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Abstract. In the current study, the flow of Casson liquid thin film, together with heat transfer towards a stretching
surface extracting out from a narrow slit in the presence of a magnetic field, viscous dissipation and thermal
radiation effects, is examined. The contribution of nanoparticles is investigated by employing the Buongiorno
model. Mathematical modelling is carried out in the Cartesian coordinate system and similarity analysis is opted for
simplification. The numerical analysis is performed in the reduced system using the shooting method. The effects
of the prominent parameters are discussed using line and bar graphs. The key finding is that the temperature drop
is prominent in the case of Casson nanofluid compared to the nanofluid.
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1. Introduction

The flow of thin liquid coating and heat transfer are of
immense significance because of their wide applications
in industry, manufacturing and engineering procedures.
Wire and fibre coating, polymer, chemical and food
processes, designing of the several heat exchangers are
some well-known examples where thin liquid film flow
plays a significant role. Crane [1] originally studied
the boundary layer flow towards a stretching horizon-
tal surface. He pointed out the significant contribution
of the stretching surface velocity on fluid flow and
boundary layer thickness. After him, many researchers
attempted to analyse several types of fluid flows along
with heat transfer over linearly as well as nonlinearly
stretching sheets in the presence of different physical
phenomena such as magentohydrodynamics (MHD),
porous medium, permeable stretching surface, mixed
convection, thermal radiation, viscous dissipation, etc.
Some of the remarkable contributions to literature in
this regard are cited in refs [2–6]. The pioneer study
of the MHD boundary layer flow within a thin liquid
coating was carried out by Wang [7]. In his study, an
asymptotic solution to the thin film flow was derived. He
concluded that the non-dimensional unsteady parame-
ter influences the boundary layer thickness and other

fluid dynamic characteristics. After this initial work,
many researchers [8–14] have explored the heat transfer
of Newtonian as well as non-Newtonian liquid coat-
ing flow. Recently, El-Aziz and Afify [15] examined
the impact of erratic thermal conductivity and viscos-
ity on viscoelastic fluid transport within the liquid thin
coating in the presence of an aligned magnetic field.
Some recent work related to this are cited in refs [16–
20].

The Casson fluid model proposed by Casson and Mill
[21] is one of the non-Newtonian fluid models exhibiting
the rheological characteristics of viscoplastic fluids such
as colloidal suspensions, polymeric solutions, syrup,
etc. It is worth mentioning here that for large values of
Casson parameter γ , this model exhibits the behaviour
of Newtonian fluid.

Keeping the aforementioned literature survey, the
present paper focusses on examining the influence
of variant thermophysical characteristics on nanofluid
transport and heat transfer along with nanoparticles
Brownian motion and thermophoresis phenomenon.
Numerical procedure, specifically, shooting algorithm is
used to compute velocity, temperature and concentration
distributions. The impact of several emerging parame-
ters on nanofluid flow, temperature and concentration is
examined and discussed using graphs.
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Figure 1. Geometry of the flow problem.

2. Problem formulation

Here the boundary layer flow of a Casson nanofluid
within a thin liquid film towards the vertical stretching
sheet emerging from a narrow slit placed at the origin
is examined. Heat transfer along with fluid flow is con-
sidered in the presence of a variant external magnetic
field B̄(x, t) applied normal to the flow direction. It is
assumed that the magnetic Reynolds number of the flow
is very small so that the induced magnetic field and Hall
current effects are negligible. A Cartesian coordinate
system is opted for the mathematical formulation. The
x-axis is chosen in the direction of motion along the
stretching surface and the y-axis is taken to be normal
to the surface as shown in figure 1.

Accordingly, the fluid velocity in the component form
is defined as

V̄ = [u(x, y), v(x, y), 0] (1)

and the external applied magnetic field in the component
form is defined as

B̄(x, t) = [0, B(x, t), 0], (2)

where u and v are the velocity components along the x
and y directions, respectively and is introduced as [22]

B(x, t) = B0√
1− αt

, (3)

where B0 is the constant uniform magnetic field and
α (s−1) is a material constant. To study the effects of
variable viscosity, the Reynolds model [23] is taken into
account, i.e.

