
Research Article

Cognition-based hybrid path planning
for autonomous underwater vehicle
target following

Li Yue Ming, Huang Hai , Xu Yang, Zhang Guocheng,
Li Jiyong and Qin Hongde

Abstract
Intelligent path planning is one of the key techniques for autonomous underwater vehicles for the purpose of target
detection, environmental survey and so on. In order to realize automatic motion plan, an intelligent cognitive archi-
tecture for autonomous underwater vehicle motion planning has been proposed to realize complicated target
detection and mobile target following in the disturbance environment. A novel adaptive ant colony optimization and
particle swarm optimization fusion-based fuzzy rules optimization algorithm has been proposed to generate optimized
fuzzy rules. Through this optimization algorithm, the preliminary fuzzy rules can be optimized to realize intelligent
motion planning for complicated operation tasks. Experiments of channel following for wall detection and mobile target
following in the oceanic environment have verified the validity of path planning method in the implementation of
detection and operation tasks.
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Introduction

Currently, autonomous underwater vehicles (AUVs) are

increasingly attractive for various underwater tasks such

as environment exploration,1 seabed survey,2 harbour pro-

tection3 and submarine search and rescue.4 With the devel-

opment of artificial intelligence and computer science,

autonomous path planning can not only help the vehicle

initialize the operation route but also realize reasonable

reaction on different states of obstacles and target during

operation. Path planning methods include global path plan-

ning and local path planning. Global path is generated on

the basis of preliminary environmental understanding and

modelling.5 On the other hand, local path planning is

responsible for the generation of local or regional path to

handle unknown and temporary obstacles under environ-

mental disturbances.6

In the last decade, a variety of solutions have been

developed for the underwater vehicle path planning prob-

lems.7 The fast marching global plan algorithm includes

graph-based algorithm,8 heuristic search algorithm,9
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evolutionary optimization algorithm10 and so on. Zhuang

et al.11 proposed a hybrid optimization algorithm to inte-

grate particle swarm optimization (PSO) algorithm with

Legendre pseudo spectral method (LPM) for AUV operat-

ing in cluttered and uncertain environments, and the search-

ing process is accelerated through LPM. Cheng et al.2

proposed a dynamic programming-based genetic path plan-

ner algorithm in which the random-based crossover opera-

tor is replaced with a deterministic crossover operator.

Local path planner algorithm includes artificial potential

field (APF),12 fuzzy path planner13 and so on. Compared

with surface vehicles,14,15 the local path planning of AUV

is more eligible to be disturbed by the environmental dis-

turbance. Potential field algorithms are mostly applied

because they can generate the forward path by constructing

an APF to weigh the influences of obstacles and goal points

with better consistency and convergence for AUV local

path planning.16 But local minima may stop the objective

from being achieved. In order to overcome this problem,

Melingui et al.17 proposed a novel plan and navigation

approach to integrate APF and fuzzy logic into a common

framework, which utilizes both the heuristic knowledge

and the sampled input–output data pairs. Park et al.12 pre-

sented an advanced fuzzy potential field method for mobile

robot obstacle avoidance. The method primarily generates

the repulsive forces of surrounding obstacles, and secondly

handles linguistic variables with fuzzy rules. However,

unknown and complicated coastal environment often

causes difficulties in the formulation of fuzzy rules.18

However, AUV path planning in applications often con-

fronts with complicated difficulties. Global path planning is

proposed to fulfil missions like regional coverage, target

search and tracking19,20 in limited time. Local path planning

is proposed to evade obstacles, make close observation and

even operation on specified target, which may sometimes

meet unpredicted difficulties and require infinite efforts.21

The AUV should adjust its route and coordinate with global

and local task within the consideration of uncertain distur-

bances, operation time, local sampling cost and so on.

In comparison with the reflection and reasoning of human

beings, the intelligence of AUVs is still in their early stages.

