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Abstract

The boreal summer intra-seasonal oscillation (BSISO) is the predominant sub-seasonal variability over the East 
Asia (EA) and western North Pacific (WNP) region and critical for seasonal forecast of the EA summer mon-
soon. This study examines the theoretically estimated predictability and practical prediction skill of the EAWNP 
BSISO in the Beijing Climate Center Climate System Model version 2 (BCC_CSM2.0), which is one of the par-
ticipants in the Sub-seasonal to Seasonal Prediction Project. The results from the uninitialized free run of BCC_
CSM2.0 show that the model reasonably simulates EAWNP BSISO in terms of its variance, propagation, and 
structure. Measured by the bivariate correlation (> 0.5) and root mean square error (< 2) between the predicted 
and observed real-time BSISO index, the prediction skill and predictability of EAWNP BSISO are about 14 and 
24 – 28 days, respectively. The initial/target strong BSISO cases have a relatively higher prediction skill than the 
initial/target weak BSISO cases. For the theoretically estimated BSISO predictability, a similar dependence on 
target amplitude occurs in the model, while no significant dependency on initial amplitude is found. Moreover, 
diagnosis of the phase dependence reveals that BSISO is less skillful for the prediction starting from active or 
active-to-break transition phases of WNP rainfall, whereas it is more predictable when prediction is targeting 
extreme dry/wet phases of WNP rainfall. Finally, systematic errors are found in BCC_CSM2.0 such as the under-
estimation of BSISO amplitude and the faster phase speed.
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1.  Introduction

The boreal summer intra-seasonal oscillation 
(BSISO) is a leading mode of the East Asia and west-
ern North Pacific (EAWNP) summer monsoon system. 
Unlike its boreal wintertime counterpart, the Madden–
Julian Oscillation (MJO; Madden and Julian 1972) 
that is featured by equatorial eastward propagation, 
BSISO over EAWNP exhibits significant northward/
northeastward propagation with a periodicity of 
10 – 90 days (Lau et al. 1988; Hsu and Weng 2001). 
It significantly modulates the wet and dry spells of 
the EAWNP summer monsoon and has a great impact 
on the evolution of Meiyu-baiu frontal systems, the 
advance/retreat of the WNP subtropical high, and the 
genesis/intensification of tropical cyclones (Chen et al. 
2009; Mao et al. 2010; Hsu et al. 2016). Hence, the 
skillful prediction of BSISO can fill the gap between 
the synoptic and seasonal prediction and gain an in-
sight into the sources and errors of extended-range 
forecast over the East Asian region. Motivated by this 
understanding, BSISO simulation and forecast using 
dynamical models has received increasing attention, 
with the aim of reducing social and economic losses 
(Brunet et al. 2010).

However, the current modeling and forecasting  
capability for the space–time characteristics of BSISO 
remain limited (Lin J.-L. et al. 2008; Sperber and 
Annamalai 2008; Joseph et al. 2010; Sabeerali et al. 
2013; Fang et al. 2017a, b). Past multi-model assess-
ments of the model performance of BSISO indicated 
that general circulation models have difficulty in 
capturing the salient features of BSISO by typically 
exhibiting weak northward propagation or a standing 
oscillation. The BSISO forecast is even more chal-
lenging because prediction on this time scale shows 
sensitivity to both the atmospheric/ocean initial con-
ditions and the lower boundary conditions. In recent 
years, sub-seasonal forecast using dynamical forecast 
models has become an intensive research topic and 
has been documented in several studies (Waliser et al. 
2003; Liess et al. 2005; Vitart and Molteni 2009; Fu 
et al. 2013; Kang et al. 2014; Lee et al. 2015). Most 
of these studies found that useful skills of BSISO 
up to 10 – 20 days of forecast lead time have been 
achieved for most models. However, the forecast skill 
of BSISO is still far lower than its theoretically esti-

mated predictability, which is 25 – 40 days or beyond 
(Ding et al. 2011). Therefore, to further improve the 
BSISO prediction skills, it is crucial to systematically 
evaluate present-day dynamical BSISO prediction  
capabilities and to gain an insight into the weaknesses 
of dynamical prediction systems.

Similar to the winter MJO (Madden and Julian 
1972), the prediction skill of BSISO depends on its 
initial amplitude, with higher skill occurring for fore-
casts initialized from larger amplitude (Seo et al. 2005; 
Fu et al. 2009; Abhilash et al. 2014). The predictabil-
ity and prediction skill of BSISO were also found to 
show a strong dependence on its phase. Goswami and 
Xavier (2003) examined the predictability of rainfall 
associated with BSISO over the Indian region based 
on observational data. They found that the skills for 
the active and break monsoon phases are about 10 and 
20 days, respectively, which suggests that the break-
to-active transition phase is less predictable than the 
other phases, known as the “monsoon prediction  
barrier”. Recently, Lee et al. (2015) assessed the  
potential predictability and prediction skill of BSISO 
over the Indian monsoon region using six coupled 
models in the Intra-seasonal Variability Hindcast 
Experiment (ISVHE) project. They found that while 
the predictability and prediction skill of BSISO are 
dependent on the initial phase and month, the degree 
of dependence varies by model. Some studies found 
that the multi-model ensemble approach and inclusion 
of air–sea coupling can extend the BSISO predictabil-
ity by 2 – 7 days (Fu et al. 2007, 2013; Lee and Wang 
2016).