μ(T ) = μf e−β(T−T0). (4)

Here, μf is the Casson fluid viscosity and β (K−1)

( > 0) is the material constant. The stretching velocity
and surface temperature are taken to be of the following
form:

Us(x, t) = bx

1 − αt
,

Ts(x, t) = T0 − Tref
bx2

2ν
(1− αt)−3/2, (5)

where b (s−1) and α (s−1) are constants, T0 denotes slot
temperature, Tref stands for a reference temperature and
ν = μf /ρ is the kinematic viscosity. The extra stress
tensor S̄ for the Casson fluid model (according to Casson
and Mill [21]) is defined as

S̄ = Si j = μ(T )

(
1 + 1

γ

)
Ā1 , (6)

where γ is the Casson fluid parameter and Ā1 is the first
Rivlin–Erickson tensor. It is worth mentioning here that
when γ →∞, eq. (6) reduces to an extra stress tensor
for the Newtonian fluid. The equations which govern
the incompressible Casson nanofluid flow are defined
in eqs (7)–(10):

∇̄ · V̄ = 0, (7)

ρ

[
∂

∂t
+ (

V̄ · ∇̄)]
V̄

= div τ̄ + J̄ × B̄ + gβ(T − T0)+ gβ(C − C0),

(8)

ρC p

[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

]

= ∂

∂y

(
k(T )

∂T

∂y

)
+ τ̄ · L̄ − ∂ Qr

∂y

+τ

{
DB

(
∂C

∂y

∂T

∂y

)
+ DT

T0

(
∂T

∂y

)2
}

, (9)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DB∇2C + DT

T0
∇2 T, (10)

in which eq. (7) is the conservation of mass, eq. (8) is the
conservation of linear momentum in which (according
to the Buongiorno model [24]) the last two terms on
the right-hand side are the contribution of nanoparticles.
Equations (9) and (10) are respectively the second law of
thermodynamics and Fick’s law of diffusion. Moreover,
in the above expressions, g is the gravitational force,
C is the nanoparticles concentration, C0 is the ambient
concentration, τ is the Cauchy stress tensor defined as
τ = −p Ī + S̄, J̄ is the current density, J̄ × B̄ is the
Lorentz force, T is the temperature, T0 is the ambient
temperature, Cp is the specific heat, DB is the Brownian
diffusion coefficient, DT is the thermophoretic diffusion
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coefficient and Qr is the radiative heat flux after applying
Rosseland approximation [25] which is defined as

Qr = −4σ ∗

3k1

∂T 4

∂y
. (11)

Under the assumption of reasonably small temperature
differences within the thin liquid film, and applying
Taylor series expansion to expand T 4 about T0 and
neglecting higher-order terms yields

T 4 ∼= 4T 3
0 T − 3T 4

0 (12)

and therefore

∂Qr

∂y
= −16σ ∗T 3

0

3k1

∂2T

∂y2 , (13)

where the Stefan–Boltzmann constant is denoted by σ ∗
and k1 is the mean absorption coefficient. The effect
of viscous dissipation after applying boundary layer
approximation is expressed as

τ̄ · L̄ = μ(T )

(
1 + 1

γ

)(
∂u

∂y

)2

, (14)

where L̄ = grad(V ) is the velocity gradient.
It is assumed that the thermophysical fluid prop-

erties are isotropic and constant except for the fluid
viscosity and thermal conductivity which is taken to be
temperature-dependent as follows [15]:

k(T ) = k0[1+ c(T − T0)], (15)

where k0 is the constant thermal conductivity and c
(K−1) is the material constant. In the absence of a
pressure gradient and after applying boundary layer
approximation, eqs (7)–(10) can be expressed in com-
ponent form as

∂u

∂x
+ ∂v

∂y
= 0, (16)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 1

ρ

∂

∂y

[
μ(T )

(
1+ 1

γ

)
∂u

∂y

]

−σ B2

ρ
u + gβ(T − T0)

+gβ(C − C0), (17)

ρCp

[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

]

= ∂

∂y

(
k0[1+ c(T − T0)]

∂T

∂y

)

