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Abstract. Let R be a commutative ring with a nonzero identity element. For a natural
number n, we associate a simple graph, denoted by �n

R , with Rn\{0} as the vertex set
and two distinct vertices X and Y in Rn being adjacent if and only if there exists an n×n
lower triangular matrix A over R whose entries on the main diagonal are nonzero and
one of the entries on the main diagonal is regular such that XT AY = 0 or Y T AX = 0,
where, for a matrix B, BT is the matrix transpose of B. If n = 1, then �n

R is isomorphic
to the zero divisor graph �(R), and so �n

R is a generalization of �(R) which is called a
generalized zero divisor graph of R. In this paper, we study some basic properties of �n

R .
We also determine all isomorphic classes of finite commutative rings whose generalized
zero divisor graphs have genus at most three.
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1. Introduction

Let R be a commutative ring with a nonzero identity element, and let Z(R) be the set of
all zero divisors of R. Set Z∗(R) := Z(R)\{0}. We call an element a ∈ R\Z(R) a regular
element. The zero divisor graph of R, which is denoted by �(R), is an undirected graph
whose vertices are elements of Z∗(R) with two distinct vertices x and y which are adjacent
if and only if xy = 0. The concept of the zero divisor graph of a commutative ring was first
introduced by Beck [6], but this work was mostly concerned with coloring of rings. The
zero divisor graph of commutative rings has been studied extensively by several authors
(cf. [1–5]).

In this paper, we provide a generalization of the zero divisor graphs by using matrix
theory. We associate a simple graph to a commutative ring R which is called a generalized
zero divisor graph of R and it is denoted by �n

R , with Rn\{0} as the vertex set and two
distinct vertices X and Y being adjacent if and only if there exists an n×n lower triangular
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matrix A over R whose entries on the main diagonal are nonzero and one of the entries
on the main diagonal is regular such that XT AY = 0 or Y T AX = 0. In this situation,
we say that the vertices X and Y are adjacent by applying the matrix A. Note that in the
case n = 1, the graph �n

R is isomorphic to the zero divisor graph �(R). Hence, �n
R is a

generalization of the zero divisor graph �(R).
In this paper, we study some properties of the graph �n

R such as planarity, genus and
crosscap of the graph. Also, we investigate the independence, dominion and chromatic
numbers of �n

R , in the case that R is a finite field.
Now, we recall some definitions of graph theory which are necessary in this paper

from [7]. A simple graph is a pair G = (V, E), where V (G) and E(G) are the sets
of vertices and edges of G, respectively. A subgraph of a graph G is a graph G ′ such
that V (G ′) ⊆ V (G) and E(G ′) ⊆ E(G). In a graph G, the distance between two dis-
tinct vertices x and y, denoted by d(x, y), is the length of the shortest path connecting
x and y, if such a path exists, otherwise, we set d(x, y) := ∞. The diameter of a graph
G is diam(G) = sup{d(x, y) : x and y are distinct vertices of G}. The girth of G,
denoted by gr(G), is the length of the shortest cycle in G, if G contains a cycle; oth-
erwise, gr(G) := ∞. Also, for two distinct vertices x and y in G, the notation x − y
means that x and y are adjacent. A graph G is said to be connected if there exists a path
between any two distinct vertices, and it is complete if each pair of distinct vertices is
joined by an edge. Also, a graph G is called planar if it can be drawn in the plane with-
out any edge crossing. A remarkable characterization of the planar graphs was given by
Kuratowski in 1930. Kuratowski’s theorem says that a graph is planar if and only if it
contains no subdivision of K5 or K3,3. A clique of a graph is a complete subgraph of it
and the number of vertices in a largest clique of G is called the clique number of G and
is denoted by ω(G). An independent set of G is a subset of the vertices of G such that
no two distinct vertices in the subset represents an edge. The independence number of
G, denoted by α(G), is the cardinality of the largest independent set. Also a dominating
set of a graph G is a subset of the vertex set, say S, such that every vertex not in S is
adjacent to a vertex in S. The domination number of G, denoted by λ(G), is the cardinality
of the smallest dominating set. A cutset in a graph G is a set of vertices whose deletion
increases the number of connected components of G. The vertex connectivity of a con-
nected graph G is the minimum number of vertices in a vertex cutset, and is denoted by
K0(G).