Invariable rules-based fuzzy reasoning cannot adapt for var-

ious and complicated environment.22 The cognition of

human brain, on the contrary, operates on the basis of work-

ing memory, generates different fuzzy rules in the face of

different conditions,23 through the integration of perceiving,

understanding, reasoning and learning.24 This article will

propose a novel intelligent AUV path planning algorithm

on the basis of cognitive architecture for unknown obstacle

avoidance, target following and detection. The contributions

of this study are described as follows:

1. This study has proposed an intelligent fuzzy path

planning method on the basis of cognitive architec-

ture for AUV target following to avoid unknown

obstacles in the disturbance environment.

2. A novel adaptive ant colony optimization (ACO)

and PSO algorithm-based fuzzy rules optimization

algorithm has been proposed to generate optimized

fuzzy rules to obtain optimal path for proposed

operation tasks.

3. Canal wall following and oceanic mobile target fol-

lowing experiments have verified the validity of

path planning method in the implementation of

detection and operation tasks.

The rest of this study is organized as follows. The

cognitive architecture for AUV path planning is issued

in the second section. A novel intelligent path planning

method is proposed in the third section with the adaptive

ACO-PSO algorithm for fuzzy rule optimization. Tank

and typical environmental experiments will be discussed

and analysed in the fourth section. We will make conclu-

sion in the last section.

Cognitive architecture for AUV path
planning

The proposed cognitive architecture has been designed on

the basis of the torpedo shape and intelligent AUV in Fig-

ure 1. It is an AUV with the length at 5.5 m, the greatest

gyrator diameter at 0.63 m, greatest submergence depth at

2000 m, greatest cruising speed for 5 kn and greatest con-

tinuation journey at 350 km. The AUV is equipped with a

‘Tritech Super SeaKing DST’ digital scanning sonar, a 740

TV line camera, two vertical channel thrusters, one propel-

ler, vertical rudders and horizontal wings and so on. The

exploration range of the digital scanning sonar is 300 m

with its vertical beam width at 20� and horizontal beam

width at 3�. Its navigation and position reckoning can be

realized through Doppler Velocity Log (DVL) and inertial

navigation system. The operation system is on the basis of

PC104 embedded with Cþþ as the software language.

Figure 1. Torpedo shape and intelligent AUV construction.
(1) Digital scanning sonar. (2) Vertical channel thruster. (3) GPS
and wireless antenna. (4) Propeller. (5) Vertical rudders and
horizontal wings. (6) Multi-beam Bathymeter. (7) Sidescan sonar.
(8) Underwater CCD. AUV: autonomous underwater vehicle.
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The proposed cognitive architecture of the AUV

includes a high level of knowledge-based path planner, a

low level of vehicle control and executive module and

environmental perception module (see Figure 2). The

high-level autonomous planner and low-level control mod-

ule interact each other simultaneously through environ-

mental perception and state awareness. The executive

module fulfils the AUV control command with current

situation feedbacks.

The high level of knowledge-based path planner

includes the global path planner and the local path planner.

The global waypoints are initialized in advance according

to the marine map and mission tasks before the mission

start. The global path planner is realized through a revised

heuristic search and coverage algorithm.25 Through the

global path planner, the AUV tasks and path waypoints are

arranged and organized.

In order to realize local path planning for target detec-

tion and obstacle avoidance in the disturbance environ-

ment, the oceanic environment is modelled not only with

the digital scanning sonar of mid and far distant obstacles

but also with a camera carefully observing the ambient

environment and operation target. Fuzzy rules are initially

proposed and optimized through adaptive ACO and PSO

rule optimization algorithm.

Intelligent path planning method

Obstacles and target modelling

The digital scanning sonar is the device that can not only

detect the target and the obstacle but also measure their

distances from the vehicle. The range of scanning sonar

is 20� with the radius as R. The representation of sonar

detection space is important for environmental modelling

and target tracking. In the sonar detection space, an occu-

pancy grid map of environment has been constructed. Each

cell of the map in the discrete region is characterized

through two states: empty and occupied. The state is

obtained through the projection of sonar profile. From the

data flow of projection profile, one can obtain whether the

cell is occupied or empty. The sonar can be applied to

model and find uncertain static and dynamic object with

Gaussian distribution. The operation profile of scanning

sonar is shown in Figure 3.

Through Demster–Shafer theory, the goal of the occu-

pancy grids is to determine the cell possibilities of empty

Figure 2. Cognitive architecture for AUV path planning. AUV: autonomous underwater vehicle.

