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Abstract. The main objective of this study is to examine the two-dimensional (2D) oblique Oldroyd-B flow on
a stretching heated sheet. The flow governing problem is converted into nonlinear ordinary differential equations
through proper scaling transformations. The prevailing set of equations is solved computationally with a tolerance
level of 10−5. The velocity and temperature of a fluid model under consideration are portrayed to discuss the
influence of all associated parameters on momentum and thermal characteristics. Heat flux at the wall has been
computed numerically and analysed in a physical manner. The results obtained depict a reversed flow region for
non-positive values of shear flow components once a free parameter is varied. It is noticed that heat transfer at the
wall drops due to a rise in Deborah number β1 as well as Biot number Bi.
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1. Introduction

In the modern era, rheological fluids are most suitable
and appropriate when compared with the ideal fluids
due to their wide ranging applications in almost all
fields of modern technology, for example in biology,
medical science, pharmaceutical and chemical indus-
tries. All fluids that exist in nature, such as blood, mud,
sauces, ketchup, shampoo, oil, paints, polymer solu-
tions, clay coating, iron melting rods and many others
are rheological fluids. These fluids are viscid and flex-
ible under strain. The characteristics of all these types
of rheological fluids can be described by highly nonlin-
ear constitutive equations. In fact, Navier–Stokes theory
does not completely define the rheological properties
of complicated fluids. The major difficulty here is the
presence of nonlinearity that cannot be handled by the
traditional constitutive relation for all fluids. Camci and
Herr [1] gave a detailed analysis of interactions of self-
oscillation done on the impingement surface by taking
into account thermal transport features. Mahapatra et
al [2] studied heat transfer and thermal radiation of
oblique flows. Tooke and Blyth [3] analysed an oblique
stagnated stream using a free parameter and discussed
shear flow with constant vorticity at infinity. Terzis et
al [4] experimentally discovered the thermal inertia of

a transient liquid crystal. Nawaz et al [5] studied the
influence of joule heating of stagnated flow for both
Newtonian and non-Newtonian models on a stretched
cylinder. Crane [6] considered the fluid flow over a lin-
ear stretched sheet. Stretching flow along with thermal
radiation under several physical constraints have been
discussed in [7–13]. Various non-Newtonian fluid mod-
els have been suggested, which are mainly divided into
three classes, namely rate-type, differential and integral-
type. The Oldroyd-B model is an extension of the upper
convected Maxwell model; it is a constitutive model that
is used to describe the flow of viscoelastic fluids. This
model is equivalent to a fluid filled with elastic beads
and spring dumb-bells. In the dumb-bell model, the
behaviour of a single polymer molecule in a fluid is con-
sidered, but this microscopic model does not describe
the feedback effect that polymers have on the flow. To
include the feedback effect, it is necessary to move onto a
hydrodynamical description for the viscoelastic fluid.
The Oldroyd-B model provides a simple linear vis-
coelastic model for dilute polymer solutions based on
the dumb-bell model. The study on Oldroyd-B fluid
is very limited in the past few years. Rajagopal and
Bhatnagar [14] presented exact solutions for some
modest streams of this model. Magyari and Keller
[15] described a similar solution to the fluid on an
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exponentially stretched sheet under power law
boundary conditions and also discussed the effects of
heat and mass transfer. Mompean and Deville [16] stud-
ied three-dimensional (3D) planar contraction of the
unsteady Oldroyd-B coquette flow. Chen et al [17] dis-
cussed the case of unsteady state and unidirectional flow
of an Oldroyd-B fluid in a circular duct, where fluid
motion in the duct is influenced by the arbitrary inlet
volume flow rate with time variation. Sajid et al [18]
inspected the 2D Oldroyd-B fluid over a stretching sheet.
Chen [19] derived a thin liquid film non-Newtonian
fluid model with convective heat transfer characteristics
along with viscid dissipation, and discussed velocity and
temperature distribution for the free surface and for the
wall as well. Qi and Jin [20] studied the unsteady heli-
cal flow of a generalised Oldroyd-B fluid between two
infinite coaxial cylinders and within an infinite cylin-
der using a fractional calculus approach. Furthermore,
Hailtao and Mingyu [21] provided analytical solutions
to the unsteady unidirectional generalised Oldroyd-B
fluid with a fractional derivative between two paral-
lel plates. The literature on rheological fluids with and
without manifestation of a magnetic field and convec-
tive heating has appeared to be advantageous in various
technological and manufacturing procedures. Sajid et al
[22] studied the steady mixed convective incompress-
ible Oldroyd-B fluid with a constant magnetic field but
with a variable temperature, which varies with distance.
Zheng et al [23] presented the magnetohydrodynamics
(MHD) flow of an incompressible generalised Oldroyd-
B fluid induced by an accelerating plate, in which the
no-slip assumption between the wall and the fluid is no
longer valid and used fractional derivative for computa-
tions. Shehzad et al [24] described the thermophoretic
MHD flow of the viscous fluid over an inclined sur-
face with thermal radiation and heat generation. Nadeem
et al [25] investigated numerical behaviour of the flow
stream and the heat transmission of a rate-type fluid con-
taining nanoparticles. Kuzentsov and Nield [26] studied
natural convection of the nanofluid under the influ-
ence of Brownian motion and thermophoretic effects.
Sheikholeslami et al [27] used a homogeneous model
for simulation of H2O single bond CuO nanofluid to
eliminate the pressure gradient source terms and vortic-
ity stream function. They also examined the effects of
nanoparticles and Rayleigh number on flow character-
istics. Sheikholeslami and Zeeshan [28] scrutinised the
mesoscopic imitation of the nanofluid in porous medium
with heat source. Sheikholeslami and Shamlooei [29]
used Fe3O4 − H2O to explore the natural convection of
radiative nanofluid. Bhatti and Rashidi [30] studied the
influence of thermophoresis in combination with a radia-
tive Williamson nanofluid. Some recent related studies
on convection may be seen in [31–45].