While most of the previous work mentioned above 
focuses on BSISO over the Indian region, BSISO pre-
dictability and prediction skill over the EAWNP region 
are less well known. Recently, Lin (2013) and Lee 
and Wang (2016) developed a BSISO index based on 
the first two combined empirical orthogonal function 
(CEOF) modes of outgoing longwave radiation (OLR) 
and 850-hPa zonal wind (U850) over the EAWNP 
region. Similar to the Wheeler–Hendon MJO index 
(Wheeler and Hendon 2004), by using this index, we 
can isolate the BSISO signal from the forecast and 
observational data without applying a temporal filter. 
This method, therefore, is viable for real-time EAWNP 
BSISO monitoring and prediction. Lee and Wang 
(2016) also applied this approach to hindcast datasets 
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from the ISVHE project to evaluate the forecast skill 
of EAWNP BSISO. The results indicate that EAWNP 
BSISO is less predictable than BSISO over the Indian 
or the entire Asian monsoon region. The multi-model 
mean of the BSISO predictability and prediction skill 
over EAWNP is about 33 – 37 and 8 – 10 days, whereas 
those over the Asian or the Indian monsoon region can 
reach up to 40 – 45 and 9 – 17 days, respectively.

In this study, this approach will be applied to a set 
of hindcast experiments conducted by the Beijing  
Climate Center Climate System Model version 2.0 
(BCC_CSM2.0). BCC_CSM2.0 is one of the partic-
ipants in phase 5 of the Coupled Model Intercom-
parison Project (CMIP5) and the Sub-seasonal to 
Seasonal (S2S) Prediction Project. Some studies have 
reported the basic performance in MJO simulation and 
prediction for the BCC_CSM2.0 model (Zhao et al. 
2015; Liu et al. 2017). They found that the models 
can capture salient characteristics of MJO in terms of 
its intensity, periodicity, propagation, and structure, 
although the MJO intensity is underestimated and 
the power of westward propagation is overestimated. 
Meanwhile, analysis based on hindcast data from S2S 
indicated that BCC_CSM2.0 shows useful MJO pre-
diction skill up to 21 – 22 days, which is comparable 
to the performance of several operational S2S models. 
However, up to now, its BSISO predictability and 
prediction skill over the EAWNP region have not been 
examined, which served as the primary motivation for 
the present study.

The rest of this article is organized as follows. Sec-
tion 2 introduces the model, reanalysis data, and the 
BSISO characteristics in free simulations. Section 3 
shows details of the hindcast and verification method. 
The BSISO predictability and forecast skill over the 
EAWNP region are discussed in Section 4, and the re-
sults are summarized in Section 5.

2.  Model, dataset, and EAWNP BSISO simulation

2.1  Model
The model used in the present study is the BCC_

CSM2.0 one developed at the Beijing Climate Center 
(BCC), China Meteorological Administration, which 
consists of fully coupled components of the atmo-
sphere, ocean, ice, and land. The atmospheric com-
ponent in BCC_CSM2.0 is the BCC Atmospheric 
General Model version 2.1 (BCC_AGCM2.1) with a 
T106 horizontal resolution and 26 hybrid sigma/pres-
sure layers in the vertical direction (Wu et al. 2010). 
Based on the Community Atmosphere Model version 
3 at the National Center for Atmospheric Research, 
BCC_AGCM2.1 is developed by incorporating many 

modifications to the dynamical framework and model 
physics parameterizations such as deep cumulus con-
vection, adiabatic adjustment, snow cover, and sea 
surface heat flux (Wu et al. 2008; Wu 2012). The oce-
anic component is the Geophysical Fluid Dynamics 
Laboratory (GFDL) Modular Ocean Model version 4 
(MOM4_L40) with 40 levels in the vertical direction 
and a horizontal resolution of 1° × 1° poleward of 
30°S – 30°N gradually descending to 0.33° between 
30°N and 30°S. The sea ice component is the GFDL 
Sea Ice Simulator (SIS), and the land model is the 
BCC Atmosphere and Vegetation Interaction Model 
version 1.0 (BCC_AVIM1.0) (Ji 1995). The model 
components are coupled without any flux correction. 
BCC_CSM2.0 has been used for short-term climate 
prediction in BCC, and the performance is reliable (Liu 
et al. 2014, 2015).

2.2  Dataset
In this study, the zonal and meridional winds at 850 

hPa from the NCEP–NCAR reanalysis and the OLR 
from the National Oceanic and Atmospheric Admin-
istration (NOAA) (Liebmann and Smith 1996) for 
the period of 2000 – 2013 are utilized to calculate the 
aspects of BSISO and climatological features over the 
EAWNP region for the model validation. The observa-
tional precipitation and sea surface temperature (SST) 
data (2000 – 2013) used in this study are the Tropical 
Rainfall Measuring Mission (TRMM; Huffman et al. 
2007) 3B42 rainfall dataset version 7 with 0.25° 
× 0.25° spatial resolutions and daily SST from the 
NOAA optimum interpolation SST (OISST) version 2 
(Reynolds et al. 2007), respectively.

