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We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient
(0Ry), differences of circular vertical and horizontal o° (0%, —0gy) from FRS-1 data of Radar Imaging
Satellite (RISAT-1) and surface roughness in terms of RMS height (RMSpeight). We examined the
performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it
is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using
RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., o°.
Near surface SM measurements were related to oRy, oy —0ofky derived using 5.35 GHz (C-band) image
of RISAT-1 and RMSyeight- The roughness component derived in terms of RMSyeighs showed a good
positive correlation with oy —ofy (R? = 0.65). By considering all the major influencing factors (0%,
0Py —0R and RMSyeignt), an SEM was developed where SM (volumetric) predicted values depend on
0211y Oy —0Ryys and RMSheignt. This SEM showed R? of 0.87 and adjusted R? of 0.85, multiple R=0.94
and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical
model with observed measurement (SMopserved) Showed root mean square error (RMSE) = 0.06, relative-
RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17,
Nash—Sutcliffe efficiency (NSE) = 0.91 (x1), index of agreement (d) = 1, coefficient of determination
(R?) = 0.87, mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error
(VE) = 0.15, variance of the distribution of differences (S3) = 0.004. The developed SEM showed better
performance in estimating SM than Topp empirical model which is based only on ¢°. By using the
developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39
and can be used for operational applications.

Keywords. Soil moisture; SAR; RISAT-1; TDR; semi-empirical model.
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1. Introduction

Microwave remote sensing technique has showed
great potential in agricultural applications such as
crop yield estimation, forecasting, irrigation man-
agement, and issuing early warning of droughts.
Substantial progress has been made in terms
of vegetation classification and monitoring from
hyperspectral visible/infrared remote sensing (RS).
However, considering the limitations of hyperspec-
tral RS under cloud cover, its combination with
microwave (MW) data for routine measurement
of SM and vegetation distinctiveness has great
potential for agriculturists and hydrologists.

Vegetation dynamics, atmospheric sciences, and
hydrological studies need accurate and up-to-date
information of soil surface conditions, SM and sur-
face roughness. Under this background, satellite
imagery acts as a powerful tool by providing accu-
rate and repeated spatial data. Synthetic Aper-
ture Radar (SAR) data analysis technique can be
used to examine soil parameters under complex
weather conditions. The backscattered SAR signal
strongly depends on the geometric characteristics
and dielectric properties of the soil in bare agricul-
tural land. Zribi and Dechambre (2002) have found
in their experimental analysis that the radar sig-
nal is more sensitive to surface roughness at high
incidence angles than at low incidence angles and
findings were supported by Baghdadi et al. (2012)
and Fung (1994).

In SAR technology, the radar signal follows a
logarithmic function with the soil surface rough-
ness. The radar signal and roughness parameter
have more strong relationship in the L-band (0.5—
1.5 GHz) followed by the C-band (4-8 GHz) and
lowest in X-band (8-12 GHz) and are more sensi-
tive to soil roughness at high incidence angles (Zribi
and Dechambre 2002; Baghdadi et al. 2012; Hos-
seini et al. 2015; Dente 2016; Liu 2016).

The surface roughness is a measure of the
irregularities of the surface geometry which has a
significant effect on the variation of radar backscat-
tering/returning signal amount. The degree of
roughness or smoothness of a surface depends on
the wavelength of the incidence energy. Higher
surface roughness increases the backscattering by
increasing the total emitting surface. The depen-
dency of the dielectric constant (&,) on soil texture
is primarily a function of variation of water reten-
tion by soil particles (Ulaby et al. 1978; Zhang
et al. 2016). The sensitivity of soil texture to dielec-
tric constant is lower in dry soil and higher in wet
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soil conditions. Different soil textures have distinct
patterns of soil moisture content and soil drainage.
Soil texture is closely related to spatial and tem-
poral dynamics of SM. In general, precipitation is
responsible for SM variability at a larger scale and
soil texture controls this variability at a smaller
scale. Vegetation cover is the most important factor
that influences the retrieval of soil moisture from
MW RS. Previous studies (Neusch and Sties 1999;
Sikdar and Cumming 2004) revealed that radar
signals of C-band are not significantly affected if
vegetation has <0.4 NDVI value.

The aim of this work was to derive a semi-
empirical model to retrieve SM (volumetric) by
using FRS-1 data of RISAT-1 (SAR technology-
based Indian satellite). This SEM was developed
by considering the major influencing factors to
retrieve SM in terms of soil physical characteristics
(surface roughness) and backscattering coefficient
of RH polarization. It may be noted that RV polar-
izations were not used, because we found in a
previous study that vertical component of radar
signal do not carry enough information for SM
study (Rawat et al. 2017a).