All the previous studies have focussed on normal flow
past a stretching sheet with various physical effects.
The present model is novel and significant when com-
pared with the previous studies as it examines an oblique
stream of Oldroyd-B fluid past a stretching sheet under
convective conditions. To the best of our knowledge,
the oblique flow of an Oldroyd-B-type fluid over a
convective surface has never been addressed before. The
outcome of this study can be considered as a benchmark
for certain industrial applications.

2. Mathematical modelling and assumptions

The constitutive equations of an Oldroyd-B fluid are as
follows [45]:

T = −pI + S, (1)

where T is the Cauchy stress tensor, p is the pressure
term, I is the identity, S is the extra stress tensor, defined
by

S + λ1

(
DS

Dt
− LS − SLT

)

= μ

(
A1 + λ2

(
DA1

Dt
− L A1 − A1L

T
))

, (2)

where μ is the dynamic viscosity, λ1 is the ratio of relax-
ation to retardation times, λ2 is the retardation time,
D/Dt is the material derivative defined by(

D

Dt

)
=

(
∂

∂t

)
+ V · ∇. (3)

A1 is the first Rivilin Ericksen tensor defined by

A1 = ∇V + (∇V )t = L + LT. (4)

For the present problem under consideration, a steady
2D incompressible Oldroyd-B fluid flowing on the
stretching sheet is taken after assuming that the fluid
meets the wall at an oblique manner. The surface is
assumed to be convective due to the presence of a hot
fluid beneath the surface. To maintain balance, the wall
is stretched by keeping the original static equilibrium
balanced force imposed on the x-direction (see figure 1).
The basic equations of continuity, x and y momen-
tum equations along with an energy equation for this
Oldroyd-B model are as follows [3,44]:

∂u

∂x
+ ∂v

∂y
= 0, (5)

u
∂u

∂x
+ v

∂u

∂y
+ 1

ρ

∂p

∂x

+ λ1

(
u2 ∂2u

∂x2 + v2 ∂2u

∂y2 + 2uv
∂2u

∂x∂y

)
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Figure 1. Physical representation of the fluid model.

= ν

[
∂2u

∂x2 + ∂2u

∂y2 + λ2

(
u
∂3u

∂x3 + u
∂3u

∂x∂y2 + v
∂3u

∂y3

+ v
∂3u

∂y∂x2 − ∂u

∂x

∂2u

∂x2 − ∂u

∂x

∂2u

∂y2

−∂u

∂y

∂2v

∂x2 − ∂u

∂y

∂2v

∂y2

)]
, (6)

u
∂v

∂x
+ v

∂v

∂y
+ 1

ρ

∂p

∂y

+ λ1

(
u2 ∂2v

∂x2 + v2 ∂2v

∂y2 + 2uv
∂2v

∂x∂y

)