2.3  Free simulation of EAWNP BSISO
Realistic BSISO simulation provides a solid foun-

dation for effective BSISO prediction. Therefore, 
to reveal the fidelity of BCC_CSM2.0 in simulating 
EAWNP BSISO, a free integration was performed 
over a 20-year period with the same greenhouse-gas 
external forcing as that in the CMIP5 historical simu-
lation before conducting the hindcast experiment. The 
data from the last 16 years of the free run described 
are used to represent the climatological and intra-sea-
sonal variability behavior in the model. To extract the 
BSISO component, a 20 – 70-day band-pass filter is 
applied to both the model simulation and observation 
data.

A realistic background state in the model is of 
crucial importance to the model’s representation of 
BSISO features. Figure 1, therefore, firstly presents 
the simulated and observed mean OLR and 850-hPa 
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wind field during May–September over the EAWNP 
region. BCC_CSM2.0 can reasonably simulate the 
cyclonic low-level circulation, which is related to 
the South China Sea monsoon trough. The expansive 
anti-cyclonic circulation over the WNP region as-
sociated with the WNP subtropical high is also well 
reproduced (Fig. 1b). The model captures the band of 
low OLR extending from WNP westward across the 
South China Sea and the Indo-China Peninsula, which 
corresponds to the WNP summer monsoon, but OLR 
is slightly overestimated over the eastern part of the 
Bay of Bengal (Fig. 1b).

Figure 2 shows the simulated and observed May–
September mean precipitation and SST over the 
EAWNP region. The SST climatology in the model 

is comparable to the observations, especially over 
the warm pool region south of 20°N, where both the 
observed and modeled SST exceed 28°C (Fig. 2a). 
The spatial pattern correlation coefficient between 
the simulation and the observation is 0.92. However, 
the model tends to underestimate SST over the WNP 
region with a bias as large as approximately 1°C (Fig. 
2b). This cold bias is common in CMIP5 models (Song 
and Zhou 2014). Moreover, the model captures the 
gross pattern of mean precipitation, but dry biases 
are found over the East Asian region, and wet biases 
appear over most of the WNP region.

The geographic distribution of simulated and ob-
served BSISO intensity over the EAWNP region is 
shown in Fig. 3. The BSISO intensity is represented  

Fig. 1.  May–September mean OLR (shaded; units: W m−2) and 850-hPa wind vectors (units: m s−1) from (a) obser-
vations (NOAA and NCEP–NCAR reanalysis) and (b) BCC_CSM2.0 simulation.

Fig. 2.  May–September mean SST (shaded; units: °C) and precipitation (contours; mm day−1) from (a) observations 
(TRMM and NOAA reanalysis) and (b) BCC_CSM2.0 simulation.
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by the variance of the 20 – 70-day filtered U850 
anomalies during May–September. In observations, 
the BSISO intensity exhibits maxima located over the 
Philippine Sea, the South China Sea, and the eastern  
Bay of Bengal. Another secondary maximum is also 
evident over the sea south of Japan (Fig. 3a). It is 
found that the model patterns of the variance look 
largely similar to observations despite some deficien-
cies in the magnitudes. The model overestimates the 
BSISO intensity over the Bay of Bengal and the South 
China Sea, while it underestimates it over the east 
Philippine Sea and the East Asian region (Fig. 3b). 
These biases are similar to those in BCC_AGCM2.1 
(Fang et al. 2017b), which is the atmospheric compo-
nent of BCC_CSM2.0.

The spatial structure of BSISO over EAWNP rep-
resented by the first two CEOF modes of the daily 
anomalies of 20 – 70-day filtered OLR and U850 
averaged between 90°E and 150°E is displayed in 
Fig. 4. For the observations, the first CEOF mode 
features enhanced convection centered near 15°N. To 
the north (south) of this convection center, easterly 
(westerly) anomalies prevail. As for the second CEOF 
mode, both convection and wind patterns are in close 
quadrature with CEOF1 (Figs. 4a, b). This leading 
pair of CEOFs jointly represents 60.5 % of the total 
variance, similar to the analysis of Lin (2013). The 
simulated first two leading modes explaining 42.2 % 
of the filtered variance show convection and low-level 
circulation patterns matching well with the observa-
tional counterpart, although the magnitude of both the 
OLR and U850 anomalies over the East Asian region 
is overestimated (Figs. 4c, d). The corresponding prin-

cipal components (PCs) are also in quadrature with 
PC1 leading PC2 by 9 and 11 days for the simulation 
and observation, respectively (figure not shown).

Given that northward propagation is a fundamental 
characteristic of EAWNP BSISO, Figure 5 depicts 
the lag correlation of 20 – 70-day filtered U850 and 
precipitation along 122 – 135°E with time series of 
the 20 – 70-day filtered precipitation anomalies aver-
aged over the Philippine Sea and the South China Sea 
(10 – 20°N, 110 – 130°E). The model well captures the 
observed northward propagation of BSISO-related 
U850 and precipitation anomalies from the equatorial 
western Pacific to East Asia. The phase relationship is 
also reasonably reproduced, with easterly (westerly) 
anomalies leading (lagging) the BSISO convection 
center by 3 – 5 days (Fig. 5). However, compared 
with the observations, the BSISO signals appear to be 
weaker over the equatorial western Pacific and stron-
ger over East Asia. It should also be noted that the 
phase speeds of BSISO in the model are slightly faster 
than the observations.

