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A new action recognition method by
distinguishing ambiguous postures
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Abstract
One of the most important aspects of promoting the intelligence of home service robots is to reliably recognize human
actions and accurately understand human behaviors and intentions. In the task of action recognition, there are many
common ambiguous postures, which affect the recognition accuracy. To improve the reliability of the service provided by
home service robots, this article presents a method of probabilistic soft-assignment recognition scheme based on
Gaussian mixture models to recognize similar actions. First, we generate a representative posture dictionary based on the
standard bag-of-words model; then, a Gaussian mixture model is introduced for the similar poses. Finally, combined with
the Naive Bayesian principle, the method of weighted voting is used to recognize the action. The proposed scheme is
verified by recognizing four types of daily actions, and the experimental results show its effectiveness.
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Introduction

Action recognition is a high-level computer vision task

with wide practical applications in video surveillance,

human–computer interaction, video retrieval, and so on.1–

3 It plays an important role in the process of promoting the

intelligence of home service robots. As mentioned by

Takano et al.,4 it is a fundamental technology for robots.

In the task of action recognition, there are often notably

similar actions. During the execution of those actions, the

postures of the person are notably similar, for example,

drinking water and calling. In two or more different cate-

gories of similar actions, the proportion of identical or

similar postures is notably high. Given an action test sam-

ple, for some common postures, there should be a type of

fuzzy or uncertain method to discriminate them. Otherwise,

it will produce relatively large errors and reduce the action

recognition accuracy if a method of hard discrimination

and classification is used. For ease of expression, we state

that the “action” consists of several “postures” and mark

the “action” and “posture” in Figure 1 to clearly understand

their meaning.

In this article, based on the analysis of the semantic

similarity, we study how to distinguish similar postures in

different types of action. Specifically, we focus on and

identify the action in which most of the postures are iden-

tical or similar. In other words, there are notably subtle
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differences between the few postures in different actions

that we concern. Because of the similarity, in the process of

discriminating similar postures, we must build a fuzzy

model. Using this model, we should evaluate the scores

of different categories of multiple actions according to the

degree of similarity in the process of determining similar

postures. On this point, there are many situations, such as

slightly similar, generally similar, or notably similar. Van

Gemert et al.5 incorporated ambiguity in the codebook

model by smoothly assigning continuous image features

to discrete visual words and improve the classification per-

formance. Inspired by this solution, we apply ambiguity

modeling to recognizing similar actions by assigning

ambiguous postures to multiple similar key poses and

improve the action recognition accuracy.

Our contributions in this article can be summarized into

two aspects. First, on the Kinect platform, the feature vec-

tors extracted from 3-D skeleton data are used to represent

the human body posture as indicated by Tian et al.6 and

generate some new code words using the bag-of-words

model. Second, a new two-level codebook model is pro-

posed, and the Gaussian mixture model (GMM) is intro-

duced to express the ambiguity among the code words. All

contributions are thoroughly experimentally verified on

similar action data sets that we collected.

Related work

In recent years, the bag-of-words model has been preva-

lently applied in action recognition. On the one hand, this

method is relatively easy to calculate and understand. On

the other hand, this method shows notably good perfor-

mance.7 The traditional framework of the bag-of-words

model was commonly used for 2-D images. The pipeline

of the bag of visual words for video-based action recogni-

tion consists of five steps: (1) feature extraction; (2) feature

preprocessing; (3) codebook generation; (4) feature encod-

ing; and (5) pooling and normalization.7 Among them, the

most critical steps are feature extraction and encoding.

Feature representation based on 2-D images usually

includes low-level features such as interest point descrip-

tors7–12 and mid-level patch-based features.13–22 Klaser

et al.11 proposed a spatiotemporal descriptor based on

3-D gradients. Wang et al.12 sampled dense points from

each frame and tracked them based on the displacement

information from a dense optical flow field. These methods

commonly ignore the spatial structure information of the

feature points or descriptors and cause the loss of informa-

tion. Taralova et al.23 proposed a type of statistical charac-

teristics that pool the low-level descriptor of supervoxels.