2. Basic properties

Throughout the paper, R is a commutative ring with a nonzero identity and n is a positive
integer with n > 1. Also, Zp is a finite field of order p, where p is a prime integer. We
denote the set of zero divisors and unit elements of R by Z(R) and U (R), respectively.
Also, we denote R\Z(R) by Reg(R). Clearly in a finite ring R we have Reg(R) = U (R).
A generalized zero divisor graph associated to R, denoted by �n

R with Rn\{0} as the vertex
set and two distinct vertices X and Y in Rn being adjacent if and only if there exists an
n × n lower triangular matrix A over R whose entries on the main diagonal are nonzero
such that XT AY = 0 or Y T AX = 0.

In the rest of the paper, for an integer i with 1 ≤ i ≤ n, we use the notation Ei to denote
the vertex whose i th component is 1 and other components are zero.

We begin with the following lemma.
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Lemma 2.1. Assume that X = Ei and Y = E j for some 1 ≤ i, j ≤ n. Then X is adjacent
to Y for all 1 ≤ i �= j ≤ n.

Proof. Consider the n × n lower triangular matrix A whose entries satisfy the following
equations:

akl = 0, for k = i and l = j,

akl = 1, for k ≥ l, k �= i and l �= j.

Then all entries on the main diagonal of A are nonzero and one of the entries on the main
diagonal is regular. It is easy to see that XT AY = 0, and so the result follows. �

Lemma 2.2. Let X and Y be two distinct vertices in �n
R such that xl and yk are units for

1 ≤ l, k ≤ n. Also, suppose that one of the following conditions hold:

(i) l �= k.
(ii) l = k and one of the vertices X or Y has at least two unit components.

Then X and Y are adjacent.

Proof. If (i) holds, then one can easily see that X and Y are adjacent. Now, suppose that
(ii) holds. Assume that xl , xm, yk are distinct unit elements for 1 ≤ l, k,m ≤ n. Consider
the n × n lower triangular matrix A whose entries satisfy the following equations:

amk = −x−1
m y−1

k

(∑n

i, j=1
xi y j

)
, for i �= m and j �= k,

ai j = 1, for i �= m and j �= k.

Then all entries on the main diagonal of A are nonzero and one of the entries on the main
diagonal is regular. It is easy to see that XT AY = 0, and so X and Y are adjacent. �

By using the method similar to that used in the proof of Lemma 2.1, one can obtain the
following corollary.

COROLLARY 2.3

Let XT = (0, . . . , 0, xi , 0, . . . , 0) and Y T = (0, . . . , 0, yi , 0, . . . , 0) be distinct vertices
such that xi and yi are units. Then X and Y are not adjacent.

The following theorem follows from Lemmas 2.1 and 2.2.

Theorem 2.4. Let R be a field. Then we have the following statements:

(i) If |R| = 2, then diam(�n
R) = 1.

(ii) If |R| > 2, then diam(�n
R) = 2.

Proof.

(i) If |R| = 2, then R ∼= Z2. Now, by Lemmas 2.1 and 2.2, we have that �n
R is a complete

graph. Hence diam(�n
R) = 1.
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(ii) Assume that |R| > 2. Then there exists at least two unit elements. If X or Y has at
least two unit components, then, by Lemma 2.2, we have d(X,Y ) = 1. Now, suppose that
both vertices X and Y have exactly one unit component, say xi and y j , for 1 ≤ i, j ≤ n. If
i �= j , then by Lemma 2.2, X and Y are adjacent. If i = j , then one can consider the path

X − (0, . . . , 0, zi , 0, . . . , 0, z j , 0, . . . , 0) − Y,

where zi , z j ∈ U (R). Hence d(X,Y ) ≤ 2. Therefore we have diam(�n
R) ≤ 2. Also,

by Corollary 2.3, the vertices (0, . . . , 0, xi , 0, . . . , 0) and (0, . . . , 0, yi , 0, . . . , 0) are not
adjacent, where xi and yi are distinct unit elements in R. Thus �n

R is not complete, and so
in this case, we have diam(�n

R) = 2. �

Lemma 2.5. If |Reg(R)| > 1, then diam(�n
R) = 2.

Proof. By Theorem 2.4, the result holds. �

COROLLARY 2.6

If R is an integral domain with |R| > 2, then diam(�n
R) = 2.

In the following proposition, we study the girth of �n
R .

PROPOSITION 2.7

In the generalized zero divisor graph �n
R , we have gr(�n

R) = 3.

