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Abstract
Background/Aims: The mouse is widely used as an animal model for studying human 
embryo implantation. However, the mouse is unique in that both ovarian progesterone and 
estrogen are critical to implantation, whereas in the majority of species (e.g. human and 
hamster) implantation can occur in the presence of progesterone alone. Methods: In this 
study, we analyzed embryo-induced transcriptomic changes in the hamster uterus during 
embryo implantation by using RNA-seq. Differentially expressed genes were characterized by 
bioinformatic analysis. Results: We identified a total of 781 differentially expressed genes, of 
which 367 genes were up-regulated and 414 genes were down-regulated at the implantation 
site compared to the inter-implantation site. Functional clustering and gene network analysis 
highlighted the cell cycle process in uterus upon embryo implantation. By examining of the 
promoter regions of differentially expressed genes, we identified 7 causal transcription factors. 
Additionally, through connectivity map (CMap) analysis, multiple compounds were identified 
to have potential anti-implantation effects due to their ability to reverse embryo-induced 
transcriptomic changes. Conclusion: Our study provides a valuable resource for in-depth 
understanding of the mechanism underlying embryo implantation.

Introduction

Embryo implantation into the uterus is an essential process for human pregnancy [1]. 
Successful implantation requires an implantation competent blastocyst and a receptive 
endometrium, both of which are precisely regulated by ovarian hormones, estrogen and 
progesterone [2, 3]. Embryo implantation is low-efficiency process, because the maximum 
chance of natural pregnancy or in vitro fertilization (IVF) pregnancy occurring in a menstrual 
cycle is approximately 30%, largely due to implantation failure [4, 5]. In addition, an emerging 
concept is that early pregnancy loss and various pregnancy complications are rooted in 
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suboptimal embryo implantation [6]. Therefore, it is imperative to define the molecular 
mechanism of embryo implantation.

The mouse is widely used as an animal model for studying human embryo implantation 
[7-10]. The mouse as well as the rat is unique in that both maternal progesterone and 
estrogen are critical to implantation, whereas in the majority of species including humans, 
implantation can occur in the presence of progesterone alone and ovarian estrogen is not 
needed [11]. Thus, there is risk of encountering irrelevant molecular event to human embryo 
implantation by using the mouse model. From this aspect, other rodents, such as the hamster, 
may provide a useful alternative model [12]. A number of genes have been implicated in 
hamster embryo implantation. These include estrogen receptors (ESR1 and ESR2) [13], 
progesterone receptor (PGR) [14], alkaline phosphatases (Akp2 and Akp6) [15], adheren 
junction proteins (Cdh1, Ctnnb1 and Ctnna1) [16], leukemia inhibitory factor (Lif) [17, 18], 
Indian hedgehog (Ihh) [19], prostaglandin-endoperoxide synthase 2 (Ptgs2) [20], heparin 
binding EGF-like growth factor (Hbegf) [21], and vascular endothelial growth factor (Vegf) 
[22]. Despite these discoveries, there is relatively sparse information on hamster embryo 
implantation from published studies.

In the present study, we analyzed embryo-induced transcriptomic changes in hamster 
uterus on day 5 of pregnancy using the RNA-seq approach. RNA-seq is a highly accurate 
tool for quantifying global gene expression levels. In contrast to the microarray, the main 
advantages of RNA-seq are that it can detect un-annotated transcripts [23], discriminate 
very similar sequences [24], and have no upper limit for quantification [25]. Our study 
contributes to an increase in the knowledge on the embryo implantation in hamsters.

Materials and Methods

Sample collection
Adult golden hamsters (Mesocricetus auratus), aged 4 mo and weighted 100~120 g, were used for this 

study. The hamsters were housed in a temperature-controlled room with 12 h light-dark cycles and free 
access to water and food. Female hamsters were mated with male hamsters overnight and the presence 
of sperm in the vaginal smear the next morning indicated the first day of pregnancy. On day 5 morning 
of pregnancy, uterine implantation sites (IS) and inter-implantation sites (IIS) were identified after an 
intravenous injection of Chicago Blue B dye solution. The embryos were removed by gently and repeatedly 
flushing the uterus with saline. The complete removal of embryos was ensured by counting the number of 
recovered embryos. The integrity of uterine epithelium after flushing was confirmed by sequential frozen 
sections. Then uterine fragments from IS and IIS were collected separately. All collected samples were 
flash-frozen in liquid nitrogen and stored at -80 °C until use. All the animal procedures in this study were 
approved by the Institutional Animal Care and Use Committee of South China Agricultural University.

