! = r !er z

(1 − x(emz − 1))r+1 . (14)
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Proof. Let Tm,r be a linear transformation on V defined as

Tm,r

((
x − r

m

)l
)

= (l + r)!xl , l � 0.

Applying Tm,r to (8), we obtain

Tm,r (xn) = Tm,r

(
n∑

l=0

(
x − r

m

)l

ml Wm,r (n, l)

)

=
n∑

l=0

(l + r)!(mx)l Wm,r (n, l) = Fm,r (n, x).

Then

∞∑

n=0

Fm,r (n, x)
zn

n! = Tm,r (e
xz) = er z Tm,r (1 + u)

x−r
m ,

where u = emz − 1. Then, by the binomial theorem,

∞∑

n=0

Fm,r (n, x)
zn

n! = er z Tm,r

⎛

⎝
∞∑

j=0

(
x − r

m

) j u j

j !

⎞

⎠

= r !er z
∞∑

j=0

( j + r)!
r ! j ! (xu) j = r !er z

∞∑

j=0

(
j + r

j

)
(xu) j

= r !er z 1

(1 − xu)r+1 .

Then equation (14) follows. �

Theorem 11. The following equality holds for any real x �= −1:

Fm,r (n, x) = r !
(1 + x)r+1

∞∑

k=0

(
r + k

r

)(
x

1 + x

)k

(mk + r)n . (15)

Proof. Using the exponential generating function of Fm,r (n, x), we have

∞∑

n=0

Fm,r (n, x)
zn

n! = r !er z

(1 + x − xemz)r+1 = r !er z

(1 + x)r+1 · 1
(

1 − xemz

1+x

)r+1

= r !
(1 + x)r+1

∞∑

i=0

(r z)i

i !
∞∑

k=0

(
r + k

k

) (
x

1 + x

)k

ekmz

= r !
(1 + x)r+1

∞∑

k=0

(
r + k

k

) (
x

1 + x

)k ∞∑

i=0

∞∑

l=0

r i (km)l

i !l! zl+i
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= r !
(1 + x)r+1

∞∑

k=0

(
r + k

k

) (
x

1 + x

)k ∞∑

n=0

∞∑

i=0

r i (km)n−i

i !(n − i)! zn

= r !
(1 + x)r+1

∞∑

n=0

( ∞∑

k=0

(
r + k

k

) (
x

1 + x

)k n∑

i=0

(
n

i

)
r i (km)n−i

)
zn

n!

= r !
(1 + x)r+1

∞∑

n=0

( ∞∑

k=0

(
r + k

k

) (
x

1 + x

)k

(km + r)n

)
zn

n! .

Then equation (15) follows. �

We can easily have a recursion of Fm,r (n, x) with respect to the parameter r .

Theorem 12. The following equality holds:

Fm,r+1(n, x) = (r + 1)

n∑

k=0

(
n

k

) k∑

l=0

(
k

l

)
Fm,0(l, x)Fm,r (k − l, x).

Proof. Using the exponential generating function of Fm,r (n, x), we get that

∞∑

n=0

Fm,r+1(n, x)
zn

n! = (r + 1)ez

1 − x(emz − 1)

r !er z

(1 − x(emz − 1))r+1

= (r + 1)

( ∞∑

n=0

zn

n!

) ( ∞∑

n=0

Fm,0(n, x)
zn

n!

) ( ∞∑

n=0

Fm,r (n, x)
zn

n!

)

= (r + 1)

( ∞∑

n=0

zn

n!

) ∞∑

n=0

(
n∑

l=0

(
n

l

)
Fm,0(l, x)Fm,r (n − l, x)

)
zn

n!

= (r + 1)

∞∑

n=0

n∑

k=0

(
n

k

) (
k∑

l=0

(
k

l

)
Fm,0(l, x)Fm,r (k − l, x)

)
zn

n! .

Comparing the coefficients, the result follows. �

The combinatorial proof is equally easy to present.