Li et al.24 used a probabilistic coding framework, which

assigned the local spatiotemporal feature points to a small

number of nearest visual words before extracting the patch-

based features. Kovashka and Grauman19 proposed a hier-

archical bag-of-words model to express the configurations

of spatial and temporal features at different scales. The

main idea of these methods is to capture the structural

information based on the quantized local spatiotemporal

features. In some tasks of action recognition, it is often

possible to determine the corresponding action category

by distinguishing several key poses. The common idea is

to characterize and classify each frame in an action

sequence.25–27 The contours or silhouettes of the human

body are used to generate the feature vector to express the

human posture. However, it is easy to be affected by factors

such as illumination and occlusion.

For feature encoding, a voting-based method is more

common. The usual practice is to generate the pose voca-

bulary or extract the key pose, match the key pose for a

given test frame sequence, and count the votes of each

category. An important assumption of these methods is that

the pose code words are independent from one another, and

following the hard-assignment method, these methods

quantize the feature vector into a single pose code word.

As suggested by Baysal et al.,25 a type of learning algo-

rithm is used to select the most representative posture of the

intra-class, form the key pose vocabulary of multiple

classes, and count the votes of every class. A constant

weight is learned from the training data set for each key

pose and score for each category.27 These methods can

satisfy the recognition accuracy requirement but lack

stability because of the effect of the movement speed of

execution and pause time. To avoid this problem, we

should consider the many-to-one situation28 and the struc-

ture information among different code words.29 In recent

years, the application of soft assignment is relatively

Figure 1. A class of action consisting of several postures.

2 International Journal of Advanced Robotic Systems



common.30,31 Soft assignment accounts for the code word

uncertainty and plausibility7 and reduces the information

loss during encoding. Liu et al.32 considered the manifold

structure of local features and used only k-nearest words to

code a local feature and show that soft-assignment coding

essentially estimated the posterior probability of a local

feature to each visual word. Another popular encoding

method is based on the super vector, which yields a notably

high-dimensional representation by aggregating high-order

statistics. Representative methods are Fisher vector33–35

and vector of locally aggregated descriptors.36–38

Unlike these methods, in this article, we use a hier-

archical soft-assignment method to identify similar

actions, which enables the pose descriptor of an action

sample to vote for several similar pose code words. In the

process, a two-level bag-of-words model is applied, and

the GMM is introduced at the second level to consider the

similar-pose uncertainty; the posterior probability of each

related key pose is used to score the corresponding class.

Using this scheme, not only the shared information but

also the different information can be captured by the

hierarchical method.

Skeletal data-based pose representation

Feature representation plays an important role in human

action recognition. As indicated in the previous work of

Tian et al.,6 based on the cognition of human movement

characteristics, Kinect is used to obtain the 3-D coordi-

nates of a human body joint point, the structure vector is

constructed, and the correlation angle and modulus ratio

are calculated to generate the feature vector to express a

human body posture. The partial angle of the lower limb is

marked in Figure 2.

Through many experiments, this characteristic expres-

sion has been verified to satisfy the requirements of invar-

iance in translation, scaling, and rotation. Because it is a

stable description of the human body posture, it is also used

in this article.

Pose vocabulary generation

In the bag-of-words model, there are many methods to

generate a vocabulary. Typically, the vocabulary is con-

structed by applying the k-means algorithm to cluster the

sample features, and the cluster center represents a code

word. In this article, the typical k-means method is used to

cluster the feature vectors to describe human postures. The

cluster center can be considered the representative of spe-

cific postures, which is called a code word. However, if we

apply the k-means algorithm to cluster the feature vectors

from different action categories, the cluster center may be a

type of “average pose” generated by different categories of

postures and lack of representative. In addition, it is notably

difficult to determine the number of clustering centers. To

obtain the key postures with the class label, we apply

k-means clustering on all feature vectors belonging to the

same action category. Simultaneously, the number of clus-

tering centers is determined by decomposing the action

execution process. Finally, the pose vocabulary is gener-

ated in the form as follows

A ¼

p11 p12 � � � p1k

p21 p22 � � � p2k

..

. ..
. ..

. ..
.

pt1 pt1 � � � ptk

2
66664

3
77775 ð1Þ

where t is the number of action classes and k is the number

of cluster centers.

Because of the similarity among different action cate-

gories, the code words generated by applying k-means may

also be similar. Therefore, confusion easily occurs when a

test feature vector matches the code words in the vocabu-

lary. For example, a posture that originally belongs to the

category of calling may be categorized as drinking. A large

amount of error will occur if we use the approach of hard

assignment, which quantizes one feature vector into a sin-

gle code word. Hence, a type of ambiguity modeling must

be applied to express the uncertainty.