2. Materials and methods

2.1 Study area description

The study area lies between 76°29-76°44'E and
28°17-28°36'N, with altitude of 245 m above
mean sea level in Rewari district (geographical
area 1559 km?, shown in figure 1) in the state of
Haryana, India. The study was conducted during
rabi season (Nov—Mar) when most of the region
was under wheat crop. The main sources of irri-
gation are canals (2.1%) and bore-wells/tube wells
(96.9%). The average annual rainfall of the district
is 657.3 mm. The average rainfall in last 10 years in
the district was 569.6 mm (DDMP Rewari-2013).
The rainfall distribution in the district is uneven
and scattered which results in drought conditions
often, in turn, affecting the agricultural produc-
tion as well as cropping pattern in kharif and rabi
seasons (DDMP Rewari-2013).

2.2 Data processing

TARANG software was used for pre-processing of
FRS-1 SAR images with RV and RH polariza-
tion. This software is jointly developed by II'T-B
and SAC (ISRO) and is the advanced version
of Polarimetric SAR data processing (PolSDP)
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Figure 1. Study area location (a) Haryana (inset India), (b) Rewari district map, and (c) SM measurement points during
ground truth and RISAT-1 swath (polygon) over Google Image.

Table 1. Metadata extracted from RISAT-1 (FRS-1)
dataset using TARANG software.

Azimuth looks 1

Range looks 1

Multi looks 1.073144
Ground pixel spacing 2.271846
Range pixel spacing 1.801
Line spacing 2.117
Centre incidence angle 52.443
Scene centre (long.) 76.619992
Scene centre (lat.) 28.444275
Multi looks (during processing)

Range 1
Azimuth 1

Color scheme R: Cq1 based

software which was developed by IIT-B. It is
capable of handling RISAT-1 datasets with all
required metadata information in text format
(table 1). The software converts the RH and RV
files into scattering matrix. While converting the
RISAT-1 (FRS-1) data, it uses calibration factor
which were 67.768 and 64.414 for RH and RV
images for our case, respectively.

2.2.1 Power image generation of RISAT-1
(FRS-1) dataset

Level 1 single look complex dataset was acquired
from National Remote Sensing Centre (NRSC),
Hyderabad. The I and @ values for each pixel were
supplied as 16 bit integers. The image data was
imported and converted into a complex floating
point dataset. Then suitable calibration equations

were applied for radiometric correction of data.
The calibration constant (K4p) was supplied with
the data as metadata (67.768 and 64.414 for RH
and RV, respectively) and is in decibel scale. To
get power values for each pixel, we used the follow-
ing relations:

DNp = /(I? + Q). (1)

Decibel (dB) scale

Backscatter (o°) in dB scale was calculated using
equation (2) and its image is shown in figure 2.

0° =20log,g DN, — Kqp + 10log;y(sin 6,/ sin 0.)

(2)
where DN, is the digital number or power image, ¢;
is the local incidence angle, and 6. is the incidence
angle at image centre.

2.2.2 Time domain reflectometry (TDR)

A TDR measures reflection along a conductor
inserted in soil (wet/dry). In order to measure
those reflections, the TDR transmits an incident
signal onto the conductor and observe its reflec-
tion. If the conductor is of uniform impedance
and is properly terminated, then there will be no
reflections and the remaining incident signal will
be absorbed at the far-end by the termination.
Instead, if there are impedance variations, then
some of the incident signals will be reflected back
to the source. Radar has similar kind of principle
(Nussberger 2005; Rawat et al. 2017a). There-
fore, Field Scout™ TDR 300 Soil Moisture Meter
instrument was used in the present study (fig-
ure 3). The TDR was used for obtaining point SM
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Figure 2. Backscattering coefficient (6°) image of study area
in dB scale.

measurements from the fields in the study area.
Before undertaking field measurements, the TDR
was calibrated in the experimental farm of Divi-
sion of Agriculture Physics, IARI, New Delhi by
developing a relation between TDR measurement
of time of reflection and volumetric soil moisture.

