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Abstract. In this study, the Chebyshev collocation method is used for solving the spacecraft relative motion of
equations in Hill’s frame. Three different models of governing equations of relative motion (M1, M2, and M3)
are considered and the maneuver cost required moving the spacecraft from one state to another is computed in the
form of delta velocity at the first terminal point as a function of time of flight (TOF) and inter-satellite distance
(ISD). A quantitative as well as qualitative difference is observed in the maneuver cost with the inclusion of
radial and/or out of plane separation in along track separation of chaser. Also, a relative comparison of path
profiles is made by considering M1, M2 and M3 models. Path profiles for M3 model are found close to M2
model for short intervals for a fixed ISD, whereas path profiles for M2 and M3 do not match even for small
values of ISD for a fixed but long TOF. Path profiles for M1 models match to M2 model for very low values of
target orbit eccentricities.
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1. Introduction

Spacecrafts docking consists of combining two or more
spacecraft in space. This area has a lot of applica-
tions like to transport human to international space
station, for maintenance of existing satellites or to add
few more payload or to replace a subsystem in an
existing satellite. Satellite docking requires technology
drawn from various research fields such as relative orbit
determination, position reconfiguration, relative atti-
tude determination, relative attitude control, etc. Among
these technologies, the present work focuses on posi-
tion reconfiguration which is to relocate satellites into
the desired relative position between the satellites. The
reconfiguration/rendezvous of satellites can be achieved
by optimizing the thrust accelerations required or by
using an impulsive maneuver strategy.

The relative motion of the moon with respect to
the Sun–Earth system was first studied by Hill (1878).
Based on Hill’s lunar theory, relative motion of space-
craft in Hill’s frame was studied by Clohessy and Wilt-
shire (1960) and consequently extended by Tschauner
and Hempel (1965). Lawden (1963) found an improved
form for relative motion by including reference orbit

eccentricity, and Carter (1990) later extended Lawden’s
solution. All these researchers mainly focused on the
modeling of the relative dynamics in Hill’s frame.

The two-point boundary value problem (TPBVP)
of relative motion, where the initial and final relative
positions, times and the orbit of the target satellite are
known, and the orbit of the chaser is going to be deter-
mined, has not yet been sufficiently studied, although it
plays a key role in formation reconfiguration and orbit
transfer of spacecrafts.

Deriving from the non-periodic solution of the
homogeneous Clohessy-Wiltshire equations, Mullins
(1992) obtained a set of solutions to TPBVP in cir-
cular reference orbits. Carter (1998) and Yamanaka
and Ankersen (2002) obtained a state transition matrix
for propagating initial value problems involving the
differential equations of relative motion. Hamiltonian
canonical transformation and generating function are
used by Guibout and Scheeres (2004) for solving the
two-point boundary value problems and consequently
by Park et al. (2006). Their method has few merits like
fast convergence; having explicit physical significance;
and does not need guess of initial value of iteration as
compared to the classical methods (shooting algorithm,
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finite differences). A high-order expansion method was
proposed by Lizia et al. (2008) for solving two-
point boundary value problems in astrodynamics. A
TPBVP of spacecraft formation flying is addressed by
Jiang et al. (2009) by considering an unperturbed ellip-
tical reference orbit. They reformed the problem into a
relative Lambert’s problem and pointed out that it can
be solved similarly to the classical Lambert problem.
However, significant perturbations, such as the J2 term,
were not considered in their work. Chen and Dai (2011)
presented a canonical method to solve the TPBVPs of
Hamiltonian systems with a primary integrable compo-
nent. Recently, few researchers Cheng et al. (2017a;
2017b) used the Chebyshev collocation method for
solution of astrodynamics problems.

Dynamics of rendezvous of two spacecraft is also
addressed by some researchers. Among them, Campbell
(2003) considered a reconfiguration problem between
two periodic solutions and formulated a minimum time
problem as well as a minimum fuel problem, in which
the time interval is finite and the cost function is the
absolute integral of the thrust. This work is further
extended by Zanon and Campbell (2006). Vaddi et al.
(2005) considered formation and reconfiguration prob-
lems using orbit element differences and obtained a
two-impulse solution. Some amount of work is done
in the direction of optimal methods for satellite for-
mations re-configurations. Like in Zhang et al. (2011),
mixed integer programming is used for trajectory plan-
ning with constraint avoidance, and more recently, in
Kim and Spencer (2002) and Ichimura and Ichikawa
(2008), studies of optimal multi-objective impulsive
rendezvous are reported.

In this work, author developed a mathematical tool
to design the maneuver strategy for relocating satel-
lites in Hill’s frame under three different assumptions.
For this Newton–Kantorovich/Chebyshev pseudospec-
tral (NK/CPS) approach is used which is introduced by
Boyd (2000). Traditionally, pseudospectral methods are
extensively used in fluid dynamics (Kumar et al. 2011;
Bhowmik et al. 2015). The objective of the work is to
design the maneuver strategy so that the cost can be min-
imized by choosing a proper time of flight with mission
constraints.

2. Mathematical formulation

Here relative motion of Chaser spacecraft with respect
to target spacecraft is considered without any perturba-
tion like J2, drag force, solar radiation pressure and third
body perturbations etc. Three different existing models

are chosen. A detailed description is provided about all
models follows:
Model-1 (M1):

In this case, a generalized model for relative motion
of two satellite is considered under the following con-
straints taken into consideration: (i) both satellite are
moving in elliptical orbits, (ii) satellites can have any
relative separation.