= ν

[
∂2v

∂x2 + ∂2v

∂y2 + λ2

(
u

∂3v

∂x3 + u
∂3v

∂x∂y2 + v
∂3v

∂y3

+ v
∂3v

∂y∂x2 − ∂v

∂x

∂2u

∂x2 − ∂v

∂x

∂2u

∂y2

− ∂v

∂y

∂2v

∂x2 − ∂y

∂ x̄2

∂2v

∂y2

)]
, (7)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2 + ∂2T

∂y2

)
. (8)

Following Tooke and Blyth [3]

u = kx, v = 0,

−k1
∂T

∂y
= h

(
T f − T

)
at y = 0,

u = kx + ζ y,

T = T∞ at y → ∞.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9)

Here u is considered to be the x-component and v is
considered to be the y-component of velocity, ν is the
effective kinematic viscosity, p is the pressure, ρ is the
density,T is the temperature,λ1 andλ2 are the relaxation
and retardation times, k1 is the thermal conductivity,
α is the thermal diffusivity, T∞ is the ambient fluid

temperature and k is the strength of the irrotational
straining flow. The wall is taken to be parallel to the x-
axis and the fluid is considered within the region y > 0.
Define stream function ψ(x, y) along with velocity [3]:

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (10)

Away from the wall, the flow is given by [3]

ψ(x, y) = kxy + 1

2
ζ y2, (11)

where k is the strength of an irrotational straining flow
and ζ is the vorticity of a rotating shear flow in the x-
direction.

Using eq. (10), eq. (5) is identically satisfied and the
set of eqs (6)–(9) takes the form:

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2 + 1

ρ

∂p

∂x

+λ1

((
∂ψ

∂y

)2
∂3ψ

∂x2∂y
+

(
∂ψ

∂x

)2
∂3ψ

∂y3

−2
∂ψ

∂y

∂ψ

∂x

∂3ψ

∂x∂y2

)

= ν

[
∂3ψ

∂x2∂y
+ ∂3ψ

∂y3

+λ2

(
∂ψ

∂y

∂4ψ

∂x3∂y
+ ∂ψ

∂y

∂4ψ

∂x2∂y2

−∂ψ

∂x

∂4ψ

∂y3 − ∂ψ

∂x

∂4ψ

∂y4 − ∂2ψ

∂x∂y

∂3ψ

∂x2∂y

− ∂2ψ

∂x∂y

∂3ψ

∂y3 − ∂2ψ

∂y2

∂3ψ

∂x2∂y
+ ∂2ψ

∂y2

∂3ψ

∂y2∂x

)]
,

(12)

∂ψ

∂y

∂2ψ

∂x2 + ∂ψ

∂x

∂2ψ

∂x∂y
+ 1

ρ

∂p

∂y
+ λ1(

−
(

∂ψ

∂y

)2
∂3ψ

∂x3 −
(

∂ψ

∂x

)2

× ∂3ψ

∂x∂y2 + 2
∂ψ

∂y

∂ψ

∂x

∂3ψ

∂y∂x2

)

= ν

[
−∂3ψ

∂x3 − ∂3ψ

∂x∂y2

+λ2

(
−∂ψ

∂y

∂4ψ

∂x4 − ∂ψ

∂y

∂4ψ

∂x2∂y2

+∂ψ

∂x

∂4ψ

∂x3∂y
+ ∂ψ

∂x

∂4ψ

∂x∂y3

+∂2ψ

∂x2

∂3ψ

∂x2∂y
+ ∂2ψ

∂x2

∂3ψ

∂y3
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−∂3ψ

∂x3

∂2ψ

∂x∂y
− ∂2ψ

∂x∂y

∂3ψ

∂x∂y2

)]
, (13)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= α

(
∂2T

∂x2 + ∂2T

∂y2

)
. (14)

The consistent boundary conditions are taken as follows:

∂ψ

∂y
= kx, − ∂ψ

∂x
= 0,

− k1
∂T

∂y
= h

(
T f − T

)
at y = 0, (15)

∂ψ

∂y
= kx + ζ y,

∂ψ

∂x
= 0,

T = T∞ as y → ∞. (16)

Now by removing the pressure term and by using pxy =
pyx , we obtain the following set of equations:

∂ψ

∂y

(
∂3ψ

∂x∂y2 + ∂3ψ

∂x3

)