2.2.3 Generation of dielectric constants (g,) using
Hallikainen model

According to Hallikainen et al. (1985), €, can be
generated for a particular MW frequency (in case
of RISAT-1, 5.3 GHz) on the basis of SM and soil
texture properties. Hallikainen model is given as:

Ep = (ao -+ als + CLQC) + (bo + blS + bQC) X My,
+(co + 1S + 20) x m? (3)

where a;, b; and ¢; are coefficients (table 2), e, is
observed dielectric constant of soil, m,, is volumet-
ric SM and S and C are volume fraction of sand
and clay (by wt.%) present in the soil. The soil of
the study area comprises of sand 70-85% (average
78%) and clay 12-16% (average 14%) according to
previous study.
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2.3 Dielectric mizing semi-empirical model

Most of the models use dielectric constant as one of
their unknown parameters. When volumetric SM is
desired, we have to use a dielectric mixing model
to convert €, values to volumetric SM values (Bar-
rett et al. 2009). One of the most commonly used
models is given by Topp et al. (1980). Topp model
requires only &, for estimation of soil water con-
tent via a third order polynomial equation as shown
below:

SMrropp = —5.3 x 1072 4+ 2.92 x 10~ %,
—5.5x 1072 +4.3 x 107%3  (4)

where SMryp, is the volumetric SM from Topp
model.

This advantage makes the later model more
widely used because only ¢, input data is required
and another advantage of this model is its easy
linking with Hallikainen model because coefficients
(a;, b; and ¢;, given in table 2) of equation (3)
are already defined by Hallikainen et al. (1985) at
RISAT-1 frequency of 5.3 Ghz. We have adopted
both model equations (3 and 4) in this study.

2.4 Soil surface roughness (SSR)

In this study, soil surface roughness (SSR) was
measured using the chain method (Saleh 1993).
This method is the simplest and most convenient
way to estimate SSR (Werrer and Andreas 2005). It
is based on the fact that horizontal length decreases
as SSR increases when a chain of given length L is
laid on the surface. Therefore, SSR could be mea-
sured by calculating decrements in the chain length
using the equation below:

SSR = <1 - IL’1> x 100 (5)

2

where SSR is soil surface roughness at any direc-
tion. However, roughness caused by aggregates
(random roughness) was obtained by measuring
the SSR in perpendicular direction to ridges. L, is
the length of roller chain and Ly is the linear dis-
tance of chain due to roughness. SSR was explained
by the statistical parameter as root mean square
(RMS) height (vertical variation) and calculated
using the equation below:

3

RMS =
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Figure 3. Time domain reflectometry (TDR) instrument (Field Scout TDR 300) used in the study.

Table 2. The look-up table for coefficients a;, b; and c; at three frequencies (source, Hallikainen et al. 1985).

€= (ao + a18+a20) + (bo + 015 + sz) X My + (Co +Cls+(220) X m%

Frequency (GHz) ao ai as bo b1 bo co c1 Ca
14 2.378 0.326 —0.046 10.75  59.894 15.703 73.555 —5H8.372 —14.154
5.3(~ RISAT-1, C band) 2.388 0.348 —0.033 10.418 56.211 14.75 68.507  —54.968 —13.351
6.9 2.395 0.361 —0.025 10.188 53.775 14.119  65.18 —52.714 —12.819
35 including ogy,, the effect from the overlaying veg-
y=0.438x+2.604 « 3 etation could be minimized and the possibility of
2=0.651 g getting ¢° from the soil surface improves.
21 %
-]
ST w
i 5 2.5 Model evaluation
L 2 -
0.5 In the present study, the developed SEM was eval-
: ' = ‘ ‘ 0— * uated with observed and Topp model based SM
e -4 R 20 -1 0 1 with the help of statistics as expressed in table 3.
G rRv™ O RH

Figure 4. Relationship between ogy —ory and RMSHeight -

where Z; denotes the height of the point, Z is the
mean height and n is the total number of points
taken under consideration.

SSR is explained as the surface height variance
compared to a smooth SSR. SSR and SM are two
important factors that affect ° from bare agricul-
tural fields (Ulaby et al. 1978), hence SSR factor is
essential for estimating SM from ¢°. In the present
study, SSR is modeled using oy —0Ry approach.

In this study, oy —ojy was used for retrieving
roughness. The ground measured RMS height val-
ues were plotted against the oy, —oRy and it corre-
lated well as shown in figure 4 with R? value of 0.65.
The roughness measurements were performed next
day of RISAT-1 pass over the study area because
it was assumed that roughness does not change
within one day. The o}y, —ojy was used because
the 0%y, backscattering coefficient can account for
the backscattering from vegetation biomass. So, by

These are coefficient of determination (R?), p-test,
multiple R, adjusted R?, standard error of estimate
(SEE), root mean square error (RMSE), relative-
RMSE (R-RMSE (Rawat et al. 2013, 2017a, b;
Bala et al. 2015)), percent RMSC (%RMSE),
t-statistic test, volume error (VE), normalized
RMSE (NRMSE), mean absolute error (MAE),
mean bias error (MBE), mean absolute percent
error (MAPE), index of agreement (d), Nash-
Sutcliffe efficiency (NSE), average index ratio (IR),
percent of error (PE), and variance of the
distribution of differences (S3).