Second proof of Theorem 12. To consider all of the (r + 1, m, x)-partitions calculated by
Fm,r+1(n, x), we can do the following: we choose one distinguished element from r + 1
and we choose n − k elements from n going to its block. The remaining k elements will
go to (1) non-distinguished blocks or (2) distinguished blocks. Supposing that from k
elements l will go to non-distinguished blocks. Then, we have

(k
l

)Fm,0(l, x)Fm,r (k − l, x)

cases. Summing over l and k, we are done. �
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4.1 Log-convex property

Let (an)n≥0 be a sequence of nonnegative real numbers. We say that the sequence is log-
concave if anan+2 ≤ a2

n+1 for all n ≥ 0. It is called log-convex if anan+2 ≥ a2
n+1 for all

n ≥ 0.

COROLLARY 13

The sequenceFm,r (n, x) is log-convex in n for any positive x , because it is a convolution of
these [23]. This means that, in particular, the following inequality holds for the r-Whitney–
Fubini numbers Fm,r (n) = Fm,r (n, 1):

Fm,r (n − 1)Fm,r (n + 1) ≥ F2
m,r (n).

Theorem 14. The following equality holds:

Fm,r (n, x) = (mx(r + 1) + r)Fm,r (n − 1, x) + mx(x + 1)F ′
m,r (n − 1, x).

Proof. From the recursion (4) of r -Whitney numbers of the second kind, we get

Fm,r (n, x) =
n∑

k=0

Wm,r (n, k)(k + r)!(mx)k

=
n∑

k=0

Wm,r (n − 1, k − 1)(k + r)!(mx)k

+
n∑

k=0

(km + r)Wm,r (n − 1, k)(k + r)!(mx)k

For the first sum,

n∑

k=0

Wm,r (n−1, k−1)(k + r)!(mx)k =
n−1∑

k=0

Wm,r (n − 1, k)(k + r + 1)!(mx)k+1

= 1

xr−1

(
n−1∑

k=0

Wm,r (n − 1, k)(k + r)!mk+1xk+r+1

)′

= 1

xr−1

(
mxr+1

n−1∑

k=0

Wm,r (n − 1, k)(k + r)!mk xk

)′

= 1

xr−1 (mxr+1Fm,r (n − 1, x))′

= (r + 1)mxFm,r (n − 1, x) + mx2F ′
m,r (n − 1, x),

while for the second

n∑

k=0

(km + r)Wm,r (n − 1, k)(k + r)!(mx)k
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= m
n−1∑

k=0

k(k + r)!Wm,r (n − 1, k)(mx)k + rFm,r (n − 1, x)

= m
n−1∑

k=0

(k + r)(k + r)!Wm,r (n − 1, k)(mx)k

−mr
n−1∑

k=0

(k + r)!Wm,r (n − 1, k)(mx)k + rFm,r (n − 1, x)

= m

xr−1

(
xr

n−1∑

k=0

(k + r)!Wm,r (n − 1, k)(mx)k

)′
+ r(1 − m)Fm,r (n − 1, x)

= m

xr−1

(
xrFm,r (n − 1, x)

)′ + r(1 − m)Fm,r (n − 1, x)

= mrFm,r (n − 1, x) + mxF ′
m,r (n − 1, x) + r(1 − m)Fm,r (n − 1, x)

= mxF ′
m,r (n − 1, x) + rFm,r (n − 1, x).

�

4.2 Combinatorial proof of Theorem 14

Now we are going to present a combinatorial justification of the recursion in Theorem 14.

Proof. By its definition

Fm,r (n, x) :=
n∑

k=0

Wm,r (n, k)(k + r)!mk xk

is the total number of ordered (r, m, x)-partitions of the formerly defined set An,r . This
means that the order of the blocks count in the individual partitions and any elements in
the non-distinguished blocks are coloured. To construct all such partitions, we have the
below possible cases:

• The last element n alone is in the first position. This offers mxFm,r (n − 1, x) possi-
bilities.