Figure 3. The operation range of the digital scanning sonar (the
space of sonar includes seven radial directions, that is, left (l), front
small left (Sfl), front left (fl), front (f), front right (fr), front large
right (fr), right).
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and occupied. If we define O as the states of occupation by

obstacles, and E as the empty states, one can obtain the set

of discernment Y as

Y ¼ fO;Eg ð1Þ

Each grid in the workspace is defined by the cell state

Uði; jÞ, which is used to describe the assignment of basic

probability mi;j to each label in O

O ¼ �;E;O; E;Of gf g ¼ 2Y ð2Þ

Each cell Uði; jÞ in the grid is defined as

mi;jð�Þ þ mi;jðEÞ þ mi;jðOÞ þ mi;jð E;Of gÞ ¼ 1 ð3Þ

with every cell in this map is initialized as

mi;jðOÞ ¼ mi;jðEÞ ¼ 0 and mi;jð E;Of gÞ ¼ 1 ð4Þ

In the path planning process of potential field, the attrac-

tive forces come from the goal and the observing targets,

while the repulsive forces come from the obstacles. On the

basis of sonar profile, the repulsive force between the vehi-

cle and the obstacles can be obtained to prevent collisions

through the sum of gradients of the potential field

f rep ¼
k rep

Xm

i¼1

�
1

jjPa � Poijj
� 1

dmax

�
Pa � Poi

jjPa � Poijj
if jjPa � Poijj < dmax

0 otherwise

8><
>: ð5Þ

where m is the number of ambient obstacles, k rep is the

positive constant of the repulsive forces and dmax is the

obstacle influence distance. From equation (5), the repulsive

forces are the sum of several subrepulsive ones. From the

obstacles modelling through scanning sonar, three compo-

nents of obstacle information are expressed with obstacle

position (Poi ¼ ðxoi; yoi; zoiÞ). If the current position of AUV

is set as Pa ¼ ðxa; ya; zaÞ, the distance and angular relation-

ship between the AUV and the obstacle can be described as

jdA�Obj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xopÞ2 þ ðy� yopÞ2 þ ðz� zopÞ2

q
 A�Ob ¼ atan

y� yop

x� xop

qA�Ob ¼ atan
z� zopffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xopÞ2 þ ðy� yopÞ2
q

8>>>>>>>><
>>>>>>>>:

ð6Þ

In the path planning process, the obstacles must be

avoided once they are found, while the targets should be

observed and detected with the existence possibilities.

According to the theory of potential field, the attractive

forces come from the goal and the observing targets. On

the other hand, the position of observed target can be

described with Pt ¼ ðxt; yt; ztÞ, target radius rate (Y tr) and

target uncertain rate (Y Ur). The target uncertainty is mod-

elled with uncertain radius which is varied with normal

distribution Y tr*ðPt;sÞ. If M1, M2 and M3 are used to

define the uncertainty difference on the object motion, the

relationship between target change rate from t � 1 to t can

be described through normal distribution and probability

density functions of radius rate as follows

Y trðtÞ ¼ M 1Y trðt � 1Þ þM 2X ðt�1Þ þM 3 ð7Þ

where X ðt�1Þ ¼ Nð0;sÞ is the normal distribution for the

target, M 2 ¼ ½ 0 1 1 �T , M 3 ¼ ½ 0 0 Y Ur �T and

M 1 ¼
1 Y UrðtÞ 0

0 1 0

0 0 1

2
64

3
75 ð8Þ

In the local planning, a novel multilayered potential

field approach has been proposed for the target detection.