−∂ψ

∂x

(
∂3ψ

∂y∂x2 + ∂3ψ

∂y3

)
+ λ1

[
2

∂3ψ

∂x2∂y

(
∂ψ

∂y

∂2ψ

∂y2

−∂ψ

∂x

∂2ψ

∂x∂y
− ∂ψ

∂y

∂2ψ

∂x2

)

+2
∂2ψ

∂x∂y

(
∂ψ

∂x

∂3ψ

∂y3 + ∂ψ

∂y

∂3ψ

∂x3

)

+2
∂3ψ

∂x∂y2

(
−∂2ψ

∂y2

∂ψ

∂x
+ ∂ψ

∂x

∂2ψ

∂x2 − ∂ψ

∂y

∂2ψ

∂x∂y

)

+ ∂4ψ

∂x2∂y2

((
∂ψ

∂y

)2

+
(

∂ψ

∂x

)2
)

+
(

∂ψ

∂x

)2
∂4ψ

∂y4 − 2
∂ψ

∂x

∂ψ

∂y

∂4ψ

∂x∂y3

+
(

∂ψ

∂y

)2
∂4ψ

∂x4 −2
∂ψ

∂x

∂ψ

∂y

∂4ψ

∂y∂x3

]

−ν

[
∇4ψ + λ2

(
−2

∂2ψ

∂x∂y
∇4ψ + ∂2ψ

∂y2

(
∂4ψ

∂y∂x3

+2
∂4ψ

∂x∂y3 − ∂4ψ

∂x2∂y2

)

+∂ψ

∂y

(
∂5ψ

∂y2∂x3 + ∂5ψ

∂x∂y4 + ∂5ψ

∂x5
+ ∂5ψ

∂x3∂y2

)

+∂ψ

∂x

(
− ∂5ψ

∂y2∂x3 − ∂5ψ

∂y∂x4 − ∂5ψ

∂y5
− ∂5ψ

∂y3∂x2

)

−2
∂2ψ

∂x2

(
∂4ψ

∂y∂x3 + ∂4ψ

∂x∂y3

)

−∂3ψ

∂y3

(
∂3ψ

∂x3 + ∂3ψ

∂y∂x2

))]
= 0, (17)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= α

(
∂2T

∂x2 + ∂2T

∂y2

)
. (18)

Along with the boundary conditions

∂ψ

∂y
= kx, −∂ψ

∂x
= 0,

−k1
∂T

∂y
= h

(
T f − T

)
,

⎫⎪⎬
⎪⎭ at y = 0, (19)

∂ψ

∂y
= kx + ζ y,

∂ψ

∂x
= 0, T = T∞,

⎫⎪⎬
⎪⎭ at y = ∞. (20)

Adjacent to the wall, let us pursue a solution in general
form, by redefining the stream function as [3]

ψ =√
υkx f (η)+ζ

(υ

k

) ∫ η

0
g(t)dt, θ = T − T∞

T f − T∞
,

(21)

where η = √
(k/ν)y.

Using eq. (21) in (17)–(20) and integrating the resul-
tant equation one time for simplification, we obtain

f ′′′ + f f ′′ − ( f ′)2 + β1(2 f f ′ f ′′ − f 2 f ′′′)
+β2( f

′′2 − f f ′′′′) + B1 = 0, (22)

g′′−g f ′ + f g′ + β1
(
2 f g f ′′ − f 2g′′)

+β2( f
′′g′ + f ′′g′ − f ′g′′ − f g′′′) + B2 = 0,

(23)

θ ′′ + Pr f θ ′ = 0, (24)

and boundary conditions (19) and (20) take the follow-
ing forms:

f = 0, f ′ = 0,

g = 0, g′ = 0,

θ ′ = − Bi(1 − θ(0)) ,

⎫⎬
⎭ at η = 0, (25)

f ′ = 1, g′ = 1,

θ = 0,

}
at η → ∞. (26)

Steadiness with free stream flow implies approximately
[3]

f (η) = η − α, g(η) = η − β as η → ∞,

where α and β are constants, β1 = λ1a and β2 = λ2a
are the Deborah numbers, Pr = (ν/α) is the Prandtl
number, Bi = −(h/k1)

√
ν/k is the Biot number.