Figure 6 further presents the composite BSISO life 
cycle using precipitation and 850-hPa wind anomalies. 
Following Lin (2013) and Lee and Wang (2016), a 
BSISO event can be divided into eight phases accord-
ing to the phase map of PC1 and PC2 associated with 
the CEOF1 and CEOF2 modes of EAWNP BSISO. 
For each phase, only the days satisfying the follow-
ing two criteria are selected for the composite: (a) 
the BSISO phase angles are within the phase; (b) the 
BSISO amplitudes are greater than 1.5 (64 % of all  
summer days for the observation versus 60.7 % for 
the model). The observed BSISO cycle is featured 

Fig. 3.  May–September variance of intra-seasonal U850 (m s−1) from (a) NCEP–NCAR reanalysis and (b) BCC_
CSM2.0 simulation.
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by a northward (or northwestward) propagation of a  
southwest–northeast tilted convection band from the 
equatorial Pacific to East Asia. During the northward 
propagation process, enhanced (suppressed) convec-
tion takes place in the southern (northern) portions of 
zonally elongated anomalous cyclones (Fig. 6a). As 
mentioned in previous research (e.g., Hsu and Weng 

2001; Mao et al. 2010), such a circulation-convection 
pattern is consistent with the theoretically analytical 
solution for an off-equatorial heating source (Gill 
1980). BCC_CSM2.0 shows obvious northward pro
pagation of the intra-seasonal rain band in spite of 
regional differences in magnitude. The alternation of 
low-level cyclonic and anti-cyclonic anomalies occur-

Fig. 5.  Lag correlation of the 20 – 70-day filtered precipitation (shaded; mm day−1) and U850 (contour at 0.1 inter-
vals) along 122 – 135°E with respect to the filtered precipitation averaged over the South China Sea and the Philip-
pine Sea region (110 – 130°E, 10 – 22°N) during May–September for (a) TRMM and NCEP–NCAR reanalysis and 
(b) BCC_CSM2.0 simulation.

Fig. 4.  Latitudinal structure of the first two CEOF modes of OLR (solid lines) and U850 (dashed lines). Here, we 
used the NOAA OLR data and NCEP–NCAR analysis wind data (2000 – 2015). (c), (d) As in (a), (b), but for the 
model’s free coupled run (16 years). The variance explained by each mode is given at the top right of each panel.
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Fig. 6.  Phase composites of intra-seaonal 
precipitation (shaded; units: mm day−1) 
and 850-hPa wind anomalies (vectors; 
units: m s−1) for (a) observations (left col-
umn) and (b) BCC_CSM2.0 simulation 
(right column). The composite is made 
using days when the BSISO amplitude is 
larger than 1.5. The number of days used 
to generate the composite for each phase 
is shown to the lower right of each panel.
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ring over the WNP region is particularly well captured 
in the model. However, the rain band of the model 
is zonally oriented rather than tilted, and the BSISO 
signal over the Bay of Bengal is not properly simu-
lated as seen in phases 1, 7, and 8 (Fig. 6b). This may 
be associated with a weaker eastward-propagating 
MJO during the boreal summer, as revealed from the 
examination of MJO in four versions of BCC_CSM 
by Zhao et al. (2015). They also found that the east-
ward-propagating MJO signal shows a faster phase 
speed and is especially weaker when MJO propa-
gates into the Maritime Continent and the East Indian 
Ocean.

3.  Hindcast experiments and methodology

3.1  Hindcast experiments
The realistic BSISO simulation in BCC_CSM2.0 

seen above motivates us to further conduct prediction 
experiments. In the prediction system, the atmospher-
ic component is initialized by adopting a fast nudging 
technique that forces the model solution toward the 
analysis. The atmospheric fields, including winds, 
temperature, geopotential height, and surface pressure, 
obtained from the National Center for Environmental 
Prediction’s Final Operational Global Analysis data 
(NCEP FNL) are nudged for all vertical levels with 
a 450 s relaxation time scale. To reduce the coupling 
shock at the beginning of the forecast experiment, an 
initialization was also introduced for the underlying 
surface atmospheric state through a similar nudging 
scheme. The initialized variables include the sea level 
pressure, surface air temperature and wind, downward 
surface longwave and shortwave radiation from the 
NCEP FNL analysis, and precipitation rate from the 
BCC merged precipitation dataset with a 0.5° × 0.5° 
horizontal resolution at a 3-h time interval (Nie et al. 
2015). The ocean initialization uses data assimilation 
products made available by BCC Global Ocean Data 
Assimilation System version 2 (BCC_GODAS2.0; 
Zhou et al. 2016), which is based on MOM4_L40 
and a three-dimensional variational data assimilation 
system. Multiple sources of observational sea level 
anomalies and SST are real-time assimilated in BCC_
GODAS2.0. Details about the assimilation system 
and the associated data descriptions please refer Zhou 
et al. (2016).