RNA-seq analysis
Three pregnant animals were used to collect uterine samples (n = 3). In order to get enough tissues 

for RNA-seq analysis, 3 IS segments were pooled for each animal and so were 3 IIS segments. Total RNA was 
extracted from the collected samples by TRIzol reagent (Invitrogen). The purity and integrity of RNA was 
respectively evaluated by using the ND-1000 Nanodrop and the Agilent 2200 TapeStation. The RNA quality 
control parameters were: A260/A280 ratio ≥ 1.8, A260/A230 ratio ≥ 2.0 and RIN (RNA integrity number) 
[26] value ≥ 7.0. The TruSeq RNA sample preparation kit (Illumina) was used to generate RNA-seq libraries 
following the manufacturer’s protocol. High-throughput sequencing was conducted on the Illumina HiSeq 
2500 system. RNA-seq data was processed by a computational pipeline after sequencing. Raw data were 
aligned to hamster genome MesAur1.0 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000349665.1/) by 
Tophat v2.0.4 [27] without more than two mismatches. The aligned reads were assembled using Cufflinks 
v2.2.1 [28]. Differentially expressed genes were chosen on the basis of the criteria of fold change > 2 and 
FDR (false discovery rate) < 0.05.
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Validation by quantitative RT-PCR
Total RNA was extracted with 

TRIzol reagent (Invitrogen). The 
PrimeScript reverse transcriptase reagent 
kit (TaKaRa) was used to synthesize 
the cDNA after eliminating potential 
genomic DNA contamination of RNA by 
DNase I (Invitrogen). Quantitative PCR 
was performed using THUNDERBIRD 
SYBR qPCR Mix (Toyobo) on the Applied 
Biosystems 7500 (Life Technologies). The 
Rpl7 gene was chosen as a reference gene 
for normalization. Primer sequences were 
listed in Table 1.

Gene ontology (GO) and pathway analysis
GO and pathway analysis was performed by using the DAVID tool [29]. The significance cutoff for FDR 

was set at 0.01. The R package wordcloud was used to generate word cloud for significantly enriched GO 
terms. The font sizes in the word cloud were proportional to -log10 of FDR for each enriched GO terms.

Gene network analysis
The gene network was performed by using the STRING database v10.0 [30]. The minimum combined 

score was set to 0.9. Visualization and analysis of the gene network was applied by Cytoscape software [31]. 
The degree distribution of each gene was analyzed by Cytoscape plugin Network Analyzer [32]. The degree 
threshold value of hub genes was the mean plus two standard deviations.

Analysis of transcription factor binding sites (TFBS)
We retrieved the putative promoter regions (1 kb upstream of transcription start site) for all 

differentially expressed genes. The TESS software version 6.0 [33] was used to search for matches of 
position-weigh matrices (PWM) available in the TRANSFAC database [34]. The cutoff value for relative 
score was set at 0.9. Using all genes in the genome as the background, a hypergeometric test with FDR 
multiple test correction was conducted using in-house PERL scripts. In the end, FDR < 0.01 was used as the 
significance threshold to identify enriched transcription factors.

Connectivity map (CMap) query
The up- and down-regulated genes were designated as the gene expression signature. These signature 

genes were submitted simultaneously for CMap query (http://www.broadinstitute.org/cmap/). The 
enrichment score was calculated for each compound using the gene set enrichment analysis algorithm [35].

Results

Assessment of embryo-induced transcriptomic changes in hamster uterus using RNA-seq
In order to capture the embryo-induced transcriptomic changes in hamster uterus, 

RNA-seq data were generated from the implantation site (IS) and the inter-implantation site 
(IIS, served as control) of the uterine samples on day 5 of pregnancy, with three biological 
replicates respectively. We obtained a total of 30.5 million reads, 73.2% of which were 
uniquely mapped to the hamster genome (MesAur1.0). Mapped reads were used to estimate 
normalized gene expression level as fragments per kilobase of transcript per million 
mapped fragments (FPKM). It has been estimated that 1 FPKM is approximately equivalent 
to 1 mRNA per cell [24]. Whole-transcriptome principle component analysis demonstrated 
that the IS samples were readily separated from the IIS ones, indicating that uterine gene 
expression is systematically altered in IS compared to IIS during embryo implantation (Fig. 
1A). Using a fold change cutoff of 2 and a FDR cutoff of 0.05, we identified a total of a total of 