2.6 Ground measurements

Ground measurements collected by TDR was used
for calibration and validation of the models. TDR
data was collected from the top soil (0-5 cm) only
because TDR observation strategy was to investi-
gate SM variations along the liner and further use
it to calibrate the RISAT-1 (FRS-1) retrieval mod-
els for 0-5 cm penetration depth of the signal.
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Table 3. Mathematical expression of statistical tests.
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Coefficient of determination (R?)

p-test

Multiple R

Adjusted R?

Standard error of estimate (SEE)

Root mean square error (RMSE)

Relative-RMSE (R-RMSE)
Percent RMSC (%RMSE)
t-statistic test

Volume Error (VE)

Correlation coefficient (CORR%)

Normalized RMSE (NRMSE)
Mean absolute error (MAE)

Mean bias error (MBE)

Mean absolute percent error (MAPE)
Index of agreement (d)

Nash-Sutcliffe efficiency (NSE)

Average index ratio (IR)
Percent of error (PE)

Variance of the distribution of differences (S3)

R? = ( >ty V=V x(Vo—Vo) )2
Vi (Vu—Va)? Timy (Vo—Vo)?

The p-value approach involves determining ‘likely’ or
‘unlikely’ by determining the probability. If the
p-value is small, say less than (or equal to) «, then it
is ‘unlikely’. And, if the p-value is large, say more than
o, then it is ‘likely’

Multiple R is the correlation between variable and
average of variable. It ranges between 0 and 1 (it
won’t be negative)

Adjusted R*> =1 — (1 — R?) x nfgil

k is the number of variables in the unconstrained model,

n is total number of variables
SEEm = (2;;1 <vOva>2)°‘5

n—1

RMSE = \/<n1 i (Vs — vo)2>

R-RMSE — \/(n—l 5 (VMVi;IVo)z)

1=1

RMSE
>im (Vo)

( (n—1)MBE2 )
RMSEZ2 -MBE?

%RMSE — ( x 100)

t=
n

VE =n~" 3 [Yo Y|
i=1

Vm

CORR% = S2varto)

OV XV

NRSME = Y(r X (e 1o)?)

S Vo -vad
MAE = %

MBE,, = g (V;:I—EVO)

. Vo -V,
s \% x100]

n

MAPEy =

Tig (Vm-Vo)?
Yoy (VM =Vol+IVo —Vol)?

d=1-

N > SUARS
NSE =1 Yrq (Vo—Vo)?

_ Vu
IR =
PE = (4=12) % 100
g2 _ Zim (Vu—Vo-Xi, War=Vo) 2
d — n—1

Vo is the, observed value and V), is the model value.

3. Results and discussion

3.1 Factor statistics
3.1.1 Backscattering coefficient (0°)

The o© of study area was calculated by using
equation (2). To process the image, calibration
constant (K4p), and incidence angle for the pixel
position (i,) were taken from the metadata file
(table 1). FRS-1 data was processed to gener-
ate 0 images for RH and RV. Derived ¢° image

for RH is shown in figure 2. oRy ranged from
-5.58 to 0.91 dB with a mean value of —2.14 dB
and standard deviation of 1.82 (table 4).

3.1.2 Volumetric moisture content (m,)

The m, for each of the 22 field samples was calcu-
lated using TDR calibration curve. Out of these 22
samples, 14 were used for model generation and 8
were used for model validation. Mean m,, for each
of the 14 sites was 0.28 with standard deviation of
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Table 4. Descriptive statistics of observed variables.