Since the purpose of this study is to explore the 
BSISO prediction skill over the EAWNP region, hind-
cast runs were carried out on the 1st, 6th, 11th, 16th, 
21st, and 26th of each month during 2000 – 2013 from 
May to September. To reduce the uncertainties when 
initializing the prediction system, for each initial date, 

a daily four-member time-lagged ensemble was adopt-
ed with atmosphere initial conditions at 0000, 0600, 
1200, and 1800 UTC. Therefore, in total, we made 
420 (14 years × 5 months × 6 cases) forecast cases 
during the 14 years; each date has four members, so 
that we totally have 1680 sets of forecast integrations. 
For each run, the model was integrated for 60 days. 
More details of the hindcast experiment can be found 
in Liu et al. (2017).

3.2  Hindcast methodology
Following Lin (2013) and Lee and Wang (2016), 

the prediction skill of BSISO over the EAWNP region 
was examined by using the real-time BSISO indices. 
The EAWNP BSISO indices are the first two PC time 
series (PC1 and PC2) of the CEOF of the observa-
tional daily OLR and U850 anomalies averaged over 
90 – 150°E during May–September from 2000 to 
2013. Before the CEOF calculation, the slow annual 
cycle (the annual mean and the first three harmonics 
of climatological annual variation) and the interannual 
variability (time mean of the 120 days immediately 
preceding each day) are first removed. Following 
Neena et al. (2014) and Liu et al. (2017), the 14-year 
climatology fields of forecasted OLR and U850 as a 
function of both the starting date of hindcast and the 
lead day were first removed from the total fields to 
obtain the hindcast anomaly fields. Then, similar to 
the procedure for observations, the running mean of 
the preceding 120 days (the corresponding observa-
tional fields are appended before the forecast starting 
date) for each day was further removed to avoid the 
influence of interannual variability.

The real-time multivariate BSISO indices, which 
are the PC indices, are extracted by projecting the 
above observational and predicted field anomalies 
onto the two observational CEOF modes mentioned 
above. Then, both the hindcast and observed PCs are 
normalized by the standard deviation of the observed 
PCs. The amplitude is defined as (PC12 + PC22)1/2, 
while the phase angle is denoted as tan−1 (PC2/PC1). 
The initially strong and weak cases are classified 
based on the observed BSISO amplitude. A strong 
BSISO case is identified when its amplitude is larger 
than 1.5 (37 % of total observation cases) and a weak 
case for those equal to or less than 0.8 (41 % of total 
observation cases) during the boreal summer from 
2000 to 2013.

The prediction skill is assessed by calculating the 
bivariate anomaly correlation coefficient (ACC), the 
bivariate root mean square error (RMSE), and the 
phase angle error (PAE) (Lin H. et al. 2008; Lee et al. 
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Here, t, τ , and N are the initial condition time, fore-
cast lead/lag time in days, and the total number of 
forecasts, respectively; a1 ( t ) and a2 ( t ) are the ob-
served PC1 and PC2 at time t, and b1 (t, τ) and b2 (t, τ) 
are the corresponding forecasts at time t for lead/lag 
time τ . A common benchmark for useful prediction 
skill is the lead time when the bivariate ACC is larger 
than 0.5 and the bivariate RMSE is less than 2  for a 
climatological forecast (Rashid et al. 2011). PAE is 
calculated to examine the propagation speed error in 
predictions; a negative PAE indicates that the predict-
ed propagation is slower than the observation. Details 
about the assessment method are provided by Xiang 
et al. (2015).

4. � Predictability and prediction skill of BSISO 
over EAWNP

In this section, we lay emphasis on the overall pre-

dictability and prediction skill as well as their depen-
dence on the BSISO amplitude and phase. Similar to 
prediction skill, the predictability is also measured by 
calculating the bivariate ACC between each ensemble 
member (regarded as “truth” based on the assumption 
that the model is perfect) and the ensemble mean of 
the other three members (regarded as “perturbations”) 
and then averaging the ACC for all the ensemble sub-
samples. This indicates that the predictability is the 
upper limit of the prediction skill theoretically. Thus, 
the difference between the predictability and the pre-
diction skill will offer room for further improvement 
of the BSISO prediction by reducing the model error 
and improving initial conditions in the current predic-
tion system.

4.1  Overall prediction skill
In this section, the overall prediction skill is first 

investigated. Figure 7 gives the bivariate ACC and 
RMSE of the BSISO prediction over the EAWNP 
region for the ensemble mean and four individual 
ensemble members. The bivariate ACCs for both the 
single-member and four-member ensemble mean drop 
rapidly during the first 10 days, and then drop gradu-
ally on the following 10 – 40 days (Fig. 7a). Taking the 
ACC in excess of 0.5 as a criterion, the single-member  
prediction skill (dashed lines) is about 10 – 13 days. As 
expected, the ensemble mean ACC with the prediction 
skill of 14 days is superior to that from individual 
members. The skill is similar to the skill of BSISO 
over the Indian monsoon region in coupled models 
that participated in the ISVHE project (Lee et al. 
2015; Lee and Wang 2016). Similarly, the bivariate 
RMSE displays rapid growth during the first 10 days 
followed by a period of slower error growth (Fig. 7b). 

Fig. 7.  BSISO prediction skill over the EAWNP region. (a) Bivariate ACC and (b) RMSE for individual member 
(dotted lines) and four-member ensemble mean (solid line), and ensemble spread relative to the four-member en-
semble mean (dashed line) as a function of forecast lead days.
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The superiority of the ensemble mean is also promi-
nent, particularly for lead times beyond 10 days. Here-
after, in this study we mainly focus on analysis of the 
four-member ensemble mean results.