Table 1. Primers used in this study for quantitative RT-PCR 
analysis 

Symbol ID Primers Length 
Ada XM_021235903.1 tcattcctttccgacctt;ttcccgattcatacccac 98bp 
Apoe XM_005086320.3 cgagcccgaggtaaacga;gcacccaacgcaggtaatc 92bp 
Ass1 XM_005085514.3 ttctcccgccacctgact;ttcccttggatgaccacttt 94bp 
Aurka XM_005074462.3 tgatgccaccagagttta;tgatgtatgtagccgtcct 110bp 
Birc5 XM_005069857.3 tgctggtggttcatttgt;atcaccctgcggtagaag 50bp 
E2f8 XM_021234754.1 tggaccaaccaagcctac;tgagacttccagtttacgc 103bp 
Foxm1 XM_021235288.1 gtgcgtcactgaaagagga;gacttgagcccacaatagg 97bp 
Fst XM_005082771.3 cccgcttctacgcaaataa;ggaggtgcccgaaatcaa 64bp 
Msx1 XM_005068833.3 tcatccagttcctccgagtc;ggtgcccttaatttccacat 121bp 
Mtus2 XM_021234736.1 acccaaccagcccgatta;tccctccgatggacagaa 149bp 
Nppc XM_005082250.3 cggtctgggatgttagtgc;ccacattgcgttggaggt 116bp 
Plxdc1 XM_021230489.1 cctggctactctgacaactc;aaacatggtcccactgaac 76bp 
Rpl7 XM_021225260.1 ctatgagaaggcaaagca;ccattgatacctcggatt 150bp 
Srgn XM_021227611.1 ccacgcttagatgatgag;aggaaagggtgataggat 90bp 
Wnt11 NM_001281324.1 ccgcagcaacctggaact;gctcgatggaggagcaatt 110bp 
Wnt4 XM_005081019.3 ccttgtcttcgccgtgtt;tcctcttcggagatgctg 87bp 
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781 differentially expressed genes (Fig. 1B). Unsupervised hierarchical clustering analysis 
showed that 367 genes were up-regulated genes and 414 genes were down-regulated at IS in 
comparison to IIS (Fig. 1C). The range of fold changes for up-regulated and down-regulated 
genes is illustrated in Fig. 1D.

To validate the quality of RNA-seq data, a total of 15 genes with various fold changes 
were selected randomly and subjected to quantitative RT-PCR (qRT-PCR). An independent 
set of biological replication of uterine samples were used. As a result, the expression trend 
of these genes estimated by qRT-PCR was accordant with RNA-seq data (r = 0.9631, p = 1.5e-
12). In addition, the statistical significance was reached at p < 0.05 for all tested genes (Fig. 
1E), indicating that our RNA-seq data were of high quality.

Characterizing differentially expressed genes by gene ontology (GO) and pathway analysis
GO analysis was performed by using the DAVID tool. Enriched GO terms were classified 

according to biological process annotations. There were a total of 17 enriched GO terms, 
namely cell cycle (FDR = 3.79e-17), DNA replication (FDR = 3.97e-13), mitotic nuclear 
division (FDR = 2.81e-11), cell division (FDR = 5.35e-11), chromosome segregation (FDR 