The attractive force includes the goal and the observed

target

f att ¼

katt

�
l
�

sgnðPg � PaÞjjPg � Pajj2
�
þ ð1� lÞY UrðtÞ

�
sgnðPt � PaÞjjPt � Pajj2

��
if jjPg � Pajj > gg and jjPt � Pajj > gt

katt

�
l
�

sgnðPg � PaÞjjPg � Pajj
�
þ ð1� lÞY UrðtÞ

�
sgnðPt � PaÞjjPt � Pajj2

��
if jjPg � Pajj � gg and jjPt � Pajj > gt

katt

�
l
�

sgnðPg � PaÞjjPg � Pajj
�
þ ð1� lÞY UrðtÞ

�
sgnðPt � PaÞjjPt � Pajj

��
if jjPg � Pajj � gg and jjPt � Pajj � gt

katt

�
l
�

sgnðPg � PaÞjjPg � Pajj2
�
þ ð1� lÞY UrðtÞ

�
sgnðPt � PaÞjjPt � Pajj

��
if jjPg � Pajj > gg and jjPt � Pajj � gt2

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð9Þ
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where katt is the positive constant of the attractive

forces, Pg ¼ ðxg; yg; zgÞ represents the goal position,

Pt ¼ ðxt; yt; ztÞ represents the target position, l represents

the coefficient of the attractive forces between the target

and the goal and gg and gt represent the distance limit for

the layer of attractive force.

Therefore, the artificial force can be obtained as

f ¼ f rep þ f att ð10Þ

From equations (5) to (10), the local obstacle and the

target can be remodelled and the path can be planned

through Figure 3.

Fuzzy logic descriptions

For the AUV cruising in the complicated environment, it

should not only detect the target and avoid obstacles but

also overcome oceanic current and uncertain disturbance.

The fuzzy logic path planning method includes the follow-

ing steps:

1. Fuzzification: all the fuzzy logic inputs, including

AUV current positions Pa ¼ ðxa; ya; zaÞ, detected

the ith obstacle positions Poi ¼ ðxoi; yoi; zoiÞ, target

positions Pt ¼ ðxt; yt; ztÞ, AUV current velocity,

heading angle, relative position between the AUV

and the target and relative position between AUV

and obstacles, are all interpreted into fuzzy linguis-

tic values. And the fuzzy membership functions

vary with the fuzzy inputs. The fuzzy outputs are

the velocity and expect angle of the AUV.

2. Rule generation and optimization through adaptive

ACO and PSO algorithm.

The initial fuzzy rules are the combinations of these

corresponding forces and reactions. The number of

fuzzy rules nr should be correspondent with the sum

and combinations of environmental conditions such as

obstacles, targets, current and disturbances. The num-

ber of the fuzzy rules is related to the number of the

input variables and the logical relationships between

them. Although the former is easy to be get, the latter

is hard to be established. In this article, the interplay

between those AUV state variables and the outside

information such as velocity, angle and position will

aggravate the difficulty of the establishment of the

fuzzy rules. The sum and combinations of the environ-

mental conditions refer to the internal relationship of

the fuzzy inputs.

The nr fuzzy rules are designed by using Takagi–Sugeno

fuzzy model of ‘IF-THEN’ rules as follows.

The ith rule Rp:

IF jjPa � Poijj ¼ dpi, jjPg � Pajj ¼ dti, the AUV

speed is va and the current speed is vc, THEN

yp ¼ f p
rep þ f

p
att ð11Þ

where

f p
rep ¼

k rep

Pm
i¼1

xjjva � vcjj
jjPa � Poijj

� 1

dmax

0
@

1
A Pa � Poi

jjPa � Poijj
if jjPa � Poijj < dmax

0 otherwise

8>><
>>:

f att ¼

kattjjva � vcjj
�
l
�

sgnðPg � PaÞjjPg � Pajj2
�
þ ð1� lÞY UrðtÞ

�
sgnðPt � PaÞjjPt � Pajj2

��
if jjPg � Pajj > gg and jjPt � Pajj > gt

kattjjva � vcjj
�
l
�

sgnðPg � PaÞjjPg � Pajj
�
þ ð1� lÞY UrðtÞ

�
sgnðPt � PaÞjjPt � Pajj2

��
if jjPg � Pajj � gg and jjPt � Pajj > gt

kattjjva � vcjj
�
l
�

sgnðPg � PaÞjjPg � Pajj
�
þ ð1� lÞY UrðtÞ

�
sgnðPt � PaÞjjPt � Pajj

��
if jjPg � Pajj � gg and jjPt � Pajj � gt

kattjjva � vcjj
�
l
�

sgnðPg � PaÞjjPg � Pajj2
�
þ ð1� lÞY UrðtÞ

�
sgnðPt � PaÞjjPt � Pajj

��
if jjPg � Pajj > gg and jjPt � Pajj � gt2

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð12Þ

dmax is the influence distance of the obstacles and x is the

speed coefficient, and p¼ 1, 2, . . . np, represent the number

of rules.