) ORv ORH ORv — ORH RMSHeight

Mean 0.28 —-3.79 —2.14 —2.17 1.65

Standard error 0.03 0.49 0.41 0.26 0.14

Median 0.29 —3.47 —1.81 —2.24 1.70

Standard deviation  0.12 1.82 1.55 0.96 0.52

Sample variance 0.01 3.30 2.39 0.92 0.27

Skewness 1.13 —1.24 —0.43 —1.04 0.37

Range 0.45 7.71 6.49 3.33 2.34

Minimum 0.14 —8.52 —5.58 —4.35 0.60

Maximum 0.59 —0.81 0.91 —1.02 2.94

Sum 3.94 —53.12 —29.98 —-30.37 23.14

0.7 3.2 Analysis
y=0.068x + 0.428 0.6 © . .
R = 0.796 as o 3.2.1 Relationship between o4y and SM

| = Relationship between o3y and SM was developed
03 - _% for RH polarization and shown in the graph
02 ;Eo (figure 5). The graph shows that ofy to some
¢ 01 & extent depends on the SM, having a positive
A relation. Results showed that o}y increases with
% 4 2 @ 5 increasing SM, with SM explaining about 70% vari-
[, . ations in o}y with a standard error of 0.030. Thus

Figure 5. Relationship between backscattering coefficient
(0%) and soil moisture (SM).

0.16 m3/m? and ranged from 0.59 to 0.14m?/m? as
given in table 4.

3.1.3 Dielectric constant (e, )

The ¢, for each of the samples was calculated by
using equation (3) and using frequency-dependent
coefficients given in table 2. The ¢, was used for
estimating SM using Topp model for comparison
of SM estimated with developed model.

3.1.4 Surface roughness

The surface roughness (RMSgeignt) of soil in the
area varied from 0.60 to 2.94 cm with an average
value of 1.65 (£0.14) cm (table 4).

oRy is directly related to moisture content of the
target under consideration. The large datasets of
SM measurements have made it possible to estab-
lish valid linear relationships between the o}y and
SM at each sampling sites.

3.2.2 o, —0%y relation to soil surface roughness

(SSR)

SSR was calculated in terms of RMSeight at each
of the sampling sites. The ¢° is sensitive to the
RMSHeight, but in the present study it did not show
any significant relationship individually with ¢© of
RH and RV polarizations of FRS-1. It may be due
to the reason that the area is not having high RMS
values (0.60-2.94 cm, table 4) and the incidence
angle of image was high (52.443°) making ¢° inde-
pendent of RMSHeight (Aubert et al. 2011; Hosseini
et al. 2015). But the difference in backscatter of
RV and RH polarization (0%, —ogy) showed signif-
icant positive relation with RMS having R? = 0.65
(figure 4) with standard error of 0.26 (table 4).

Table 5. Model summary of generated semi-empirical model (SEM).

Model  Multiple R R?

Adjusted R?

Standard error

in estimate Observations

SEM 0.94 0.87

0.85

0.05 14
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3.3 Semi-empirical model (SEM) generation

Correlation and multiple regression analyses were
performed to examine the relationship between
SMobserved and various factors (as mentioned in
the above section) for predicting SM using FRS-
1 dataset of RISAT-1. Table 5 shows the model

Table 6. ANOVA table for dependent factors/
vartable in generated semi-empirical model.

df SS MS F Sig. F
Regression 3 0.16 0.05 25.26  0.00
Residual 10 0.02 0.00 X X
Total 13 0.18 X X X

Note. df: degree of freedom, SS: sum of square,
MS: mean square, F: overall F-test for regres-
sion, Sig. F: significance F.

J. Earth Syst. Sci. (2018) 127:18

summary statistics of new generated SEM. The
multiple regression model with all three factors
(0241, 0%y —0%y and RMSpeight) produced R? =
0.87, multiple R = 0.94, adjusted R? = 0.85,
F(3(regression), 10(residual))=25.26, Sig. F<0.001
with very low standard error (=0.05, table 5).
Analysis of variance (ANOVA) is a variability
test. It is the uncertainty that would be present
if any one factor is used to predict SM without
accounting for change in other factors’ role (infor-
mation). The best one could do is to predict each
observation to be equal to the sample mean. The
amount of uncertainty /variability can be measured
by the total sum of squares (SS, numerator of the
sample variance). The ANOVA analysis partitions
this variability into two parts as one portion is
fitted by the model. It is the reduction in uncer-
tainty that occurs when the regression model is

Table 7. Statistical comparison of generated SM with Topp model based SM.