Fig. 1. Identification of embryo-induced transcriptomic changes in hamster using RNA-seq. (A) Principal 
component analysis of transcriptomic data. The x-axis represents the score values of the first principal 
component and the y-axis represents the score values of the second principal component. The ellipse shows 
95% confidence interval using Hotelling T2 statistics. The explained variance (R2) and the predictive ability 
(Q2) value of this model were 0.755 and 0.646, respectively. IS, implantation site; IIS, inter-implantation 
site. (B) Volcano plot depicting the transcriptomic data. Log2 transformed FPKM values from RNA-Seq 
were used. Non-changed genes were shown in blue, while differently expressed genes (fold change > 2 and 
FDR < 0.05) were denoted in red or green. (C) Heatmap plot of differentially expressed genes. The Pearson 
correlation distance metric and the average linkage clustering algorithm were used. (D) Distribution of fold 
change values among differentially expressed genes. (E) Validation of selected genes by using qRT-PCR. 
Fold change values determined by both RNA-seq and qRT-PCR were presented as the mean ± SD. Statistical 
significance was reached at p<0.05 for all genes.
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= 4.82e-7), DNA replication initiation (FDR = 6.07e-7), mitotic sister chromatid segregation 
(FDR = 1.07e-4), mismatch repair (FDR = 2.83e-4), protein import into nucleus (FDR 
= 6.21e-4), mitotic cytokinesis (FDR = 7.30e-4), response to hypoxia (FDR = 1.11e-3), 
chromosome condensation (FDR = 2.13e-3), regulation of mitotic cell cycle (FDR = 3.02e-3), 
DNA unwinding involved in DNA replication (FDR = 3.64e-3), protein folding (FDR = 5.19e-
3), cellular response to DNA damage stimulus (FDR = 5.56e-3), and cell proliferation (FDR = 
6.13e-3). Among them, 12 GO terms were related to cell cycle (Fig. 2A).

Pathway analysis was also performed by using the DAVID tool with the KEGG pathway 
annotations. The significantly enriched pathways were cell cycle (FDR = 1.29e-10), DNA 
replication (FDR = 1.32e-9), mismatch repair (FDR = 7.13e-6) and protein processing in 
endoplasmic reticulum (FDR = 4.45e-4) (Fig. 2B).

Identification of hub genes by gene network analysis
Using STRING database, we were able to analyze the gene network underlying 

differentially expressed genes. The constructed gene network contained 145 nodes and 774 

Fig. 3. Construction of the gene network underlying differentially expressed genes. (A) The gene network 
constructed by using the STRING software. Nodes represent genes and edges represent interactions between 
genes. The diameter of each node is proportional to its degree value. (B) Degree distribution of the gene 
network. (C) Bar plot of hub genes with degree values exceeding the mean plus two standard deviations.
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edges with interaction score being set to 0.9 (Fig. 3A). Topological analysis of node degree 
distribution showed that the gene network was a scale-free network [36] (Fig. 3B). In this 
kind of network, most nodes had a low degree of connection, whereas a few nodes had a very 
high degree of connection which are known as hub genes. We identified 11 hub genes using 
a defined cut-off value (Fig. 3C). Due to their key positions in the network, these hub genes 
are likely more important than other genes.

Regulatory mechanisms inferred from transcription factor binding sites
Since transcription factors were indicated to regulate gene expression, we therefore 

sought to find out the causal transcription factors for differentially expressed genes. 
Transcription factor binding sites were predicted using the TESS software configured with 
position-weigh matrices (PWM) from the TRANSFAC database. Up-regulated genes and down-
regulated genes were separately tested for enrichment of transcription factor binding sites. 
Eventually, we found that the binding sites of ETF, LBP-1, MOVO-B, MAZ and CAC-bp were 
significantly over-represented among down-regulated genes (Fig. 4A), whereas the binding 
sites of E2F-1, ETF and Ebox were significantly over-represented among up-regulated genes 
(Fig. 4B). This analysis provided clues to the regulatory mechanisms underlying embryo 
implantation in hamster.

Searching for anti-implantation chemical drugs via connectivity map (CMap)
The up- and down-regulated genes were designated as gene expression signature 

for embryo implantation. To identify chemical drugs that may exert anti-implantation 
effects due to their ability to reverse gene expression during embryo implantation, we 
performed a CMap analysis in which we searched for drugs that have a gene expression 
pattern negatively correlating to gene expression signature for implantation. Determined by 
computing a Kolmogorov-Smirnov (KS) statistic separately for the up- and down-regulated 
genes, the connectivity score is set to zero if the up and down KS statistics are in the same 

Fig. 4. Analysis of transcription factor binding sites in the promoter of differentially expressed genes. 
(A) The sequence logos for transcription factors whose binding sites were significantly enriched in the 
promoter of down-regulated genes. (B) The sequence logos for transcription factors whose binding sites 
were significantly enriched in the promoter of up-regulated genes.
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direction, otherwise the connectivity score is the KS-up score minus the KS-down score. The 
connectivity scores are normalized to the scale from -1 to 1. Among the top 10 most promising 
chemical drugs based on connectivity score (Fig. 5A), niclosamide ranked the first (Fig. 5B). 
The connectivity scores for Niclosamide in up-regulated genes and down-regulated genes 
were -0.351 and 0.178, respectively (Fig. 5C), resulting a normalized combined connectivity 
score of -1 (Fig. 5A). Niclosamide is an FDA-approved drug for the treatment of tapeworm 
infections. The idea that niclosamide can be repurposed into an anti-implantation drug 
deserves further investigation.