3. Inference mechanism: in this process, the reason-

ing process includes optimized fuzzy inference

rules.

Ming et al. 5



4. Defuzzification: in this process, the defuzzification

equation is the weighted average of the fuzzy

outputs

y ¼

Xnp

p¼1

wpyp

Xnp

p¼1

wp

ð13Þ

where wp is the weight value.

Adaptive rules generation and optimization algorithm

If the fuzzy rules can complete all the possible conditions

and fuzzy inputs, one should take the considerations with

nr � mnr rules and conditions, where m is the input numbers

and nr represents the number of fuzzy rules. Since these

rules involve the states of various conditions of target posi-

tions, obstacle positions, AUV state and current distur-

bance state, it is difficult to enumerate all the appropriate

linguistic fuzzy rules beforehand to cover all the possible

situations. The following algorithm will adaptively fuse the

ACO and PSO algorithms in order to optimize designed

fuzzy rules. The following will introduce the steps of the

rule generation and optimization method in Figure 4.

The first step is to code each rule into a particle or an ant,

before the application of ACO and PSO. For the ith input

variable and the jth rules solution, the coded result can be

obtained as the rules solution individually represented in

the first row of Figure 4. For PSO, the rule particles can

move and expand quickly in the search space but without

global communication. Each rule particle has a position

and velocity vector. Each rule particle updates its position

and velocity through every learning cycle.

While in continuous ACO, ant rules are randomly distribu-

ted among particles. Notonly the information can be exchanged

among the ant individuals but the ACO Gaussian sampling can

push individuals to the end of search from local optimum.

In the beginning of this algorithm, if we set KN as the

total rules, NaN as the solutions of ant rules individuals, one

obtains KN � NaN as the particle rules individuals. At the

end of this algorithm, K end ¼ KN � N aN represents the

increase number of ant rules individuals and NaN represents

the decrease number of particle rules individuals. If I max is

set as the maximum iteration number, IN is the iteration

number, one can obtain the number of ant individuals from

KIc ¼ int ðK end � N aN Þ
IN

I max

� �
þ N aN ð14Þ

In the second step, the particle rules individuals are gener-

ated and expanded to the search space; the generated particle

individual number is KN � KIc with the iteration as IN þ 1.

Each particle swarm includes many particles which is used to

define and assign all particles initialized positions. For the ith

particle, the position and velocity vectors of the ith particle are

set as pp and vp, pi is the best solution for a certain particle and

pg is the global best solution for the particle individuals. Thus,

the ant solutions can guide the particles to better particle solu-

tion. The particle velocity can be obtained as

v
p
i ðIN þ 1Þ ¼ &ðv p

i ðIN Þ þ k
p
1 1 � ðpiðIN Þ � ppðIN ÞÞ

þ k
p
2 2 � ðpgðIN Þ � ppðIN ÞÞ

ð15Þ

Figure 4. The block diagram of adaptive PSO and ant rule optimization algorithm. PSO: particle swarm optimization.
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where & is the constrict coefficient, k
p
1 and k

p
2 are positive

parameters for particle acceleration and  i is a random

vector with the entries as the random distribution in

[0,1]. & ¼ 0:7, v
p
1 ¼ v

p
2 ¼ 1, with each particle changes

according to

ppðIN þ 1Þ ¼ ppðIN Þ þ v
p
i ðIN þ 1Þ; i ¼ 1; :::;KN � KIc

ð16Þ

where KN � KIcþ1 is retained as best performance for the

next iteration.

From this approach diagram in Figure 4, the generated

fuzzy rules solutions s1; :::; sN are sorted from best to the

worst according to their performance. In the graph, every

row represents the fuzzy rules solution obtained from par-

ticle or ant. The route from node to level can be searched by

ant. Each route is correspondent to a classification rule,

while each node represents the solution vector. The nodes

connected through path segment corresponding to the pher-

omone level ti and they are selected with high probabilities

tiðt þ 1Þ ¼ rtiðtÞ þDtiðtÞ ð17Þ

where r is a parameter between 0 and 1, and DtiðtÞ is

selected from the quality of solution performance. The

stronger the pheromone level ti, the better the solution is.