Sl. no. SMobserved SMTopp SMRiISAT-1 ORH er 0kv—0RH  RMSHeight
1 0.14 0.138 0.159 —3.65 10.85 —1.78 1.99
2 0.46 0.459 0.402 —0.83 33.48 —1.78 1.91
3 0.39 0.386 0.308 —0.62 27.93 —2.35 0.90
4 0.30 0.305 0.212 —1.76 22.02 —2.33 0.96
5 0.35 0.355 0.296 —1.40 25.64 —4.33 0.61
6 0.35 0.351 0.332 —1.11 25.38 —3.96 0.81
7 0.20 0.199 0.152 —3.26 14.78 —3.41 1.11
8 0.49 0.490 0.522 0.84 35.95 —3.78 0.98
Performances of SMgrisar-1 with respect SMobservea and SMropp
Statistical tests

Sl no. name SMrisaT-1 with SMobserved SMrisaT.1 with SMTopp

1 RMSE 0.06 0.10

2 R-RMSE 0.18 0.28

3 MAE 0.04 0.08

4 NRMSE 0.17 0.26

5 MBE 0.04 0.08

6 MAPE 1.39 2.70

7 d 1.00 1.00

8 RMSE% 2.10 3.26

9 NSE 0.91 0.57
10 IR 0.89 0.78
11 PE 5.61 5.49
12 SEE 0.10 0.16
13 VE 0.15 0.31
14 SH 0.00 0.06
15 R? 0.87 0.79
16 p (at 95%) 0.00 0.01
17 Multi R 0.93 0.89
18 Adj. R? 0.85 0.75
19 Standard error 0.05 0.05
20 t-test 3.27 3.89
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used to predict SM and the remaining portion is
the uncertainty that remains even after the model
is used. The generated model will be considered
statistically significant, if it can show large amount
of variability in the SM prediction. Model summary
(table 5) and ANOVA test (table 6) reveal that on
the basis of o0}y, 0y —0Ry and RMSheight factors,
an SEM can be generated and is given as:

SMRISAT-l = 0.09 x (O’%H) — 0.05 x (U?{V — O'IOQH)
+0.14 x (RMSHeight) +0.12 (7)

where SMRgisaT.1 is the retrieved soil moisture
using FRS-1 dataset of RISAT-1.

3.4 Statistical validation of developed
semi-empirical model (SEM)

Table 7 shows comparison of observed SM for
eight validation points with retrieved SMgisar-1
and SMr,,, along with the results of statisti-
cal tests. The statistical analysis showed level of
accuracy of developed SEM’s SM with respect to
SMobserved (figure 6) and SMrgp,, (figure 7). The
relation in both the cases was significant and pos-
itive with SMgisaT.1 explaining higher variability
in observed SM than Topp model. Based on statis-
tical parameters of RMSE, R-RMSE (Rawat et al.
2013; Bala et al. 2015), MAE and MBE statistics
test, SMirisaT-1 is more closer to the SMopserved
than SMr,p, model as indicated by low value of
error indices (RMSE = 0.06, R-RMSE = 0.18,
MAE = 0.04, MBE = 0.04 and SEE = 0.10).
Higher values of R?, Adj R?, and Multi R revealed
much closer SMpoger values to SMopservea and
SMropp. Over all, on the basis of statistical tests
(table 7), developed model (equation 7) on the

Page 9 of 11 18

0.60

y=1.152x-0.14 >
R2=10.787

e e
B~ in
s> S

SM 16pp Model
<
(3]
[l

0.20 -
0.10 - T ‘ : ‘ ‘
0.10 0.20 0.30 0.40 0.50 0.60
SM Model

Figure 7. Relationship between and

SMopp-

SMRISAT—l /Model

basis of o3y, 0Ry—0Ryg, and RMSyeien: parame-
ters for the study area worked well. By using this
SEM, SM value can be predicted with better accu-
racy. Based on above statistical results (table 7),
it can be inferred that the developed SEM model
performs better than Topp model for retrieval of
SM at finer resolution.

4. Conclusion

Regardless of ground level work, a number of
inversion semi-empirical models have been devel-
oped to retrieve SM using either passive or active
microwave remote sensing. SAR has shown its
potential for retrieving SM at regional scales. How-
ever, since ¢° is determined by nature of surface,
the retrieval of SM is an ill-posed problem when
using single factor. The developed method here is
more simple and realistic for the estimation of SM.
To develop this SEM, major factors considered are
ORms Orv—O0Rm> and RMSHeight-

The main advantage of this inversion scheme is
that it requires single field parameters (RMSgeignt )
and it can be easily estimated in comparison
with other retrieval approaches. The availability of
input parameters is of great importance and also
affects the operational results. The SEM param-
eters need further improvement and they can be
improved by using empirical data measured under
these conditions. However, any improvement in the
algorithm will rely on a better assessment of veg-
etation influences on the C-band backscattering
mechanisms; this needs to take into account the
dynamic vegetation effects. The surface variability
of SM was investigated at 3 m resolution (or 25
km swath/spot) using in situ measurements and
RISAT-1 (FRS-1) derived SM. Despite so many
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sources of errors and several issues, the results
obtained by developed semi-empirical model for
RISAT-1 FRS-1 data are encouraging.