+μ(T )

(
1+ 1

γ

)(
∂u

∂y

)2

+ 16σ ∗T 3
0

3k1
,

∂2T

∂y2 + τ

{
DB

(
∂C

∂y

∂T

∂y

)
+ DT

T0

(
∂T

∂y

)2
}

, (18)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2 +
DT

T0

∂2T

∂y2 . (19)

Here σ is the electric conductivity of the Casson fluid
and the associated boundary conditions are expressed as

u = Us, v = 0, T = Ts,

DB
∂C

∂y
+ DT

T0

∂T

∂y
= 0 at y = 0,

∂u

∂y
= 0, v = ∂h

∂t
,

∂T

∂y
= 0,

∂C

∂y
= 0 at y = h.

(20)

To reduce the nonlinear coupled system of partial dif-
ferential equations (16)–(19), the following similarity
variables are introduced:

η =
√

b

ν(1 − αt)
y, ψ(x, y, t) =

√
bν

(1− αt)
x f (η),

θ(η) = T − T0

Ts − T0
, ϕ(η) = C − C0

Cs − C0
, (21)

where Ts and Cs are the temperature and concentration
at the surface,

T = T0 − Trefbx2

2ν(1− αt)3/2 θ(η). (22)

It is worth mentioning that expression (22) is valid only
for αt < 1. The relationship between fluid velocity
components and stream function is defined as

u = ∂ψ

∂y
and v = −∂ψ

∂x
. (23)

Using relations (21) and (23), eq. (16) is identically sat-
isfied and eqs (17)–(19) can be simplified as(

1 + 1

γ

)
e−λθ f ′′′ −

(
1 + 1

γ

)
λe−λθθ ′ f ′′

− S
(

f ′ + η

2
f ′′

)
− f ′2 + f f ′′ − M f ′

+Gr θ + Br ϕ = 0, (24)(
δθ + 1

N

)
θ ′′ + δθ ′2 + Pr Ec

(
1 + 1

γ

)
e−λθ f ′′2

− Pr

[
S

2

(
3θ + ηθ ′

)+ 2θ f ′ − f θ ′
]

+Nb ϕ′θ ′ + Nt θ ′2 = 0, (25)

ϕ′′ + Sc f ϕ′ + Nt

Nb
θ ′′ = 0. (26)

Here, prime indicates the differentiation with respect to
η. Moreover, the non-dimensional parameters λ, S, M ,
Gr, Br, δ, Pr, Ec, R, Nb, Nt and Sc are the variable
viscosity, unsteadiness, magnetic parameters, local
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temperature and local nanoparticle Grashof numbers,
variable thermal conductivity parameter, Prandtl num-
ber, Eckert number, thermal radiation parameter, Brow-
nian motion parameter, thermophoretic diffusion param-
eter and Schmidt number and are defined as

λ = β(Ts − T0), S = α

b
, M = σ B2

0

bρ
,

Gr = gβ(Ts − T0)(1− αt)2

b2x
,

Br = gβ(Cs − C0)(1− αt)2

b2x
, δ = c(Ts − T0),

Pr = ρC pν

k0
, Ec = − 2νb

C pTref(1 − αt)1/2 ,

R = k0k1

4σ ∗T 3
0

, Nb = τ DB(Cs − C0)

k0
,

Nt = τ DT(Ts − T0)

k0T0
, N = 3R

3R + 4
, Sc = ν

DB
.

(27)

It is worth mentioning here that when R → ∞,

N = 1. Consequently, eq. (25) does not take into
account the effect of thermal radiation. Moreover, when
M = δ = Ec = 0, N = 1 and γ → ∞ [4], the prob-
lem is retained as a special case. Boundary conditions
defined in eq. (20) are simplified to

f ′(0) = 1, f (0) = 0, θ(0) = 1,

ϕ′(0 )+ Nt

Nb
θ ′(0) = 0, f ′′(β) = 0, θ ′(β) = 0,

ϕ′(β) = 0, f (β) = βS

2
. (28)

The similarity variable η on the free surface is taken to
be β. Thus, from eq. (21),

β =
(

b

ν(1 − αt)