Ambiguity modeling

Hard assignment is a type of one-to-one match. However,

because of the similarity among the code words, the actual

situation should be one-to-one or one-to-many, that is, a

posture sample may correspond to multiple candidate code

words. To depict the effect of the associated soft assign-

ment, we introduce the GMM to express the ambiguity of

the code words.

The diagram of our method is shown in Figure 3. More

specifically, all code words are first constructed by apply-

ing k-means clustering to different categories of action

postures. In this process, three elements are calculated: the

representative of specific poses in the same categories of

actions, that is, �; the number of specific poses (denoted as

m); and the corresponding covariance matrix S. Thus, a

Figure 2. Angles of the lower limb.6
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single Gaussian model that corresponds to each code word

is established as follows

f ðx;�;SÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞnjSj

p exp
1

2
ðx � �ÞTS�1ðx � �Þ

� �

ð2Þ

In the next step, some ambiguous groups will be gener-

ated by applying k-means clustering to all code words.

Probability p�ð jÞ of each single Gaussian model j in the

ambiguous group can be calculated as follows

p�ð jÞ ¼ mjXk�
j¼1

mj

ð3Þ

where mj is the number of specific poses that correspond to

single Gaussian model j and k� is the number of code words

in an ambiguous group. The GMM has been generated.

Each GMM corresponds to one ambiguous group.

Action recognizing

The soft assignment enables the feature vector to vote for

multiple code words. In the process, the most important

question is how to determine the voting value. For a given

test action sequence a ¼ ½xð1Þ; xð2Þ; :::; xðTÞ�, the probability

that an element xðtÞ of the sequence that belongs to different

code words in the ambiguous group is different. If code

word j is one of multiple code words that correspond to

sample xðtÞ, the probability of j and posterior probability of

xðtÞ can be obtained from the training data set. In formula

(4), f ð�Þ is obtained by formula (2)

Pr
�

xðtÞjzðtÞ ¼ j
�
¼ f
�

xðtÞ;�j;
X

j

�
ð4Þ

Pr
�

zðtÞ ¼ j
�
¼ p�ð jÞ ð5Þ

where xðtÞ, the posterior probability of j, is calculated by

Bayesian formula

PrðzðtÞ ¼ jjxðtÞÞ ¼ PrðxðtÞjzðtÞ ¼ jÞ PrðzðtÞ ¼ jÞXk�
j¼1

PrðxðtÞjzðtÞ ¼ jÞ PrðzðtÞ ¼ jÞ
ð6Þ

For a given xðtÞ, the denominator of formula (6) is iden-

tical, so the final voting value is

score j ¼ PrðxðtÞjzðtÞ ¼ jÞ PrðzðtÞ ¼ jÞ ð7Þ

If we use a hard assignment, the voting value is defined as

score j ¼ 1; if zðtÞ ¼ j

0; otherwise

(
ð8Þ

The diagram of our algorithm framework is illustrated in

Figure 4. More specifically, for a given action sequence

a ¼ ½xð1Þ; xð2Þ; :::; xðTÞ�, code word p�ij of the nearest neigh-

bor of sample xðtÞ is found

p�ij ¼ arg min
i ¼ 1; 2; . . . ; t;

j ¼ 1; 2; . . . ; k

fdijg; dij ¼ jjxðtÞ � pijjj ð9Þ

Figure 3. Process of generating a GMM. Each unit model in the top level represents the distribution of a key pose generated by k-means
with the postures in the same action category, and each circle in the lower level represents a k-means-generated GMM with key poses.
GMM: Gaussian mixture model.
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In the next step, the ambiguous group where code word

p�ij is located is found. Simultaneously, all code words of

this group are assigned a value according to formula (7).

After all elements of the sequence have been completed,

the score of each action category is computed

Ci ¼
Xn

j¼ 1

score
j

i ð10Þ

where n is the number of code words belonging to the same

category. Finally, the category with the highest score is

determined as the label of the test sequence sample

C�i ¼ arg max
i¼ 1;2;...t

fCig ð11Þ

In the ambiguous group, the number of code words

belonging to different categories varies, which causes

an imbalanced situation among different classes. For a

given action sequence, a sample posture will be assigned

to one category many times and to the other categories

only once. This will produce error and affect the action

classification performance if too many sample postures

are assigned to an ambiguous group. Therefore, we must

introduce a type of adjustment weight to balance the

assignment of different classes in the ambiguous group.