• The element n is not the first but it has no other elements in its block. Such a partition
can be constructed in such a way that we construct an arbitrary ordered (r, m, x)-
partition on n − 1 elements with k + r blocks and we put down n after a block and we
colour n and its block as well. In total, we have

Wm,r (n − 1, k)(k + r)!mk xk · mx(k + r)

cases for any fixed k = 0, 1, . . . , n − 1. Summing over k, we have that the number of
possibilities can be expressed by the derivative of the r -Whitney–Fubini number

n−1∑

k=0

Wm,r (n − 1, k)(k + r)!mk xk · mx(k + r)

= mxr
n−1∑

k=0

Wm,r (n − 1, k)(k + r)!mk xk
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+ mx
n−1∑

k=0

Wm,r (n − 1, k)(k + r)!kmk xk

= mxrFm,r (n − 1, x) + mx2F ′
m,r (n − 1, x).

• The element n is put into a non-empty block. First, we construct an ordered (r, m, x)-
partition on n − 1 elements with given k + r blocks, and then put down n into one of
the k + r blocks. Up to this step, we have

Wm,r (n − 1, k)(k + r)!mk xk · (k + r)

= Wm,r (n − 1, k)(k + r)!mk xk · r + Wm,r (n − 1, k)(k + r)!mk xkk

possibilities. We still have to consider the colouring. For that we have two different
cases: n goes to a distinguished block (these cases are counted by the first sum above),
then we do not colour n. Or, n goes to a non-distinguished block and it must be coloured.
Therefore, for the second sum above we multiply it by m. Summing over k, we get that
the number of cases is

Wm,r (n − 1, k)(k + r)!mk xk · r + mWm,r (n − 1, k)(k + r)!xkk

rFm,r (n − 1, x) + mxF ′
m,r (n − 1, x).

Summing all of the particular cases above and rearranging the sum we have that

Fm,r (n, x) = mxFm,r (n − 1, x) + mxrFm,r (n − 1, x) + rFm,r (n − 1, x)

+ mx2F ′
m,r (n − 1, x) + mxF ′

m,r (n − 1, x)

= (mx(1 + r) + r)Fm,r (n − 1, x) + mx(x + 1)F ′
m,r (n − 1, x).

�
5. The real zero property of the r-Whitney–Fubini polynomials

A sequence {a0, a1, . . . , an} of the coefficients of a polynomial f (x) = ∑n
k=0 ak xk of

degree n with only real zeros is called the Pólya Frequency sequence (PF). We are going
to prove that the sequence mk(k + r)!Wm,r (n, k) is a PF-sequence. To reach this aim, we
first prove an equally interesting fact.

Theorem 15. The following equality holds:

mx1− r
m (1 + x)(

1
m −1)r [(x

r
m (1 + x)1+r(1− 1

m ))Fm,r (n − 1, x)]′ = Fm,r (n, x).

Proof. Let H(x) = x
r
m (1 + x)1+r(1− 1

m ) and G(x) = mx1− r
m (1 + x)(

1
m −1)r . It is not

difficult to show that

H ′(x) = mx(r + 1) + r

mx(x + 1)
H(x) and G(x) = mx(x + 1)

H(x)
.

Therefore from Theorem 14, we have

Fm,r (n, x) = (mx(r + 1) + r)Fm,r (n − 1, x) + mx(x + 1)F ′
m,r (n − 1, x)

= mx(x + 1)

H(x)
Fm,r (n − 1, x)

(
mx(r + 1) + r

mx(x + 1)
H(x)

)
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+ mx(x + 1)

H(x)
F ′

m,r (n − 1, x)H(x)

= G(x)Fm,r (n − 1, x)H ′(x) + G(x)F ′
m,r (n − 1, x)H(x)

= G(x)(Fm,r (n − 1, x)H(x))′.

�

COROLLARY 16

For all r, m, n � 1, the r-Whitney–Fubini polynomials Fm,r (n, x) of degree n have only
negative real zeros in the interval ]−1, 0[. That is, the sequence (Wm,r (n, k)(k+r)!mk)n

k=0
is a PF sequence.

Proof. For

Fm,r (1, x) = rr ! + xr !m(1 + r),

the statement is true for any integers r, m > 0. We proceed by induction, and suppose that
the statement is true till n − 1.