The order of pheromone levels is sorted from the best to the

worst.

The third step is ACO algorithm, and the ant generation

process includes three stages:

1. Ant path selection: the new fuzzy rules solution is

generated through ant path which is generated

through the elite tournament technique. At the

IN þ 1 iteration, the total KIc solutions are gener-

ated in the ant path selection process. The elite

selection approach selects LIc best solutions for

temporary solutions. Among the ant path segments,

the node value with highest pheromone level is

selected. The value of LIc in the elite selection var-

ies with iteration

LIc ¼ int KIc

IN

I max

� �
ð18Þ

The fuzzy rules solutions are generated through elite

selection with the increase of global search. In the selection

process, the node can be selected from fuzzy rules particle

or fuzzy rules ant.

2. In the Gaussian sampling process, a new value near

the temporary solution via Gaussian sampling

which means the standard deviation is computed

as follows

dij ¼ z
XN

l¼1

j~sij � sljj
N � 1

ð19Þ

where ~sij is the mean of probability density function and

z is the constant value. The Gaussian sampling operation

process introduces new parameter values to every active

rule in the temporary solutions through the mean of prob-

ability density function ~sij. The standard deviation will

dynamically change according to iteration number N.

3. In the solution refinement process, through the con-

sideration with the attraction of ants to the optimal

individual in the overall population, the solution can

be obtained as

~s i ¼ ŝ i þ  3 � ðŝ 1 � ŝ iÞ ð20Þ

where  3 is random vector with uniform distribution

random number in the interval [0,1]. The random vector

is used for the promotion towards the best solution.

In order to realize rules solution iteration and optimi-

zation, reinforcement learning is applied to execute and

evaluate the AUV path planning actions. The Q-function

can realize mapping from rules-action pairs to predict

return.26 The Q-function-based learning will speed up the

convergence speed and improve system performance with

disturbance. The output of the Q-function can be updated

as follows

QðRðtÞ; akðtÞÞ ¼ QðRðtÞ; akðtÞÞ þ a½Rðt þ 1Þ
þ gQ�ðRðt þ 1ÞÞ � QðRðtÞ; akðtÞÞ�

ð21Þ
where RðtÞ represent current state of rules, rðt þ 1Þ is the

reinforcement reward for the rules, Q�ðRðt þ 1ÞÞ is the

optimal estimation for the possible actions and g is dis-

count factor. At each step, the expected Q values are

updated through

QðRþ 1ÞÞ ¼ 1

2

Xnr

j¼1

f
j
ðRðtÞÞXnr

k¼1
f

k
ðRðtÞÞ

þ
�f jðRðtÞÞXnr

k¼1
�f kðRðtÞÞ

 !
qj

ð22Þ

According to equation (22), the Q value can be updated

as follows:

DQ ¼ rðt þ 1Þ þ gQ�ðRðt þ 1ÞÞ � QðRðtÞ; aðtÞÞ ð23Þ

The best Q values correspond with the quality of the

rules actions above. For each rule, there will be a greedy

action to achieve maximum Q values. For each rules solu-

tion and path planning action, the maximum Q value can be

obtained from the estimation as

Q�ðRðt þ 1ÞÞ ¼ 1

2

XnR

j¼1

f
i
ðRðtÞÞXnR

k¼1
f

k
ðRðtÞÞ

þ
�f iðRðtÞÞXnR

k¼1
�f kðRðtÞÞ

 !
q�i

ð24Þ

where qjðt þ 1Þ ¼ qjðtÞ þ eDqjðtÞ j ¼ 1; :::; nR and e is

the learning rate.