The ensemble spread defined by the standard devi-
ation of ensemble member hindcasts of PC1 and PC2 
relative to their corresponding ensemble mean is also 
examined (Fig. 7b). It is well known that the ensemble 
spread tends to equal the error of the ensemble mean 
in a perfect model forecast system (Kim et al. 2014). 
However, the ensemble spread shown in Fig. 7b is 
much smaller than the ensemble mean RMSE for all 
lead times. This indicates that the current prediction 
system is underdispersive, which needs to be over-
come to further improve the BSISO prediction skill.

4.2 � Dependency of predictability and prediction skill 
on BSISO amplitude

Previous studies have indicated that the prediction 
skill and predictability depend strongly on the initial 

or target BSISO/MJO amplitude (Fu et al. 2013; Wang 
et al. 2014). Figure 8a shows the prediction skill 
measured by bivariate ACC for forecasts initialized 
with weak and strong BSISO cases. The prediction 
skills for the initially strong cases are systematically 
higher than the initially weak cases from the first day 
of forecast, with a prediction skill up to 16 days for 
the strong cases versus 13 days for the weak cases. 
This result demonstrates the dependence of prediction  
skill on the initial amplitude, probably owing to the 
organized (disorganized) convection in the initial  
condition in the strong (weak) BSISO. As for the pre-
dictability, the potential skill is effective for lead times 
of about 24 – 28 days for all cases, initially strong 
cases, and weak BSISO cases, and the differences 
among them are small (Fig. 8b). While this implies 
that the predictability of BSISO does not depend on 
the initial amplitude, it indicates a skill gap of more 
than 10 days that could be overcome by improving the 
current prediction system.

Fig. 8.  (a) Prediction skill (bivariate ACC) and (b) predictability (bivariate ACC) in the boreal summer for all cases 
(black), initially strong (red), and weak (blue) cases as a function of forecast lead days. (c), (d) As in (a), (b), but 
for the forecasts targeting BSISOs as a function of forecast lag days. Four time series of bivariate ACC for differ-
ent cases are plotted in (b) and (d), which is calculated between each ensemble member selected as the truth and 
the ensemble mean of the other three members.
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The above results indicate that the model exhibits 
high prediction skill starting from an existent BSISO. 
To examine the predictability and prediction skill of 
BSISOs prior to their occurrence, Figs. 8c and 8d 
further show the bivariate ACC for forecasts targeting 
strong and weak BSISOs relative to forecast lag days. 
Here, day 0 denotes the occurring time for the target 
BSISO events, whereas a negative number represents 
the lag days before the BSISO occurrence. It is clear 
that both the predictability and prediction skill show 
stronger dependence on target BSISO amplitude, with 
much higher predictability and prediction skill for 
target strong cases than weak cases. The prediction 
skill is about 18 days for target strong cases and only 

about 6 days for target weak cases (Fig. 8c), while 
the predictability is about 30 – 33 and 14 – 18 days for 
target strong and weak cases, respectively (Fig. 8d). 
This suggests that a larger gap between the practical 
prediction skill and the potential predictability can be 
filled for the target strong cases.

4.3 � Dependency of predictability and prediction skill 
on BSISO phase

The phase dependence is another key feature of 
BSISO predictability and prediction skill. To analyze 
such dependence, Fig. 9 shows the prediction skill of 
BSISO as a function of lead/lag time and initial/target 
phase. For each phase, only cases with the initial/target  

Fig. 9.   Prediction skill (bivariate ACC) as a function of different initial phases (x axis) and forecast lead days (y 
axis) for (a) all cases and (b) initially strong cases. (c), (d) As in (a), (b), but for the skill as a function of target 
phase (x axis) and forecast lag days (y axis). The contour interval is 0.1.
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phase angle within a given phase are used. Here, each 
(strong) phase has about 50 (20) cases. It is shown 
that the differences in bivariate ACC among various 
initial phases become distinct beyond the lead time of 
about 10 days, characterized by high skill in phases 
4 – 7 with a peak for initial phase 5 and relatively low 
skill during initial phases 1 – 3 (Fig. 9a). The contrast 
is more appreciable for initially strong cases, with 
skill up to 25 days for hindcasts initialized at phase 5, 
but only about 9 days for phase 3 (Fig. 9b). This im-
plies that BSISO prediction is more skillful for initial 
convection in East Asia, the equatorial Pacific, and the 
Bay of Bengal, but skill is lower for prediction start-
ing from active or active-to-break transition phases of 
WNP rainfall (see Fig. 6).

With regard to the variation of prediction skill for 
the target phase (Figs. 9c, d), relatively higher skill 
occurs for the forecasts targeting BSISO in phases 
1 – 2 (about 17 days) and 5 – 6 (about 15 days), while 
a sharp decrease appears in phases 4 and 8 (about 11 
days) for the lag time after 10 days (Fig. 9c). Similar 
results are found for target strong cases with predic-
tion skill enhanced for most of the phases during the 
lag time of 10 – 20 days except for target phase 4. Note 
that the skill decrease in target phase 4 corresponds to 
the low skill for forecasts from initial phases 1 – 2, as 
shown in Fig. 9b. Phases 1 – 2 and 5 – 6 correspond to 
the extreme phases of WNP summer rainfall, and high 
skill in the forecasts targeting BSISOs in these phases 
is probably associated with the stronger observed 
BSISO amplitude over this region, as seen in Figs. 3 
and 6.