From the left-hand side of our theorem, we see that the term mx1− r
m (1 + x)

(
1
m −1

)
r

can
have zeros only at x = 0 or x = −1. We will see that these are not zeros since they are
cancelled out by some factors of

[(x
r
m (1 + x)1+r(1− 1

m ))Fm,r (n − 1, x)]′.

Under the derivative the function has zeros at x = 0, x = −1 and, by the induction
hypothesis, it also has n − 1 zeros in the interval ] − 1, 0[. So, by Rolle’s theorem, the
derivative must have n − 2 zeros in between the zeros of Fm,r (n − 1, x), and a zero
between −1 and the leftmost zero of Fm,r (n −1, x), and between 0 and the rightmost zero
of Fm,r (n − 1, x)). These altogether are n zeros, all in the interval ] − 1, 0[. Since on the
right-hand side we have an n degree polynomial, we get that these are all the zeros. And,
in addition, as we mentioned, the other zeros at x = 0 and x = −1 cancels out. �

The particular case of r -Fubini polynomials F1,r (n, x) was proven by Mező [30,31].
We remark that the proof of the corollary actually provide more information than what is
stated. It also shows that the polynomials Fm,r (n, x) and Fm,r (n − 1, x) are interlacing in
the following sense.

Let (ri )i∈N and ((s j ) j∈N be the sequences of the real zeros of polynomials f of degree
n and g of degree n − 1 in nonincreasing order respectively. We say that g interlaces f
[22], denoted by g � f , if

rn � sn−1 � · · · � s2 � r2 � s1 � r1.

So, by using the argument of the proof, we can state that

Fm,r (n − 1, x) � Fm,r (n, x).
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Figure 1. Zeros of F2,3(4, x) (red) and F2,3(5, x) (blue).

Example 17. In figure 1, we show the zeros of the polynomials F2,3(4, x) and F2,3(5, x)

as

F2,3(4, x) = 80640x4 + 138240x3 + 73920x2 + 13056x + 486,

F2,3(5, x) = 1290240x5 + 2822400x4 + 2131200x3 + 648000x2

+ 69168x + 1458.

6. A definition of the r-Eulerian–Fubini polynomials

DEFINITION 18

The r -Eulerian–Fubini polynomials Am,r (n, x) are defined as

Am,r (n, x) =
n∑

k=0

Wm,r (n, k)(k + r)!mk(x − 1)n−k (16)

= (x − 1)nFm,r

(
n,

1

x − 1

)
. (17)

Note that

Am,r (n, x) =
n∑

k=0

n−k∑

j=0

(−1)n−k− j
(

n − k

j

)
Wm,r (n, k)(k + r)!mk x j

=
n∑

j=0

n∑

k=0

(−1)n−k− j
(

n − k

j

)
Wm,r (n, k)(k + r)!mk x j .



27 Page 22 of 25 Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:27

Then, we define the r -Eulerian–Fubini numbers am,r (n, j) by

am,r (n, j) :=
n∑

k=0

(−1)n−k− j
(

n − k

j

)
(k + r)!mk Wm,r (n, k).

Moreover, if (m, r) = (1, 0) we recover the classical Eulerian polynomials.

Theorem 19. The exponential generating function for the r-Eulerian–Fubini polynomials
is

∞∑

n=0

Am,r (n, x)
zn

n! = r !(x − 1)r+1er(x−1)z

(x − em(x−1)z)r+1
. (18)

Proof. The exponential generating function for the r -Whitney numbers of the second kind
is [29]

∞∑

n=k

Wm,r (n, k)
zn

n! = er z

k!
(

emz − 1

m

)k

.

Then we have

∞∑

n=0

Am,r (n, x)
zn

n! =
∞∑

k=0

∞∑

n=k

Wm,r (n, k)(k + r)!mk(x − 1)n−k zn

n!

=
∞∑

k=0

(k + r)!mk

(x − 1)k

∞∑

n=k

Wm,r (n, k)(x − 1)n zn

n!

=
∞∑

k=0

(k + r)!mk

(x − 1)k
· er(x−1)z

k! ·
(

em(x−1)z − 1

m

)k

= r !er(x−1)z
∞∑

k=0

(
k + r

r

)(
em(x−1)z − 1

x − 1

)k

.