)1/2

h. (29)

The meaningful physical quantities such as local skin
friction coefficient Cf , local Nusselt number Nux and
Sherwood number Shx are defined as

Cf = τw

ρ(Us)
2 , Nux = xqw

k0(Tw − T0 )
,

Shx = xqm

DB(Cs − C0)
, (30)

where τw, qw and qm represent surface shear stress, heat
and mass fluxes defined in the following expressions:

τw = −
(

μB + py√
2πc

)(
∂u

∂y

)∣∣∣∣
y=0

,

qw = −
((

k + 16 σ ∗T 3
0

3k1

)
∂T

∂y

)∣∣∣∣∣
y=0

,

qm = −DB
∂C

∂y

∣∣∣∣
y=0

. (31)

The physical quantities defined in eq. (30), in terms of
similarity variables, are expressed as

√
RexCf = −

(
1 + γ

γ

)
f ′′(0),

Nux√
Rex

= −
(

δ + 1

N

)
θ ′(0),

Re−1/2
x Shx = −ϕ′(0), (32)

where Rex = xUs/ν is the local Reynolds number.

3. Solution methodology

The simplified system of nonlinear coupled eqs (24)–
(26) subject to the boundary conditions (28) is numer-
ically solved by means of shooting technique together
with the Runge–Kutta fourth-order procedure. Firstly,
the higher-order differential equations are downgraded
to a system of first-order differential equations by incor-
porating the following substitutions:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f

f ′

f ′′

f ′′′

θ

θ ′

θ ′′

ϕ

ϕ′

ϕ′′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2 = y′1
y3 = y′2

y′3
y4

y5 = y′4
y′5
y6

y7 = y′6
y′7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

so that we obtain the following system of first-order
differential equations:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y′1
y′2
y′3
y′4
y′5
y′6
y′7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y2
y3

eλy4

(1+ (1/γ ))

⎛
⎝λe−λy4

(
1+ 1

γ

)
y5y3 + S

(
y2 + η

2
y3

)
+ y2

2 − y1y3

+My2 − Gry4 − Bry6

⎞
⎠

y5

1

(δy4 + (1/N ))

⎛
⎜⎜⎝
−δy2

5 − Pr Ec

(
1+ 1

γ

)
e−λy4 y2

3 − Nby7y5 − Nty2
5

+ Pr

(
S

2
(3y4 + ηy5)+ 2y2 y4 − y1y5

)
⎞
⎟⎟⎠

y7

−Scy1y7 − Nt
Nb y′5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

and the reduced problem is transformed into an initial
value problem by incorporating additional initial condi-
tions in terms of shooting parameters, i.e.⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1(0)

y2(0)

y3(0)

y4(0)

y5(0)

y7(0)

y7(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
s1
1
s2

− Nt
Nb y5(0)

s3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

where s1, s2 and s3 are the shooting parameters. Com-
putational analysis is performed using the mathematics
software MAPLE and iterative results are obtained for
an accuracy of 10−4.

4. Graphical results and discussion

In this section, the effect of the emerging non-
dimensional parameters of significance such as the
unsteadiness parameter (S), Hartmann number (M),
variable viscosity parameter (λ), local-temperature
Grashof number (Gr), local nanoparticle Grashof num-
ber (Br), variable thermal conductivity parameter (δ),
thermal radiation parameter (N ), Brownian motion
parameter (Nb), thermophoretic parameter (Nt) and the
Prandtl (Pr) and Eckert (Ec) numbers, respectively, on
Casson nanofluid velocity, temperature and concentra-
tion distributions are examined and displayed through
graphs. Here the graphs are plotted for two types of
fluid models, namely, Casson nanofluid and nanofluid.
In these graphs, the solid lines represent the results for
Casson nanofluid while the dashed lines represent the
results of the nanofluid. It is worth mentioning here
that when the Casson nanofluid parameter γ approaches
a very large number, mathematically, when γ → ∞,
the Casson nanofluid model exhibits the results for the
nanofluid.

Figure 2. Effect of unsteadiness parameter S on f ′(η).

Figure 3. Influence of M on velocity.