Proof. If n ≥ 3, then by Lemma 2.2, the vertices (1, 1, 1, 0, . . . , 0), (1, 1, 0, . . . , 0) and
(1, 0, . . . , 0) form a triangle. Suppose that n = 2. If R = Z2, then clearly �n

R is isomorphic
to K3. If R �= Z2, then one can consider the triangle

(1, 0) − (1, 1) − (1, a) − (1, 0)

in �n
R , where a /∈ {0, 1}. Therefore we have gr(�n

R) = 3. �

In the following theorem, we investigate the planarity of �n
R .

Theorem 2.8. The graph �n
R is planar if and only if n = 2 and R = Z2.

Proof. First suppose that �n
R is planar. We have the following cases:

Case 1. n ≥ 5. Then, by Lemma 2.1, the vertices of the set {E1, E2, . . . , E5} form a
subgraph isomorphic to K5. This is impossible.

Case 2. n = 4. Then, by Lemmas 2.1 and 2.2, the vertices of the set

{E1, E2, E3, E4, (1, 1, 1, 1)}

form a subgraph isomorphic to K5. This is impossible.
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Case 3. n = 3. Then, by Lemmas 2.1 and 2.2, the vertices of the set

{E1, E2, E3, (1, 1, 1), (1, 1, 0)}
form a subgraph isomorphic to K5. This is impossible.

Case 4. n = 2. If |R| ≥ 3, then, by Lemmas 2.1 and 2.2, the vertices of the set
{(0, 1), (1, 0), (1, 1), (1, a), (a, 1)} with a /∈ {0, 1} form the complete graph K5, which is
impossible. Hence we have |R| = 2. In this situation, �n

R is isomorphic to K3, which is
planar.

The converse statement is clear. �

In the following theorem, we study the clique number of �n
R .

Theorem 2.9. If R is a finite ring, then

ω(�n
R) ≥ |U (R)|n + n +

n−1∑
i=2

( |U (R)|
i

)
.

Proof. By Lemma 2.2, all vertices with at least two unit components form a clique. Hence

we have a clique A of size |U (R)|n + ∑n−1
i=2

( |U (R)|
i

)
, where k = |U (R)|. Now, by

Lemmas 2.1 and 2.2, the set A ∪ {Ei | 1 ≤ i ≤ n} forms a complete subgraph of �n
R .

Hence the result holds. �

Example 2.10. If R = Z2, then ω(�n
R) = 2n − 1.

Example 2.11. If R = Z2 × Z2, then ω(�2
R) = 15.

Proof. Put

X1 = ((1, 1), (1, 0)), X2 = ((1, 1), (0, 1)), X3 = ((1, 1), (0, 0)),

X4 = ((1, 1), (1, 1)), X5 = ((0, 1), (1, 0)), X6 = ((0, 1), (0, 1)),

X7 = ((0, 1), (0, 0)), X8 = ((0, 1), (1, 1)), X9 = ((1, 0), (1, 0)),

X10 = ((1, 0), (0, 1)), X11 = ((1, 0), (0, 0)), X12 = ((1, 0), (1, 1)),

X13 = ((0, 0), (1, 0)), X14 = ((0, 0), (0, 1)), X15 = ((0, 0), (1, 1)).

By Lemma 2.2, X4 is adjacent to the vertices X1, X2, X3, X8, X12 and X15. Set

A =
(

(1, 0) (0, 0)

(1, 0) (1, 0)

)
B =

(
(1, 0) (0, 0)

(1, 0) (0, 1)

)
C =

(
(0, 1) (0, 0)

(1, 0) (1, 0)

)

D =
(

(0, 1) (0, 0)

(1, 0) (0, 1)

)
E =

(
(1, 0) (0, 0)

(0, 1) (0, 1)

)
F =

(
(1, 0) (0, 0)

(0, 0) (1, 0)

)

Now, one can easily check the following adjacencies:

X1−Xi and X1−X j , for i = 2, 3, 6, 7, 10, 11, 13, 14 and j = 5, 8, 9, 12, 15, by applying
matrices A and B.
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X2 − Xi and X2 − X j , for i = 3, 5, 6, 7, 8, 9, 13, 14, 15 and j = 10, 11, 12, by applying
matrices A and C .

X3−Xi , X3−X j and X3−X13, for i = 5, 6, 7, 8, 14, 15 and j = 9, 10, 11, 12, by applying
matrices A,C and E .

X4 −Xi , X4 −X j , X4 −X5 and X4 −X9, for i = 6, 7, 13, 14 and j = 10, 11, by applying
matrices A, E, B and C .

X5 − Xi , X5 − X j , X5 − Xk and X5 − Xl , for i = 6, 7, 14, j = 8, 13, 15, k = 9, 12 and
l = 10, 11, by applying matrices A, B, E and F .