Then equation (18) follows. �

Theorem 20. The r-Whitney–Fubini polynomials satisfy the identity

Fm,r (n, x) =
n∑

j=0

am,r (n, j)(1 + x) j xn− j . (19)

Proof. From (17), we obtain

Fm,r (n, x) = xnAm,r

(
n,

x + 1

x

)
= xn

n∑

j=0

am,r (n, j)

(
x + 1

x

) j

,

which results in (19). �
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Theorem 21. The r-Eulerian–Fubini polynomials are represented by the following infinite
sum:

Am,r (n, x)

(1 − x)n
= r !(1 − x)r+1

∞∑

j=0

x j
(

r + j

j

)
(( j + r + 1)m − r)n . (20)

Proof.

∞∑

n=0

Am,r (n, x)

(1 − x)n

zn

n! =
∞∑

n=0

Am,r (n, x)
( z

1−x )n

n! = r !(x − 1)r+1e−r z

(x − e−mz)r+1

= r !e(m(r+1)−r)z
(

1 − x

1 − xemz

)r+1

= r !(1 − x)r+1e(m(r+1)−r)z
∞∑

j=0

(
r + j

j

)
(xemz) j

= r !(1 − x)r+1
∞∑

j=0

(
r + j

j

)
x j

∞∑

n=0

((( j + r + 1)m − r)z)n

n!

= r !(1 − x)r+1
∞∑

n=0

zn

n!
∞∑

j=0

x j
(

r + j

j

)
(( j + r + 1)m − r)n .

So statement (20) follows. �

COROLLARY 22

The Eulerian polynomials satisfy the identity

A(n, x)

(1 − x)n+1 =
∞∑

j=0

x j ( j + 1)n .

In [35,49], the authors introduced a different family of Eulerian polynomials related to
r -Whitney numbers.

Theorem 23. The following equality holds:

am,r (n, i) = (m(1 + r) − r)am,r (n − 1, j) + ram,r (n − 1, j − 1)

+ m
n−1∑

k=0

k(−1)(n−1)−k−( j−1)(k + r)!mk Wm,r (n − 1, k)

(
n − k − 1

j − 1

)
,

where am,r (n, i) are the r-Eulerian–Fubini numbers.
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[19] Dobiński G, Summirung der Reihe
∑

nm/n! für m = 1, 2, 3, 4, 5, . . . , Arch. für Mat. und
Physik., 61 (1877) 333–336

[20] Gessel I, Congruences for Bell and tangent numbers, Fibonacci Quart., 19(2) (1981) 137–144
[21] Graham R L, Knuth D E and Patashnik O, Concrete Mathematics (2nd edn) (1994) (Addison-

Wesley, Boston, Reading)
[22] Liu L L and Wang Y, A unified approach to polynomial sequences with only real zeros, Adv.

Appl. Math., 38(4) (2007) 542–560

https://arxiv.org/pdf/1411.6271.pdf
http://www.stat.wisc.edu/~callan/notes/
http://www.stat.wisc.edu/~callan/notes/


Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:27 Page 25 of 25 27

[23] L. L. Liu, Y. Wang. On the log-convexity of combinatorial sequences, Adv. Appl. Math., 39(4)
(2007), 453–476.

[24] Mangontarum M M and Katriel J, On q-boson operators and q-analogues of the r -Whitney
and r -Dowling numbers, J. Integer Seq., 18 (2015) Article 15.9.8

[25] Mansour T, Ramírez J L and Shattuck M, A generalization of the r -Whitney numbers of the
second kind, J. Comb., 8(1) (2017) 29–55

[26] Merca M, A convolution for the complete and elementary symmetric functions, Aequationes
Math., 86(3) (2013) 217–229

[27] Merca M, A new connection between r -Whitney numbers and Bernoulli polynomials, Integral
Transforms Spec. Funct., 25(12) (2014) 937–942

[28] Merca M, A note on the r -Whitney numbers of Dowling lattices, C. R. Math. Acad. Sci. Paris,
351(16-17) (2013) 649–655
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[32] Mező I, The r -Bell numbers, J. Integer Seq., 14 (2011) Article 11.1.1
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