Figure 10 shows the predictability and differences 
between predictability and prediction skill in bivari-
ate ACC. The predictability of BSISO is significant-
ly lower in initial phases 2 – 3 than in other phases 
beyond the lead time of about 20 days (Fig. 10a). 
The results are more distinct for initial strong cases 
(Fig. 10b). This result is consistent with the phase 
dependence of prediction skill shown in Figs. 9a and 
9b, indicating that the model struggles to correctly 
forecast propagation of the rain band from WNP to the 
East Asian region. The differences between potential 
predictability and real prediction skill are apparent for 
all the initial phases, and show the largest values at 
initial phases 2 and 6 at lead times of 5 – 25 days and 
at phase 4 as the lead time increases beyond 25 days 
for the initially strong cases. As for the target phase, 
relatively low predictability is found for target phase 
3, similar to that for the initial phase (Fig. 10c). For 
the target strong cases (Fig. 10d), the predictability is 
significantly increased for all phases but with a higher 

predictability exceeding 35 days at target phase 3, 
which is opposite that for all cases as shown in Fig. 
10c. This indicates that the predictability of EAWNP 
BSISO is more dependent on its amplitude than its 
target BSISO phase. The difference between predict-
ability and prediction skill is notable for all targeting 
BSISO phases and is especially large at longer lag 
times at phases 3 – 4 and 6 – 7 for the target strong 
cases (Figs. 10c, d). This implies that the overall 
BSISO prediction skill can be enhanced in specific 
BSISO phases by decreasing the forecast error in the 
current prediction model.

4.4 � Evaluation of BSISO amplitude and propagation 
prediction

To examine the amplitude and propagation fea-
tures, the change of the predicted BSISO amplitude 
and PAE as a function of forecast lead day and initial 
phase for the initially strong cases are given in Fig. 
11. It is found that the BSISO amplitude is always un-
derestimated, and the mean amplitude for the first 20 
days is about 22 % weaker than the observation (Fig. 
11a). This is a common drawback for current opera-
tional model systems shown in many previous studies 
(Rashid et al. 2011; Wang et al. 2014; Neena et al. 
2014; Xiang et al. 2015). For individual initial phases, 
the underestimated amplitude during the first 20 days 
is evident for all phases, especially for phases 1 and 8 
(Fig. 11c), when the observed amplitude is relatively 
high and the BSISO is well organized. As for the PAE, 
positive values are found for most leading days with a 
mean value of 2.6° averaged over the first 20 days (Fig. 
11b). This indicates that the predicted propagation 
speed of BSISO is faster-than-observed, which is in 
agreement with the model bias of propagation speed 
in BSISO simulation (see Fig. 5) and MJO prediction 
(Liu et al. 2017). Similarly, PAE varies considerably 
with initial phases with positive error occurring for 
most phases, especially for phase 6 (Fig. 11d).

To further assess the BSISO amplitude and propa-
gation, Figure 12 shows composite anomalies of OLR 
and U850 averaged along 125 – 135°E for both ob-
servation and prediction for initially strong BSISOs. 
Here, we compare the results for initial phases 1 and 
5, since phase 1 is the phase where hindcasts exhibit 
low prediction skill and a relatively large gap between 
the predictability and prediction skill, while phase 
5 shows the opposite (Figs. 9, 10). For phase 1, the 
hindcasts have some capability to predict the north-
ward propagation signals, and the amplitude of U850 
is also realistically reproduced (Figs. 12a, b). How-
ever, the positive OLR anomaly is not captured over 
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the equatorial Pacific at lead times of 1 – 10 days and 
almost disappears over the WNP region beyond the 
10-day lead time (Fig. 12b). This discrepancy might 
contribute to the low prediction skill of BSISO in this 
phase, as shown in Fig. 9a. For phase 5, although the 
amplitudes of both U850 and OLR signals are still un-
derestimated, the northward propagation of the nega-
tive OLR signal from the equatorial Pacific to WNP as 
well as its lead–lag relationship with U850 are better 
predicted (Fig. 12d). Note that a faster propagation of 
the U850 anomaly is predicted over the WNP region 
in both phases, especially at lead times of 1 – 20 days. 
This is possibly the reason for the fast phase speed of 
the predicted BSISO, as shown in Figs. 11b and 11d.

5.  Summary and discussion

BSISO, with a period of 20 – 70 days, exerts a cru-
cial role in weather and climate variability over the 
EAWNP region and can offer a key signal for the 
extended-range forecast of the East Asian summer 
monsoon. In this study, we analyze the predictability 
and prediction skill of the EAWNP BSISO in BCC_
CSM2.0, which participates in the S2S Prediction 
Project based on a set of hindcasts for the period 
2000 – 2013. The hindcast experiments were initialized 
with a 5-day interval, and the four-member ensemble 
forecast runs during the hindcast period. BSISO is 
diagnosed using the index taken as the PCs of the two 

Fig. 10.  Predictability (bivariate ACC, contours) and differences between predictability and prediction skill (bivariate 
ACC, shadings) as a function of different initial/target phases (x axis) and forecast lead/lag days (y axis) for (a, c) 
all cases and (b, d) initial/target strong cases. The contour interval is 0.1.
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leading CEOFs of OLR and U850 averaged along 
90 – 155°E. The bivariate ACC and RMSE are used to 
measure the prediction skill and predictability.