X6 − Xi , X7 − X j , X11 − Xk and X14 − X15, for i = 7, 8, 9, 10, 11, 12, 13, 14, 15,

j = 8, 9, 10, 11, 12, 13, 14, 15 and k = 12, 13, 14, 15, by applying matrix A.
X8 − X14, X8 − Xi and X8 − X j , for i = 9, 11, 13, 15 and j = 10, 12, by applying

matrices A, E and F .
X9 − X11, X9 − Xi and X9 − X10, for i = 12, 13, 14, 15, by applying matrices A, B

and E .
X10 − Xi and X10 − X j , for i = 13, 14, 15 and j = 11, 12, by applying matrices A

and C .
X12 − X13, X12 − X14 and X12 − X15, by applying matrices A, B and E .
X13 − X14 and X13 − X15, by applying matrices A and B. So, �n

R is a complete graph.
Hence ω(�2

R) = 15. �

PROPOSITION 2.12

If |U (R)| > 1, then the graph �n
R is not complete.

Proof. Assume that a and b are two unit elements in R. By Corollary 2.3, we know that
X = (0, . . . , 0, xi = a, 0, . . . , 0) and Y = (0, . . . , 0, yi = b, 0, . . . , 0) are not adjacent
for 1 ≤ i ≤ n. Thus �n

R is not complete. �

In the following proposition, we study some adjacencies in the graph �n
R , when R is an

infinite ring.

PROPOSITION 2.13

Let XT = (x1, x2, . . . , xn) and Y T = (y1, y2, . . . , yn) be two vertices such that all
components are not units and nonzero divisor elements of an infinite ring R. Then X and
Y are adjacent.

Proof. Consider the following two cases:

Case 1. n is even. Then we consider the n × n lower triangular matrix A whose entries
satisfy the following equations:

a11 = x2y2, a22 =−x1y1, a33 = x4y4, a44 =−x3y3, . . . , an−1n−1 = xn yn,

ann = −xn−1yn−1 and ai j = 0 for i �= j.
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Case 2. n is odd. Then we suppose that A is a matrix which is satisfied in the following
equations:

a11 = x2y2, a22 =−x1y1, a33 = x4y4, a44 =−x3y3, . . . , an−1n−1 = xn yn,

ann = −xn−1yn−1, and ai j = 0, for i �= j and i �= 2, j �= 1.

Therefore we have XT AY = 0, which means that X and Y are adjacent. �

3. On the genus and crosscap numbers of �n
R

In this section, we denote by Sg the surface formed by a connected sum of g tori, and by Nk

the one formed by a connected sum of k projective planes. The number g is called the genus
of the surface Sg and k is called the crosscap of Nk . When considering the orientability,
the surfaces Sg and sphere are among the orientable class and the surfaces Nk are among
the non-orientable one.

A simple graph which can be embedded in Sg but not in Sg−1 is called a graph of genus
g. Similarly, if it can be embedded in Nk but not in Nk−1, then we call it a graph of crosscap
k. The notations γ (G) and γ (G) are denoted for the genus and crosscap of a graph G,
respectively.

Recall that, for a rational number q, �q
 is the first integer number greater or equal than
q. It is easy to see that γ (H) ≤ γ (G) and γ (H) ≤ γ (G), for every subgraph H of G.

The following lemma states some well-known formulas for genus of a graph from [9].

Lemma 3.1. The following statements hold:

(i) For n ≥ 3, we have γ (Kn) = � 1
12 (n − 3)(n − 4)
.

(ii) For m, n ≥ 2, we have γ (Km,n) = � 1
4 (m − 2)(n − 2)
.

Clearly, we have γ (Kn) = 0 for 1 ≤ n ≤ 4 and γ (Kn) = 1 for 5 ≤ n ≤ 7, and, for
other values of n, γ (Kn) ≥ 2.

In the following theorem, we determine all isomorphic classes of finite commutative
rings R whose �n

R has genus at most three.

Theorem 3.2. The following statements hold:

(i) γ (�n
R) = 0 if and only if R = Z2 and n = 2.

(ii) γ (�n
R) = 1 if and only if R = Z2 and n = 3 or R = Z3 and n = 2.

(iii) γ (�n
R) = 3 if and only if R = Z2[x]

〈x2〉 and n = 2, or R = Z4 and n = 2.

(iv) There is no ring R with γ (�n
R) = 2.