Applying boundary conditions (26) at infinity in eqs (22)
and (23), we obtain
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B1 = 1, B2 = − (α − β) , (27)

where α and β are constants.
Using eq. (27) in eqs (22) and (23) give

f ′′′ + f f ′′ − ( f ′)2 + β1(2 f f ′ f ′′ − f 2 f ′′′)
+β2( f

′′2 − f f ′′′′) + 1 = 0, (28)

g′′ − f ′g + f g′ + β1(2 f g f ′′ − f 2g′′)
+β2( f

′′′g+ f ′′g′− f ′g′′− f g′′′) − (α − β) = 0,

(29)

θ ′′ + Pr f θ ′ = 0. (30)

Along with the boundary conditions

f (0) = 0, f ′(0) = 1, g(0) = 0,

θ ′(0) = −Bi(1 − θ (0)) , (31)

f ′(∞) = a

k
, g′(∞) = 1, θ(∞) = 0. (32)

In the above relations, prime signifies derivatives with
respect to η.

3. Concerned physical magnitudes

The practical physical quantity of interest is the heat
transfer rate at the convective surface, which is defined
as

zw = −k

(
∂T

∂y

)
at y = 0. (33)

In the non-dimensional form

zw = −θ ′(0). (34)

4. Numerical computation

The governed model of eqs (28)–(30) and relevant
boundary conditions (31) and (32) are nonlinear in
nature. So, it must be tackled with some computational
strategy. This governed model is first converted into a
scheme of nonlinear ordinary differential equations of
order one. With the aid of a computational technique
for solving an initial value problem, known to be the
Runge–Kutta method of order five, along with a shoot-
ing technique, a concerned system is solved as follows.

Define the following new scheme in eqs (28)–(32):

⎛
⎜⎜⎜⎝

f = y1
f ′ = y′

1 = y2
f ′′ = y′

2 = y3
f ′′′ = y′

3 = y4
f ′′′′ = y′

4 = y5

⎞
⎟⎟⎟⎠

⎛
⎜⎝
g = y6
g′ = y′

6 = y7
g′′ = y′

7 = y8
g′′′ = y′

8 = y9

⎞
⎟⎠

⎛
⎝ θ = y10

θ ′ = y′
10 = y11

θ ′′ = y′
11 = y12

⎞
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (35)

We obtain the following system of the initial value
problem:

y1y
′
4 = 1

β2

[
y4 + y1y3 − y2

2

+β1
{
2y1y2y3 − y4y

2
1

} + 1
] + y2

3 , (36)

y1y
′
8 = 1

β2
[y8 + y1y7 − y2y6 + β1

{
2y1y3y6−y8y

2
1

}
−(α − β)] + y4y6 + y3y7 − y2y8, (37)

y′
11 = − Pr y1y11, (38)

y1(0) = 0, y3(0) = 0,

y4(0) = α1, y6(0) = 0,

y8(0) = α2, y8(0) = α3,

y11(0) = α4,

⎫⎪⎬
⎪⎭ (39)

where α1, α2, α3 and α4 are shooting constraints. A suit-
able tolerance level of 10−5 is taken in all computations.

5. Theoretical discussion

Extensive computations have been conducted using the
shooting quadrature technique in this section. The veloc-
ity, temperature and surface heat flux of the fluid for all
governed parameters are explored through figures 2–15.
Figures 2 and 3 exhibit the behaviour of a normal com-
ponent of velocity for Deborah numbers β1 and β2. We
observe that with an increase in Deborah number β1,

normal velocity f ′(η) and momentum boundary layer
thickness increases while it decreases with an increase
in Deborah number β2.

Figures 4 and 5 are plotted to inspect the tangential
velocity g′(η) against Deborah numbers β1 and β2. An
enhancement in Deborah numbers β1 and β2 depicts that
velocity g′(η) accelerates close to the wall but reverses
its behaviour away from the wall. Deborah numbers
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Figure 2. Normal velocity f ′(η) for β1 = 0.1, 0.5, 1.0 and
1.5.
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Figure 3. Normal velocity f ′(η) for β2 = 0.1, 0.5, 1.0 and
2.0.
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Figure 4. Shear velocity g′(η) for β1 = 0.1, 0.5, 1.0 and 1.5.
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certain rheological fluids which reflect the time taken
by materials to regulate against applied stresses com-
prising elastic as well as viscous properties of the
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Figure 5. Shear velocity g′(η) for β2 = 0.1, 0.5, 1.0 and
2.0.
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Figure 6. Temperature θ(η) for β1 = 0.1, 0.5, 1.0 and 1.5.
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Figure 7. Temperature θ(η) for β2 = 0.1, 0.5, 1.0 and 2.0.