Assuming that the number of code words belonging to

class k in an ambiguous group is nk , each code word of

class k in this ambiguous group will be assigned a type of

weight as follows

wðpk�Þ ¼
1=nkXk�

k¼ 1

1=nk

ð12Þ

Thus, a sample posture is assigned to different action

categories in the ambiguous group with equal possibilities.

To some extent, we avoid the error caused by the class

imbalance. After the improvement, we adjust formula

(10) as follows

Ci ¼
Xn

j¼ 1

wðpijÞ � score
j

i ð13Þ

Experiments

In this article, we focus on the recognition of similar

actions with ambiguous postures. Four categories of actions

were designed: calling, drinking water, using a remote con-

troller, and pouring water. Fifty groups of data sets in each

category of action were collected from different points of

view, including frontal and side views. Through a cross-

validation test, 40 groups of data sets in each category were

randomly selected to compose the training data sets, which

Figure 4. Framework of our action recognition algorithm, where different shapes represent different key poses, and the key poses with
identical color belong to the same action category.

Liu et al. 5



amounted to 160 groups, and the remaining 10 groups of

each category constituted 40 groups for the testing data set.

A part of the sequence of the two actions calling and

drinking water is shown in Figure 5. Based on their skele-

ton shapes, we intuitively find that some postures in these

two categories of action are notably similar.

The distribution of all code words in the feature space is

visualized in Figure 6, which is constructed by applying a

hierarchical clustering technique on all code words. The

corresponding relationship between the tag number of key

pose and the action category is shown in Table 1.

There is obvious difference between the category of

pouring water and the other three categories of action. A

separate cluster is generated by all code words of the cate-

gory of pouring water, and a mixed cluster is formed by the

remaining code words. The main reason of this situation is

that there are many similar postures in these action

sequences. Therefore, a fuzzy model must be established

to perform the soft assignment.

Considering the randomness of the k-means algorithm,

each experiment has been done 10 times, and the average

recognition rate has been recorded. The confusion matrix

of the results of different methods is shown in Tables 2

to 4. Comparing Tables 2 and 3, we observe that the

classification performance in each category improved

in different degrees from hard assignment to soft assign-

ment. Comparing Tables 3 and 4, the overall recognition

accuracy is also improved, which indicates that balance

weights are important for the performance of the

recognition algorithm. The statistical results of different

methods are recorded in Table 5, which indicates that

our improved method is effective and obtains good

performance.

Figure 5. Similar postures of drinking and calling.

Figure 6. Hierarchical cluster tree of the pose code words.

Table 1. Corresponding relationship between the tag number of
the key pose and the action categories.

Tag number of key pose Corresponding category of action

1–5 Calling
6–10 Using remote controller
11–15 Drinking water
16–20 Pouring water

Table 2. Confusion matrix for the hard assignment.

Call Remote Drink Pour

Call 0.6920 0.09 0.206 0.012
Remote 0.02 0.978 0.002 0.0
Drink 0.088 0.022 0.88 0.01
Pour 0.0 0.0 0.002 0.998

Table 3. Confusion matrix for the soft assignment.

Call Remote Drink Pour

Call 0.724 0.222 0.0540 0.0
Remote 0.016 0.984 0.0 0.0
Drink 0.032 0.002 0.964 0.002
Pour 0.0 0.0 0.0 1.0

Table 4. Confusion matrix for the balance weight.

Call Remote Drink Pour

Call 0.75 0.188 0.062 0.0
Remote 0.014 0.982 0.004 0.0
Drink 0.032 0.0 0.966 0.002
Pour 0.0 0.0 0.0 1.0
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Conclusions

In this article, we present a new solution for the similar

action recognition. On the Kinect platform, feature vectors

are extracted from 3-D skeleton data to depict human body

postures. Based on the standard bag-of-words model, this

article presents a type of two-level bag-of-words model and

introduces GMM to model the correlation of different code

words. Using this recognition scheme, we obtain good per-

formance on the similar action data set that we collected.

The hierarchical model is notably important for the low

latency, so we will use it to study the action recognition in

low latency.
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