Proof. We consider the following cases:

Case 1. n ≥ 4. If R = Z2, then by Example 2.10, ω(�n
R) = 2n−1 ≥ 15 and so, by Lemma

3.1, γ (�n
R) ≥ 11. If |R| ≥ 3, then by Theorem 2.9, ω(�n

R) ≥ 30 and so, by Lemma 3.1,
γ (�n

R) ≥ 37.

Case 2. n = 3. If |R| ≥ 3, then, by Theorem 2.9, ω(�n
R) ≥ 14 and so, by Lemma 3.1,

γ (�n
R) ≥ 10. If R = Z2, then ω(�n

R) = 7 and so, by Lemma 3.1, γ (�n
R) = 1.
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Case 3. n = 2. If |R| ≥ 5, then by Theorem 2.9, ω(�n
R) ≥ 18 and so, by Lemma 3.1,

γ (�n
R) ≥ 18.

If R is local with |R| = 4, then R is a field or R is one of the rings Z4 or Z2[x]
〈x2〉 . If R = Z4

or Z2[x]
〈x2〉 , then |U (R)| = 2. Hence ω(�n

R) = 9, and so, by Lemma 3.1, γ (�n
R) = 3.

If R is a field with |R| = 4, then |U (R)| = 3. Now, by Theorem 2.9, ω(�n
R) ≥ 11

and so, by Lemma 3.1, γ (�n
R) ≥ 5. If R is not local and |R| = 4, then R = Z2 × Z2.

Now, by Example 2.11, �n
R is a complete graph with 15 vertices. Hence, by Lemma 3.1,

γ (�n
R) = 11.

If |R| = 3, then ω(�n
R) = 6 and so, by Lemma 3.1, γ (�n

R) = 1.
If |R| = 2, then �n

R
∼= K3. Hence γ (�n

R) = 0.
Now by considering the above cases, the results hold. �

The following lemma which is from [8] is needed for the proof of the next theorem.

Lemma 3.3. The following statements hold:

γ (Kn) =
{ 1

6 (n − 3)(n − 4), if n ≥ 3 and n �= 7,

3, if n = 7.

γ (Km,n) =
⌈

1

2
(m − 2)(n − 2)

⌉
.

By slight modifications in the proof of Theorem 3.2, in conjunction with Lemma 3.3,
one can prove the following theorem.

Theorem 3.4. The following statements hold:

(i) γ (�n
R) = 0 if and only if R = Z2 and n = 2.

(ii) γ (�n
R) = 1 if and only if R = Z3 and n = 2.

(iii) γ (�n
R) = 2 if and only if R = Z2 and n = 3.

(iv) There is no ring R with γ (�n
R) = 3.

4. Structure of the graph �n
Z p

Throughout this section, we assume that R = Zp, where Zp is the ring of integers modulo
the prime integer p. In the sequel of the paper, we study Hamiltonian cycle, Eulerian cycle,
independence number and domination number of the generalized zero divisor graph �n

R .
Recall that a graph is Eulerian if there exists a closed trail containing every edge. By [7,

Theorem 4.1], a connected graph is Eulerian if and only if all the degrees of vertices are
even. A Hamiltonian cycle in a graph G is a cycle that contains all vertices of G. Moreover,
G is called Hamiltonian if it contains a Hamiltonian cycle.

Remark 4.1. Let R be a finite ring and |R| = p, where p is a prime number. Then we
have the following statements:

(i) If |R| = 2, then deg(X) = 2n − 2 for all X ∈ V (�n
R).

(ii) If |R| ≥ 3, then deg(X) = |R|n − 2, where X has at least two unit components and
deg(X) = |R|n − |U (R)| − 1, where X has one unit component.
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Theorem 4.2. The generalized zero divisor graph �n
Zp

is an Eulerian graph if and only if
p = 2.

Proof. Consider the following two cases:

Case 1. p = 2. Then, by Proposition 2.12, �n
R is a complete graph. By Remark 4.1(i), we

have deg(X) = 2n − 2 for every X ∈ V (�n
R). Since 2n − 2 is an even number, we have

that �n
R is an Eulerian graph.

Case 2. p ≥ 3. Put

V1 = {X ∈ V (�n
R) | X has at least two unit components}

and

V2 = {Y ∈ V (�n
R) | Y has exactly one unit component}.

Now, by Remark 4.1(ii), we have deg(X) = pn − 2 for every X ∈ V1. Since pn − 2 is an
odd number, we have that �n

R is not Eulerian.
Now, by considering the above cases, the result holds. �

In the following theorem, we study the Hamiltonian generalized zero divisor graphs.