material. At small Deborah numbers, materials exhibit a
fluid-like response, gradually changing the trend to
solid-like response with larger Deborah numbers.
Smaller Deborah number fluids neglect elastic
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Figure 8. Temperature θ(η) for Pr = 0.5, 1.0, 2.5 and 5.0.
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Figure 9. Temperature θ(η) for Bi = 0.1, 0.5, 2.5 and 5.0.
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Figure 10. θ ′(0) against Deborah number β1 for
β2 = 0.1, 0.15 and 0.2.

properties, which result in acceleration of normal
velocity while generating tangential momentum. Higher
Deborah number means greater relaxation time which
leads to the deceleration of normal velocity.
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Figure 11. θ ′(0) against Deborah number β2 for β1 = 0.2,
0.5 and 0.8.
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Figure 12. θ ′(0) against Biot number Bi when Pr = 1.0,
3.0 and 5.0.

Figures 6–9 are plotted to explore the temperature
profile θ(η) against emerging physical parameters such
as Deborah numbers β1 and β2, Biot number Bi and
Prandtl number Pr. From figure 6, we find that the
temperature of the fluid and thermal boundary layer
tend to decline for Deborah number β1, but for Deb-
orah number β2, temperature and thermal boundary
layer thickness increase as shown in figure 7. It can
be observed from figure 8 that for Prandtl number Pr,
temperature θ(η) and thermal boundary layer thick-
ness of fluid diminishes. The physical justification
for this response is that smaller Prandtl number flu-
ids are more conductive compared to higher Prandtl
number fluids and so with increasing Prandtl number
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Figure 14. Shear flow component g(η) for β = 5.0, α,
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thermal diffusion decreases which enhances the
momentum diffusion, thus leading to the acceleration
of the flow from the wall.

Figure 9 shows that the temperature and the
corresponding thermal boundary layer increase with an
increase in Biot number Bi. Biot number is directly
related to heat transfer coefficient, whereas it is inversely
related to thermal conductivity. That is, larger Biot num-
ber indicates low thermal conductivity.

Figures 10–13 are plotted to inspect local heat
transfer coefficient θ ′(0) against various parameters
such as Deborah numbers β1 and β2, Biot number Bi
and Prandtl number Pr. Figure 10 shows that heat flux
at the wall θ ′(0) increases significantly with an increase

Figure 15. Stream lines pattern for Deborah numbers
β1 = 4.0, with k/ζ = 1/6.

in Deborah number β1 while from figure 11 it is quite
evident that local heat flux drops with Deborah number
β2. Figures 12 and 13 reveal that heat flux at the wall
decreases significantly with an increase in Biot number
Bi and Prandtl number Pr. This follows from the fact
that with larger Biot number, the ability of the fluid to
conduct heat reduces significantly which causes a decel-
eration in the heat transfer rate at the convective sheet.

Figure 14 is plotted to express the shear flow com-
ponent g(η). It is quite clear from this figure that for
different values of constant β, there is a distinct region
of reversed flow corresponding to negative values of g.
Figure 15 is plotted to explore the flow pattern with
Deborah number β1 for obliqueness (k/ζ ) = 1/6. The
stream contour ψ = 0 touches the partition η = 0 at
abscissa ξ = √

(k/v)x . It is quite evident from this fig-
ure that the streamline patterns of the Oldroyd-B fluid
are negatively skewed with a positive contribution of the
Deborah number β1.

6. Concluding remarks

The present numerical study is conducted to explore
the 2D oblique stream of an Oldroyd-B-type fluid
over a stretching sheet. Thermal effects on the sheet
are incorporated under convective boundary
conditions.

Major results of this study can be summarised as
follows: normal velocity profile f ′(η) increases with
Deborah number β1. An increment in Deborah number
β1 shrinks momentum boundary layer thickness while
it augments the thermal boundary layer thickness. Tan-
gential velocity g′(η) surges up close to the wall while
reverses its behaviour far away from the wall with Deb-
orah number β1. Heat flux at the convective surface
is decelerated with all associated parameters namely
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Deborah numbers β1 and β2. The physical boundary
layer displacement constant β generates a distinct region
of reversed flow corresponding to the negative values of
shear flow component g. Streamline patterns are nega-
tively skewed with positive contribution of the Deborah
number β1.
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