Discussion

In the present study, we analyzed embryo-induced transcriptomic changes in hamster 
uterus on day 5 of pregnancy using RNA-seq. We identified a total of 781 differentially 
expressed genes, of which 367 genes were up-regulated and 414 genes down-regulated at 
the implantation site (IS) compared to the inter-implantation site (IIS). Quantitative RT-PCR 
(qRT-PCR) analysis demonstrated that the expression trend of selected genes was consistent 
with RNA-seq, suggesting that our RNA-seq data were of high quality. Previously, Lei et 
al. performed a cross-species microarray analysis with Affymetrix mouse 430A array and 
human U133A array to reveal differentially expressed genes at IS compared to IIS in hamster 
[37]. Affymetrix microarrays use in situ synthesized 25-mer DNA oligonucleotides as probes 
and thus are sensitive to single-base mismatches [38]. We found that only 14.2% and 24.7% 
of our RNA-seq data could be mapped to the human and mouse transcriptome, respectively. 
Thus, the cross-species microarray method may suffer from server background noise and 
cross hybridization.

In order to explore the functions of differentially expressed genes, we conducted gene 
ontology (GO) and pathway analysis. GO analysis revealed that a total of 17 GO terms were 
enriched, 12 of which were associated with cell cycle. In pathway analysis, we found that cell 
cycle pathway was the most enriched pathway. Additionally, network analysis was performed 
to identify 11 hub genes: cyclin-dependent kinase 1 (Cdk1), cyclin B1 (Ccnb1), cell division 
cycle protein 20 homolog (Cdc20), polo-like kinase 1 (Plk1), cyclin A2 (Ccna2), baculoviral 
IAP repeat-containing protein 5 (Birc5), minichromosome maintenance complex component 
5 (Mcm5), mitotic checkpoint serine/threonine-protein kinase BUB1 beta (Bub1b), mitotic 
checkpoint serine/threonine-protein kinase BUB1 (Bub1), cell division cycle associated 
8 (Cdca8), and minichromosome maintenance complex component 5 (Mcm3). The hub 
genes are likely more important than other genes due to their key positions in the network. 

Fig. 5. Connectivity map (CMap) analysis. (A) The enrichment scores of the top 10 chemical drugs from 
CMap analysis. Differentially expressed genes were queried into CMap and chemical drugs showing a 
negative enrichment score were considered. (B) The molecular structure of the top-ranked chemical 
drug, niclosamide. (C) A graphical view of the enrichment score for niclosamide. The enrichment score is 
determined by computing a Kolmogorov-Smirnov (KS) statistic separately for the up- and down-regulated 
genes. The red color represents down-regulated genes and green represents up-regulated genes.
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Strikingly, all these hub genes are involved in cell cycle. Thus, the network analysis once again 
highlights the role of cell cycle in embryo implantation. After proliferation and differentiation 
controlled by steroid hormones, uterine epithelial cells become receptive to allow adhesion of 
the embryo during the window of implantation [6]. After embryo attachment, the underlying 
stromal cells undergo proliferation and subsequent differentiation into large epithelioid 
cells characterized by the secretion of decidual prolactin (PRL) and insulin-like growth 
factor-binding protein 1 (IGFBP1) [39]. Decidualization is a prerequisite for successful 
implantation and establishment of pregnancy [40]. Cell proliferation and differentiation are 
inversely related. Uterine epithelial and stromal cells initiate cell cycle before acquiring a fully 
differentiated state, while differentiation requires proliferation arrest and exit from cell cycle 
[41]. Therefore, cell cycle plays a central role in embryo implantation and decidualization.