Theorem 4.3. Let |R| = p, where p is a prime number. Then �n
R is Hamiltonian.

Proof. If |R| = p, where p is a prime number, then R ∼= Zp. So R has p−1 unit elements.
Put

V1 = {X ∈ V (�n
R) | X has at least two unit components}

and

V2 = {Y ∈ V (�n
R) | Y has exactly one unit component}.

Suppose that V1 = {X1, . . . , Xn} and V2 = {Y1, . . . ,Ym}. Clearly, m ≤ n. Now, by
Lemma 2.2, we have the following path:

P : Y1 − X1 − Y2 − X2 − · · · − Ym − Xm − Xm+1 − Xm .

So one can easily see that �n
R contains a Hamiltonian cycle. Thus, the result holds. �

For any vertex x of a connected graph G, the eccentricity of x , denoted by ε(x), is the
maximum of the distances from x to the other vertices of G, and the minimum value of the
eccentricity of vertices is the radius of G, which is denoted by r(G). In the next lemma,
we compute the eccentricity of �n

R .

Lemma 4.4. If R is a finite ring and |R| = p, then ε(X) ∈ {1, 2} for each X ∈ V (�n
R).
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Proof. We consider the following cases:

Case 1. If |R| = 2, then by Theorem 2.4, �n
R

∼= K2n−2, and so ε(X) = 1 for every
X ∈ V (�n

R).

Case 2. If |R| > 2, then R has at least two unit elements. By Lemma 2.3, the vertices
X = (0, . . . , 0, xi , 0, . . . , 0) and Y = (0, . . . , 0, yi , 0, . . . , 0), where xi , yi ∈ U (R) are
not adjacent. By Theorem 2.4, d(X,Y ) ≤ 2. Hence ε(X) = 2. Other kinds of vertices are
adjacent.

Now, by considering the above cases, the result holds. �

The following corollary follows easily from Lemma 4.4.

COROLLARY 4.5

If R is a finite ring and |R| = p, then r(�n
R) = 1.

A split graph is a graph in which the vertices can be partitioned into a clique and an
independent set. In the following lemma, we show that �n

R is a split graph if and only if
|R| = 2.

PROPOSITION 4.6

Suppose that |R| = p. Then �n
R is a split graph if and only if |R| = 2.

Proof. First suppose that �n
R is split. We have the following two cases:

Case 1. Assume that |R| = 2. Then �n
R is a complete graph, which is split.

Case 2. |R| > 2. Suppose that |U (R)| = m, when m ≥ 2. We put

V1 = {(xi , 0, . . . , 0) | xi ∈ U (R), 1 ≤ i ≤ m},
V2 = {(0, xi , . . . , 0) | xi ∈ U (R), 1 ≤ i ≤ m},

...

Vm = {(0, . . . , 0, xi ) | xi ∈ U (R), 1 ≤ i ≤ m}.

Since �n
R is split, we have V (�n

R) = K ∪ S, when the induced subgraph with vertex set K
is complete and S is an independent set. Now, one can easily check that S ⊆ Vi for some
i with 1 ≤ i ≤ m. Also, we have Vj ⊆ K for all j ∈ {1, . . . ,m}\{i}. This is impossible,
since each Vi for 1 ≤ i ≤ n forms an independent set. Therefore, if �n

R is split, then
|R| = 2.

The converse statement is clear. �

We end this section with the following proposition.

PROPOSITION 4.7

Let |R| = p. The following statements hold:
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(i) If p = 2, then K0(�
n
R) = 2n − 1.

(ii) If p > 2, then α(�n
R) = |U (R)| and λ(�n

R) = 1.

Proof.

(i) If p = 2, then �n
R is a complete graph with 2n −1 vertices. Therefore K0(�

n
R) = 2n −1.

(ii) Let p > 2. Then

V1 = {(xi , 0, . . . , 0) | xi ∈ U (R), 1 ≤ i ≤ m},
V2 = {(0, xi , . . . , 0) | xi ∈ U (R), 1 ≤ i ≤ m},

...

Vm = {(0, . . . , 0, xi ) | xi ∈ U (R), 1 ≤ i ≤ m}.

By Lemma 2.4, the sets Vj form an independent set for 1 ≤ j ≤ n. Also, one can easily
see that |U (R)| is the size of the largest independent set. Hence we have α(�n

R) = |U (R)|.
Also, by Lemma 2.2, we know that each vertex with at least two unit components is adjacent
to other vertices. Therefore λ(�n

R) = 1. �
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