Figures 2–6 are drawn for fluid velocity for distinct
values of unsteadiness parameter, Hartmann number,
variable viscosity parameter, Gr and Br, respectively.
Figure 2 is plotted to explore the effect of unsteadiness
parameter on the fluid flow and it is seen that an increase
in S contributes to decelerated fluid flow. This decrease
in velocity is significantly more in the nanofluid than
in the Casson nanofluid. This trend is noted because
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Figure 4. Impact of λ on f ′(η).

Figure 5. Effect of Gr on the fluid flow.

Figure 6. Influence of Br on velocity.

of the fact that the rising value of the unsteadiness
parameter indicates a decrease in film thickness. The
influence of an external magnetic field is explored in
figure 3. It is depicted that the presence of a magnetic
field resists fluid flow and, consequently, fluid veloc-
ity decreases. This decrease is dominant in the case of
the nanofluid. Figure 4 is plotted for the distinct val-
ues of the temperature-dependent viscosity parameter.

Figure 7. Temperature distributions for various values of S.

From this figure, it is concluded that an increase in λ

indicates an increase in variable viscosity which
contributes to the rise in resistance to the fluid flow and,
subsequently, fluid velocity lessens. This decrease in
velocity is significantly more in the nanofluid than in
the Casson nanofluid. The impact of local-temperature
Grashof number Gr is depicted in figure 5. It is revealed
that an increase in Gr contributes to the accelerating fluid
flow and this increase in velocity is prominently more
in the Casson nanofluid. The reason behind this trend is
that Gr is the ratio of buoyancy to viscous forces, and
thus an increase in it indicates less viscous forces acting
on the fluid and, consequently, fluid flow accelerates.
Figure 6 is drawn for the rising values of local nanopar-
ticles Grashof number Br for the velocity profile. From
this figure, it is depicted that increasing values of Br
lead to an increase in fluid velocity. This trend is seen
because, an increase in Br indicates an increase in motile
nanoparticle concentration which contributes to acceler-
ated fluid flow. This increase in velocity is significantly
more in the nanofluid than in the Casson nanofluid.

Figures 7–15 are drawn to examine the effect of
prominent parameters such as the unsteadiness param-
eter, thermal radiation parameter N , Prandtl number,
Eckert number, variable thermal conductivity parame-
ter δ, variable viscosity parameter λ, Brownian motion
parameter Nb and thermophoretic parameter Nt, respec-
tively, on the temperature profile. Figure 7 is plotted for
the rising values of unsteadiness parameter and a drop
in temperature is witnessed. Moreover, this temperature
drop is prominent when the Casson nanofluid is taken
into account. This happens due to the fact that small val-
ues of the Casson fluid parameter indicate an increase
in the plastic dynamic viscosity which resists the fluid
flow and, subsequently, the temperature increases. The
influence of an applied external magnetic field on tem-
perature is explored in figure 8. It is observed that an
increase in Hartmann number results in an increase in
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Figure 8. Effect of M on θ(η).

Figure 9. Influence of N on temperature.

Figure 10. Temperature distributions for various values of
Pr.

fluid temperature. The main reason is that the magnetic
field contributes to the increasing frictional drag which
leads to an upsurge in fluid temperature. From this fig-
ure, it is depicted that the increase in temperature is
significantly high in the nanofluid compared to the Cas-
son nanofluid. The effect of thermal radiation parameter
N on the temperature field is illustrated in figure 9. It is

Figure 11. Effect of Ec on θ(η).

Figure 12. Temperature distributions for increasing values
of δ.

Figure 13. Temperature distributions for increasing values
of λ.

observed that an increase in N contributes to a drop in
temperature distribution. This trend is reported because
an increase in N improves the efficacy of conduction
within the thin liquid film. Moreover, this temperature
drop is prominent in Casson nanofluid compared to
the nanofluid. Figure 10 is drawn to study the effect
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Figure 14. Temperature distributions for various values of
Nb.