Although BCC_CSM2.0 underestimates both the 
mean and intra-seasonal variability of the East Asian 
summer monsoon rainfall and overestimates them 
over the WNP region, it simulates the dominant modes 
and the associated northward propagation of EAWNP 
BSISO reasonably well. The useful BSISO prediction  
skill is about 14 days, while the predictability is 
around 24 – 28 days in BCC_CSM2.0 as estimated by 
the bivariate ACC dropping to 0.5 and the RMSE 
increasing to 2 . This two-week skill is comparable 
to the performance of dynamical models that partici-
pated in the ISVHE project (Lee and Wang 2016). A 
comparison between the ensemble spread and error in 
hindcasts indicates that the ensemble prediction 
system is underdispersive (Fig. 7), implying that opti-
mization of the ensemble prediction strategy is needed 
for the current model prediction.

The BSISO prediction skill and predictability ob-
viously depend on its amplitude. Relatively higher 
prediction skill is found for the initial/target strong 
BSISO cases than for the initial/target weak BSISO 
cases. For the potential predictability, while a similar 
dependence is found for the target BSISO amplitude, 
it does not show any sensitivity to the initial BSISO 
amplitude. We also examine the prediction skill and 
predictability of BSISO with respect to its initial/target 
phase. For the initial phase, the model tends to show 
relatively higher skill for predictions from phases 
4 – 7 when the convection is initially located over East 
Asia, the equatorial Pacific, and the Bay of Bengal, 
and lower skill for phases 1 – 2 when the convection 
develops in the South China Sea and the WNP region. 
Similarly, analysis on the dependence of predictabil-
ity indicates that BSISO is less predictable when the 
BSISO-related rain band propagates northward from 
WNP to East Asia. As for the target phase, while no 
significant dependence of BSISO predictability is 

Fig. 11.  (a) Evolution of BSISO amplitude as a function of lead days for the initially strong cases for observations 
(red) and model prediction (blue). (b) Prediction of BSISO phase angle error (°) as a function of lead time for the 
initially strong cases. (c) Observed (black bars) and predicted (red bars) BSISO amplitude averaged over the first 
20 days for cases initialized at different BSISO phases (x axis). (d) Predicted BSISO phase error averaged over the 
first 20 days for cases initialized at different BSISO phases (x axis).
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found, prediction is skillful when the target phase is 
the dry (phases 1 and 2) or wet (phases 5 and 6) phase 
of WNP rainfall, probably due to the larger BSISO 
amplitude in these phases. The difference between the 
predictability and prediction skill of EAWNP BSISO 
is distinctive for all the initial/target phases, indicat-
ing that there is still much room for further improve-
ment in model physical processes and initialization 
schemes.

Some common model problems in BSISO/MJO 
prediction also occur in our study. For example, the 
predicted BSISO amplitude is always underestimated 
during the entire forecast period with a dramatic drop 
at the beginning of the prediction, which is a common 
deficiency in MJO/BSISO prediction (Seo et al. 2005; 
Rashid et al. 2011; Xiang et al. 2015). It is probable 

that the underestimated BSISO amplitude is partially 
ascribable to the model’s weak BSISO variability in 
the free run, especially over the East Asian region as 
shown in Fig. 3. The sharp drop in the amplitude at 
the beginning of the prediction is probably associated 
with the initialization shocks, which result from the 
imbalance of the coupled system due to the utilization 
of separate ocean and atmosphere analyses in the ini-
tialization conditions. This needs to be more carefully 
examined in future work.

Moreover, many previous studies have found that 
the active-to-break monsoon transition associated 
with BSISO is more predictable than the break-to-
active transition (Goswami and Xavier 2003; Fu et al. 
2013). However, the results in our study, in contrast, 
demonstrate that the active-to-break transition of the 

Fig. 12.  Time–longitude composites of OLR (shading; units: W m−2) and U850 (contour; units: m s−1) anomalies 
averaged over 125–135°E for initial phases 1 (top panels) and 5 (bottom panels) for (a, c) observations and (b, d) 
BCC_CSM2.0. Only BSISO cases with an initial amplitude greater than 1.5 are used in the composite.
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WNP summer monsoon is less predictable. The faster- 
than-observed BSISO propagation in our study is 
also contrary to many previous studies concerning the 
MJO prediction (Kim et al. 2014). This indicates that 
these features vary from model to model, which may 
be mainly associated with the insufficiency in model 
physics. Finally, previous studies have demonstrated 
that the multi-model ensemble approach produces 
better prediction quality as compared to any single 
model (Neena et al. 2014; Lee et al. 2015). Thus, to 
yield more insight into the model deficiency and de-
velopment of the ensemble generation strategy, future 
work will try to assess the forecast skill of intra- 
seasonal variability in a multi-model framework from 
the S2S Prediction Project.
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