Acknowledgements

FRS-1 data procured under RISAT-1 Utilization
Programme of ISRO is gratefully acknowledged.
The authors would like to express their gratitude
to SAC, ISRO (India) for supplying the RISAT-
1 (SAR) data for this project and also for the
financial support. The authors would like to thank
Mr. Manish Kumar, project staff and the farm
field staff of Division of Agricultural Physics, IARI
during field campaigns.

References

Aubert M, Baghdadi N, Zribi M, Douaoui A,
Loumagne C, Baup F, Hajj M El and Garrigues S 2011
Analysis of TerraSAR-X data sensitivity to bare soil
moisture, roughness, composition and soil crust; Remote
Sens. Environ. 115 1801-1810.

Baghdadi N, Aubert M and Zribi M 2012 Use of TerraSAR-
X data to retrieve soil moisture over bare soil agricultural
fields; IEEE Geosci. Remote Sens. Lett. 9(3) 512-516.

Bala A, Rawat K S, Mishra A K and Srivastava A 2015
Assessment and validation of evapotranspiration using
SEBAL algorithm and Lysimeter data of IARI Agricul-
tural Farm, India; Geocarto Int. 31 1-29, https://doi.org/
10.1080,/10106049.2015.1076062.

Barrett B W, Dwyer E and Whelan P 2009 Soil moisture
retrieval from active space borne microwave observations:
An evaluation of current techniques; Remote Sens. 1(3)
210-242.

Blumberg D G, Freilikher V, Lyalko I V, Vulfson L D,
Kotlyar A L, Shevchenko V N, and Ryabokonenko A D
2000 Soil moisture (water-content) assessment by an air-
borne scatterometer: The Chernobyl disaster area and the
Negev desert; Remote Sens. Environ. 71 309-319.

Chen Q, Liu J, Tang Z, Zeng J and Li Y 2014 Study on
the relationship between soil moisture and its dielectric
constant obtained by space-borne microwave radiometers
and scatterometers; 35th Int. Symp. Remote Sensing of
Environment (ISRSE35), pp. 12-14.

DDMP (District Disaster Management Plan) Rewari 2013
Government of Haryana Department of revenue and Dis-
aster Management, Haryana Institute of Public Adminis-
tration, Plot 76, HIPA Complex, Sector 18, Gurgaon.

Dente L 2016 Microwave Remote Sensing for moisture moin-
toring synergy of active and passive observation and
validation of retrieved products; Ph.D. thesis, Faculty of
Geo-Information Science and Earth Observation, Univer-
sity of Twente.

Dobson M C and Ulaby F T 1981 Microwave backscat-
ter dependence on surface roughness, soil moisture, and
soil texture. Part III: Soil tension; IEEE Trans. Geosci.
Remote Sens. 19 51-61.

J. Earth Syst. Sci. (2018) 127:18

Fung A K 1994 Microwave Scattering and Emission Models
and their Applications; Artech House, Nordwood, USA.
Hallikainen M T, Ulaby F T, Dobson M C, El-rayes M A
and Wu L K 1985 Microwave dielectric behavior of wet
soil. 1: Empirical models and experimental observations;

IEEE Trans. Geosci. Remote Sens. 23 25-34.

Hosseini R, Newlands N K, Dean B C and Takemura A 2015
Statistical modeling of soil moisture, integrating satel-
lite remote-sensing (SAR) and ground-based data; Remote
Sens. 7 2752-2780.

Kong X and Dorling S R 2008 Near-surface soil moisture
retrieval from ASAR wide swath imagery using a princi-
pal component analysis; Int. J. Remote Sens. 29 2925—
2942.

Liu C 2016 Analysis of Sentinel-1 SAR data for mapping
standing water in the Twente region; PhD thesis, Faculty
of Geo-Information Science and Earth observation, Uni-
versity of Twente.

Mironov V L, Dobson M C, Kaupp V H, Komarov S K
and Kleshchenko V N 2004 Generalized refractive mix-
ing dielectric model for moist soils; IEEE Geosci. Remote
Sens. 42 T773-785.

Neusch T and Sties M 1999 Application of the Dubois-
model using experimental synthetic aperture radar data
for the determination of soil moisture and surface
roughness; ISPRS J. Photogramm. Remote Sens. 54(4)
273-278.