Figure 15. Temperature distributions for distinct values of
Nt.

of Prandtl number on temperature and a reduction in
temperature distribution is reported for the rising values
of Pr. This happens because Pr is the ratio of momentum
to thermal diffusivity. Thus, an increase in Pr indicates
a low thermal diffusivity and, subsequently, the tem-
perature drops. Moreover, this drop in temperature is
reasonably more in the case of the Casson nanofluid. The
influence of viscous dissipation on the temperature pro-
file is studied through the Eckert number whose effect on
temperature is shown in figure 11. It is depicted that the
temperature increases with an increase in Ec. This hap-
pens because, Ec represents the effect of heat dissipation
due to the viscous force and an increase in Eckert num-
ber indicates an increase in viscous dissipation which
leads to an upsurge in fluid temperature. Furthermore,
from this figure, it is concluded that the increase in tem-
perature is dominant in a nanofluid compared to the
Casson nanofluid. Figure 12 is plotted to explore the
influence of temperature-dependent thermal conductiv-
ity on temperature distribution. From this figure, it is
concluded that temperature rises with an increase in
variable thermal conductivity parameter δ. This happens

Figure 16. Concentration distributions for increasing values
of Sc.

because the thermal conductivity is taken to be directly
proportional to the temperature difference and hence an
increase in temperature leads to an increase in thermal
conductivity and, consequently, the fluid temperature
rises. Moreover, it is also revealed that this increase in
temperature is prominently more in the nanofluid than
in the Casson nanofluid. The influence of the variable
viscosity parameter on temperature distribution is stud-
ied in figure 13. It is revealed that the fluid temperature
rises with an increase in λ, the reason behind this trend
is that an increase in λ indicates a rise in variable vis-
cosity which offers more resistance to fluid flow and, as
a result, the fluid temperature upsurges. Moreover, this
increase in temperature is significantly dominant in the
nanofluid. Figure 14 is drawn to examine the effect of
Brownian motion of nanoparticles on temperature dis-
tribution. It is depicted that an increase in Nb leads to a
rise in the temperature profile. This happens due to the
fact that the rising values of Nb indicate an increase in
the random motion of nanoparticles, and hence, to an
increase in particle collisions and, as a result, the fluid
temperature increases. This temperature boost is domi-
nant in the nanofluid compared to the Casson nanofluid.
The thermophoresis effect of nanoparticles on fluid tem-
perature is plotted in figure 15, for distinct values of Nt.
This figure reveals that the temperature increases with
an increase in thermophoretic parameter within the thin
liquid film. This rise in temperature is dominant in the
nanofluid.

Figures 16–18 are plotted to explore the effect
of Schmidt number Sc, Brownian motion parame-
ter Nb and thermophoretic parameter Nt, respectively,
on the nanoparticles concentration profile. Figure 16
is plotted for the rising values of Sc for φ. From
this figure, it is concluded that the concentration of
nanoparticles drops with an increase in Sc. This hap-
pens mainly because Sc is the ratio of momentum to
mass diffusivity. Thus, an increase in Sc indicates an
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Figure 17. Concentration distributions for increasing values
of Nb.

Figure 18. Concentration distributions for various values of
Nt.

increase in momentum diffusivity and, consequently, the
concentration of nanoparticles drops. The effect of
nanoparticles on Brownian motion is examined in fig-
ure 17. It is depicted that near the opening of the slit,
the concentration of nanoparticles increases with an
increase in Nb and afterwards, a contrasting trend is
witnessed. Figure 18 is plotted to examine the effect of
thermophoresis parameter Nt on the nanoparticles con-
centration profile. This figure reveals a contrasting trend
as compared to figure 17, i.e. the concentration drops
near the opening of the slip and afterwards, it increases.

Figures 19–25 are the bar charts for the skin fric-
tion coefficient, and the Nusselt and Sherwood numbers
for distinct values of emerging significant parameters.
From the bar charts displayed in figures 19 and 20,
it is concluded that the Grashof number Br of the
local nanoparticles and the Casson nanofluid parame-
ter contribute to the reduced shear stress at the surface
while the shear stress increases for the rising values of
the local-temperature Grashof number Gr, unsteadiness
parameter, variable viscosity parameter and Hartmann
number, respectively. Figures 21–24 are the bar graphs

Figure 19. Effect of γ, S and M on skin friction coefficient.