Ming et al. 7



DqjðtÞ ¼
1

2
DQ

f
j
ðRðtÞÞXnR

k¼1
f

k
ðRðtÞÞ

þ
�f jðRðtÞÞXnR
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Experimental results

The following section describes experimental results of two

different cases of motion plan with the AUV of Figure 1. In

the experiments, the number of fuzzy rules is set to 8. The

population of ACO and PSO was set to 60. The total itera-

tion number was set as 150. Thus, the total evaluation trials

per run were 60� 150¼9000. The real-time motion trajec-

tories results were obtained from control.27

Case 1: Canal following for the wall detection

For the inland canal, the wall following is very important

for the wall detection. Although AUV can carry out deli-

cate detection on underwater target, it should cruise close to

the wall of complicated contour under disturbances. There-

fore, the motion plan should be made according to the

detected wall contour and current distance between canal

walls. In order to follow the canal wall, distant

Figure 5. Comparisons on the motion plan of canal following. (a) Comparisons on the motion plan of wall following of the canal. (b)
Heading plan comparisons of motion plan. (c) Distance of AUV from the canal wall. AUV: autonomous underwater vehicle.

8 International Journal of Advanced Robotic Systems



measurement sonars have been equipped on the AUV. In

order to make comparisons, three kinds of motion planning

algorithms including the common fuzzy rules-based

motion plan of 3.1 and 3.2, PSO optimized fuzzy rules-

based motion plan and adaptive ACO-PSO optimized fuzzy

rules-based motion plan are used.

In Figure 5(a), the start point is (0, 0) and the end point is

(�120, 1000). The expected distance between the AUV and

the canal wall is 4 m. The adaptive ACO-PSO fuzzy plan-

ner can obtain the most reasonable trajectory for the canal

detection. Since all the planned trajectories are obtained

according to the AUV real-time state such as headings,

speed, obstacle positions and disturbance, the planned tra-

jectories are complicated curves. The motion control of

AUV was realized according to the results of the adaptive

ACO-PSO fuzzy planner. From Figure 5, the fuzzy planned

motion cannot adapt to the environmental disturbance and

the dynamic environment, the fixed rules usually lead to

late and inflexible responses, thus the more complicated

conditions for the disturbance and the turning of the wall

the greater will be the errors. The PSO algorithm with fuzzy

rules optimization embodies its advantage in the rule

changing according to the real state, but the algorithm can-

not converge very quickly at some local regions which

cause the planning errors great at some time and even
Figure 6. Environmental disturbance obtained from DVL. DVL:
Doppler Velocity Log.

Figure 7. Motion plan of target following. (a) Following trajectories. (b) Heading plan for target following. (c) Speed plan for target
following. (d) Distance from the target during following.

Ming et al. 9



joggle at the place of complicated disturbance and turnings.

While the adaptive ACO-PSO fuzzy planner is more adap-

table for bend or angular intensively changing canals,

because the ACO and reinforcement learning can help the

algorithms with regional rules generation and quick con-

vergence respectively.

Case 2: Moving target following plan

Moving target following is very important but difficult for

AUV advanced detection. The AUV should keep corre-

spondent distance with the same speed and heading angle

under real-time disturbance. The target following experi-

ments for motion plan have been made in the Penglai off-

shore of Chinese Shandong province. The oceanic

environmental disturbances were obtained from DVL in

Figure 6. In the experiments, the planned trajectories from

adaptive ACO-PSO fuzzy planner are obtained according

to the AUV real-time state such as headings, speed, target

speed and positions and disturbance. The motion control of

AUV was realized according to the results of the real-time

adaptive ACO-PSO fuzzy planning. The ideal distance

between the AUV and the mobile target for the target fol-

lowing is 8.5 m.

From Figure 7, the AUV can realize mobile target fol-

lowing through motion plan of ACO-PSO fuzzy planning

algorithm. The distance between the AUV and the mobile

target is from 7.5 m to 10 m.

Conclusions

The AUV can realize high-accuracy submarine detection

and target following through intelligent path planning. This

article has proposed a novel adaptive PSO and ACO fusion-

based fuzzy rules optimization algorithm to realize

intelligent motion planning. Through this algorithm, the

preliminary fuzzy rules can be optimized through contin-

uous selection, sampling, refinement and learning. Two

typical cases of experiments including canal wall following

and mobile target following have been made in order to

verify the validity of intelligent path planning method to

implement the complicated operation tasks.
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