Nussberger M 2005 Soil moisture determination with TDR:
Single-rod probes and profile reconstruction algorithms;
PhD dissertation submitted to the Swiss Federal Institute
of Technology ZURICH, Switzerland.

Rawat K S, Mishra A K, Sehgal V K, Ahmed N and Tripathi
V K 2013 Comparative evaluation of horizontal accu-
racy of elevations of selected ground control points from
ASTER and SRTM DEM with respect to CARTOSAT-1
DEM: A case study of Shahjahanpur (Uttar Pradesh),
India; Geocarto Int. 28 439-452.

Rawat K S, Sehgal V K, Pradhan S and Ray S S 2017a
Retrieval and validation of soil moisture from FRS-1 data
set of radar imaging satellite (RISAT-1); Arab. J. Geosci.
10 445, https://doi.org/10.1007/s12517-017-3195-6.

Rawat K S, Bala A, Singh S K and Pal R K 2017b Quantifi-
cation of wheat crop evapotranspiration and mapping: A
case study from Bhiwani District of Haryana, India; Agr.
Water Manag. 187 200-209.

Saleh A 1993 Soil roughness measurement: Chain method;
J. Soil Water Conserv. 48CG 527-529.

Sikdar M and Cumming I 2004 A modified empirical model
for soil moisture estimation in vegetated areas using SAR
data; In: Geoscience and Remote Sensing Symposium
2004, IGARSS’04 Proceedings 2 803-806.

Singh D and Kathpalia A 2007 An efficient modeling with
GA approach to retrieve soil texture, moisture and rough-
ness from Ers-2 SAR data; Prog. Electromagn. Res. 77
121-136.

Srivastava H S, Patel P and Navalgund R R 2006 How
far SAR has fulfilled its expectation for soil moisture
retrieval? Microwave Remote Sensing of Atmosphere and
Environment-II, AE107, Asia Pacific Remote Sensing
Symposium, 12p.

Topp G C, Davis J L and Annan A P 1980 Electromag-
netic determination of soil water content: Measurements


https://doi.org/10.1080/10106049.2015.1076062
https://doi.org/10.1080/10106049.2015.1076062
https://doi.org/10.1007/s12517-017-3195-6

J. Earth Syst. Sci. (2018) 127:18

in coaxial transmission lines; Water Resour. Res. 16(3)
574-582.

Ulaby F, Moore R K and Fung A K 1982 Microwave Remote
Sensing: Active and Passive. Vol. II, Radar Remote
Sensing and Surface Scattering and Emission The-
ory; Addison-Wesley, Advanced Book Program, Reading,
Massachusetts, 609p.

Ulaby F T, Batlivala P P and Dobson M C 1978
Microwave backscatter dependence on surface roughness,
soil moisture and soil texture. Part I: Bare soil; IFEFE
Trans. Geosci. Remote Sens. 16(4) 286-295.

Corresponding editor: PRASHANT K SRIVASTAVA

Page 11 of 11 18

Werrer J and Andreas K 2005 Soil surface roughness
measurement-methods, applicability, and surface repre-
sentation; Catena 64 174-192.

Zhang X, Chen B, Fan H, Huang J and Zhao H 2016
The potential use of multi-band SAR data for soil mois-
ture retrieval over bare agricultural areas: Hebei, China;
Remote Sens. 8(1) 1-14.

Zribi M and Dechambre M 2002 A new empiri-
cal model to retrieve soil moisture and roughness
from C-band radar data; Remote Sens. Environ. 84
42-52.



	Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India)
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Study area description
	2.2 Data processing
	2.2.1 Power image generation of RISAT-1 (FRS-1) dataset
	2.2.2 Time domain reflectometry (TDR)
	2.2.3 Generation of dielectric constants (εr) using Hallikainen model

	2.3 Dielectric mixing semi-empirical model
	2.4 Soil surface roughness (SSR)
	2.5 Model evaluation
	2.6 Ground measurements

	3 Results and discussion
	3.1 Factor statistics
	3.1.1 Backscattering coefficient (σo)
	3.1.2 Volumetric moisture content (mv)
	3.1.3 Dielectric constant (εr)
	3.1.4 Surface roughness

	3.2 Analysis
	3.2.1 Relationship between σoRH and SM
	3.2.2 σoRV - σoRH relation to soil surface roughness (SSR)

	3.3 Semi-empirical model (SEM) generation
	3.4 Statistical validation of developed semi-empirical model (SEM)

	4 Conclusion
	Acknowledgements
	References