Figure 20. Effect of λ, Gr and Br on skin friction coefficient.

Figure 21. Effect of γ, S and δ on Nusselt number.

drawn for the Nusselt number against the rising values of
pertinent parameters. From these bar graphs, it is evident
that the variable thermal conductivity, Prandtl number,
nanoparticles Brownian motion and the local nanoparti-
cles Grashof numbers played a role in increasing the
surface heat flux rate, whereas it decreases for the
rising values of variable viscosity, Casson nanofluid,
unsteadiness parameters, Eckert and local nanoparticles
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Figure 22. Effect of Ec, Pr and M on Nusselt number.

Figure 23. Effect of N , λ and Nb on Nusselt number.

Figure 24. Effect of Nt, Br and Gr on Nusselt number.

Grashof numbers, magnetic field, nanoparticles
thermophoresis and thermal radiation, respectively. The
effects of important parameters on the Sherwood num-
ber are studied using the bar chart displayed in figure 25.
It is revealed that the Sherwood number increases
with an increase in the Schmidt number and the ther-
mophoretic parameter while a contrasting behaviour is
reported for the rising values of the Casson nanofluid
and nanoparticle Brownian motion parameters.

Figure 25. Variation in Sherwood number.

5. Concluding remarks

In this paper, the impact of temperature-dependent vis-
cosity and thermal conductivity effect on heat transfer
and MHD Casson nanofluid flow within a thin liquid film
towards an unsteady extending surface in the presence
of thermal radiation were examined. The key findings
include:

• Fluid flow decelerated with an increase in S as
well as the magnetic field and variable viscosity
parameter. It is worth mentioning here that when
the Casson nanofluid parameter γ approaches a very
large number, mathematically, when γ → ∞, the
Casson nanofluid model exhibits the results for the
nanofluid. Furthermore, the decrease in fluid veloc-
ity was significantly more in the nanofluid than in
the Casson nanofluid.

• Local temperature and local nanoparticle Grashof
numbers contributed to the accelerated fluid flow and
this increase in velocity was prominently more in the
Casson nanofluid.

• Rising values of the unsteadiness parameter led to
a drop in temperature. Moreover, this temperature
drop was slightly more when the Casson nanofluid
was taken into account.

• An increase in the Hartmann number resulted in
an increase in fluid temperature. Furthermore, the
increase in temperature was significantly higher in
the nanofluid than in the Casson nanofluid.

• Temperature rose with an increase in variable ther-
mal conductivity δ and viscosity λ parameters.

• An increase in N contributed to a drop in tempera-
ture distribution. Moreover, this temperature drop is
prominent in the Casson nanofluid compared to the
nanofluid.

• Temperature distribution decreased for the rising
values of Pr.
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• Temperature increased with an increase in Ec. Fur-
thermore, the increase in temperature was dominant
in the nanofluid compared to the Casson fluid.

• Nanoparticle Brownian motion parameter Nb and
the thermophoretic parameter Nt contributed to the
upsurge in temperature distribution.

• Near the slit opening, the concentration of nanopar-
ticles increased with an increase in the Brownian
motion parameter Nb.

• A contrasting trend was reported for the rising values
of Nt.

• The local nanoparticles Grashof number Br and
the Casson nanofluid parameter contributed to the
reduced shear stress at the surface while it increased
for the rising values of the local-temperature Grashof
number Gr, unsteadiness parameter, variable viscos-
ity parameter and Hartmann number, respectively.

• The variable thermal conductivity, Prandtl num-
ber, nanoparticle Brownian motion and local-
temperature Grashof number played a role in
increasinging the surface heat flux rate, whereas it
decreases for rising values of variable viscosity, Cas-
son nanofluid, unsteadiness parameters, Eckert and
local nanoparticles Grashof numbers, magnetic field,
nanoparticles thermophoresis and thermal radiation.

• The magnitude of the Sherwood number rose with
an increase in the Schmidt number and the ther-
mophoretic parameter while contrasting behaviour
was reported for the rising values of the Casson
nanofluid and the nanoparticle Brownian motion
parameters.
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