Furthermore, we predicted the transcription factors which might drive the expression 
of differentially expressed genes by enrichment test. ETF (TEA domain family member 2) is 
a commonly enriched transcription factor for both down-regulated and up-regulated genes. 
ETF recognizes GC-rich sequences and stimulates expression of genes without a TATA box 
[42]. ETF are abundant in uterus relative to other tissues [43]; however, its role in embryo 
implantation is unknown. We found that the binding sites of LBP-1, MOVO-B, MAZ and CAC-
BP were uniquely enriched among down-regulated genes, while the binding sites of E2F-
1 and Ebox were uniquely enriched among up-regulated genes. LBP-1 (upstream binding 
protein 1) is a member of the NTF (neurogenic element-binding) family of transcription 
factors. MOVO-B (mouse homologue of Drosophila Ovo protein B) is an evolutionarily 
conserved zinc-finger transcription factor. MAZ (MYC-associated zinc finger protein) is a 
transcription factor with dual roles in transcription initiation and termination, one target 
of which is MYC (myelocytomatosis oncogene homolog) [44]. CAC-BP (CAC-binding protein) 
binds CAC box and regulates gene expression in a cis manner. Currently, little is known about 
the role of LBP-1, MOVO-B, MAZ and CAC-bp in regulating uterine gene expression. E2F-1 
(E2F transcription factor 1) is an upstream regulator of cell proliferation and decidualization 
in mouse uterus [45]. Moreover, E2F-1 was predicted to be a key regulator of endometrial 
receptivity in humans [46]. Ebox (enhancer box) is a DNA response element for Ebox binding 
proteins, such as MYC. Uterine expression of MYC is elevated during embryo implantation 
in mice. Estrogen and progesterone induce Myc expression in epithelial and stromal cells, 
respectively [47]. These 7 transcription factors deserve further investigation.

Using the CMap, we were able to identify compounds with a negatively correlating 
gene expression profile to that of differentially expressed genes. The top 10 most promising 
compounds were: niclosamide, quinostatin, iopanoic acid, LY-294002, sirolimus, piribedil, 
medrysone, gossypol, cefalotin and levonorgestrel. Niclosamide is used to treat tapeworm 
infestations. Recently, niclosamide has emerged in anti-cancer therapeutics for various types 
of cancer [48, 49]. One direct target for niclosamide is the signal transducer and activator of 
transcription 3 (STAT3) [50], which is crucial for embryo implantation [51-53]. Quinostatin 
was identified as a mTOR inhibitor through a high-throughput and cell-based assay [54]. 
Mtor is highly expressed in mouse uterus on day 5 of pregnancy [55]. Iopanoic acid is a potent 
inhibitor of thyroid hormone release from thyroid gland, as well as of peripheral conversion 
of thyroxine (T4) to triiodothyronine (T3). Deiodinases are dynamically regulated during 
embryo implantation [56]. LY294002 is a strong inhibitor of phosphoinositide 3-kinases 
(PI3K). Sirolimus, also known as rapamycin, is another mTOR inhibitor. Piribedil is an anti-
parkinsonian agent which acts as a D2 and D3 receptor agonist. Medrysone is a synthetic 
glucocorticoid. Glucocorticoids play an important role in stress-impaired reproduction 
[57]. Gossypol is a yellow polyphenolic compound extracted from cottonseed and has been 
clinically used to treat endometritis and ectopic pregnancy. It has been suggested that 
gossypol is a potential anti-implantation contraceptive [58]. Cefalotin is a first-generation 
cephalosporin antibiotic. Levonorgestrel is a progestin used for emergency contraceptive 
and the treatment of menstrual disorders or endometriosis. Among these compounds, 
it is known that intrauterine injection of LY294002 [59] and sirolimus (rapamycin) [55] 
decreased the number of implantation sites in mice, demonstrating the validity of our CMap 
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analysis. According to literature, there is high possibility that niclosamide, quinostatin, 
medrysone, gossypol and levonorgestrel are anti-implantation compounds. The remaining 
iopanoic acid, piribedil and cefalotin, which are seemingly unrelated to embryo implantation 
so far, may provide insight into the development of novel anti-implantation compounds.

In conclusion, in the present study, using RNA-seq, we analyzed embryo-induced 
transcriptomic changes in hamster uterus on day 5 of pregnancy. Our study provides a 
valuable resource for in-depth understanding of the molecular mechanism underlying 
embryo implantation.
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