The governing equations are

ẍ − 2θ̇0 ẏ − θ̈0 y − θ̇2
0 x

= − μ (r0 + x)
[
(r0 + x)2 + y2 + z2

] 3
2

+ μ

r2
0

(1)

ÿ + 2θ̇0 ẋ + θ̈0x − θ̇2
0 y

= − μy
[
(r0 + x)2 + y2 + z2

] 3
2

(2)

z̈ = − μz
[
(r0 + x)2 + y2 + z2

] 3
2

(3)

With

r̈0 = r0θ̇
2
0 − μ

r2
0

(4)

θ̈0 = −2ṙ0θ̇0

r0
(5)

Model-2 (M2):
In this case, a model for relative motion of two

satellite is considered under the following constraints
taken into consideration: (i) target satellite has a circu-
lar orbit and chaser may have circular or elliptical orbit,
(ii) satellites can have any relative separation.

Under these assumptions, the governing equations
are

ẍ − 2n0 ẏ − n2
0x = − μ (a0 + x)

[
(a0 + x)2 + y2 + z2

] 3
2

+ μ

a2
0

(6)

ÿ + 2n0 ẋ − n2
0 y = − μy

[
(a0 + x)2 + y2 + z2

] 3
2

(7)

z̈ = − μz
[
(a0 + x)2 + y2 + z2

] 3
2

(8)

With

n0 =
√

μ

a3 (9)

Model-3 (M3):
In this case, a model for relative motion of two

satellite is considered under the following constraints
taken into consideration: (i) target satellite has a circular
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orbit and chaser may have circular or elliptical orbit, (ii)
satellites are very close to each other.

The governing equations are

ẍ − 2n0 ẏ − 3n2
0x = 0 (10)

ÿ + 2n0 ẋ = 0 (11)

z̈ + n2
0z = 0 (12)

With

n0 =
√

μ

a3 (13)

2.1 Newton–Kantorovich/Chebyshev pseudospectral
method

In the NK/CPS method, nonlinear differential equations
are linearized about the nominal solution and the succes-
sively improved solutions. These linearized differential
equations are solved using Chebyshev pseudospectral
collocation with entirely linear operations.

2.1.1 Chebyshev pseudospectral method In the
Chebyshev pseudospectral method, a function is approx-
imated using Lagrange interpolating polynomials, and
the interpolation coefficients are the values of the func-
tion at the node points. Let x(t) = [x1(t), x2(t), ...,
x p(t)

]T denote the target function vector so that the
polynomial approximation is in the following form:

xn(t) =
N∑

j=0

x jφ j (t) (14)

φ j (t) =
N∏

m=0
m �=j

(t − tm)
(
t j − tm

) , j = 0(1)N (15)

where x N (t) denotes the Nth-order polynomial
approximation of x(t), x j are the interpolation coef-
ficient vectors, φ j (t) are the Lagrange interpolating
polynomials of order N , and tm and t j are the CGL
interpolation points, which are given in closed form:

tk = − cos

(
πk

N

)
, k = 0(1)N (16)

To solve the differential equation,

ẋ(t) = f(x, t) (17)

the method of “collocation” is used, in which the
residuals of the differential equation are set to zero at a
set of interpolation points equal in number to the unde-
termined coefficients:

ẋ N (tk) = f(xk, tk) (18)

At the CGL points, the derivative of the interpolating
polynomial approximation of Eq. (14) can be expressed
in a matrix form using the interpolation coefficients:

ẋ N (tk) =
N∑

j=0

x j φ̇ j (tk) =
N∑

j=0

Akj x j (19)

where Akj is the N + 1 × N + 1 differentiation matrix,
with

A jk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c j (−1)k+ j

ck(ζ j −ζk)
j �= k

ζ j

2
(

1−ζ 2
j

) 1 ≤ j = k ≤ N − 1

2N 2+1
6 j = k = 0

−2N 2+1
6 j = k = N

(20)

B jk = A jm · Amk (21)

with

c j =
{

2 j = 0, N
1 1 ≤ j ≤ N − 1

(22)

and
Thus, Eq. (18) becomes a set of algebraic equations

of the interpolation coefficients xk (k = 0(1)N ). It is
worth noting that, if the right hand-side function of Eq.
(17), f (x, t), is a linear function of x , then Eq. (18) will
be linear algebraic equations in xk .

2.1.2 Newton–Kantorovich iterations The
differential equations for practical problems are gen-
erally nonlinear. The Chebyshev pseudo spectral collo-
cation can be applied after linearization of the nonlinear
differential equations around the nominal solution. To
improve the accuracy, the linearization around the
updated solution and the Chebyshev pseudo spectral
collocation are iterated. Given a nominal solution x0(t),
the nonlinear differential equations of Eq. (17) are lin-
earized by Taylor expansion:

ẋ(t) = f (x(0), t) + ∂ f

∂xT

∣∣
∣
∣
x (0)

(
x − x(0)

)
+ o

(∣∣
∣x − x(0)

∣∣
∣
)

(23)

After dropping the o
(∣∣x − x (0)

∣∣) term, Eq. (23) becomes
a linear differential equation in x(t). By solving this lin-
ear differential equation, the first-order solution x (1)(t)
is obtained. Then, this linearization is repeated by
updating x (0)(t) with x (1)(t). The general iteratively lin-
earized differential equations are

ẋ(k)(t) = f (x(k−1), t)+ ∂ f

∂xT

∣
∣∣
∣
x (0)

(
x(k) − x(k−1)

)
k = 1, 2, ...

(24)
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By iteratively solving Eq. (24), the approximate
solutions to Eq. (17) with high-order accuracy can be
obtained.

2.2 Computation of maneuver cost

Maneuver cost in terms of delta velocity is computed
by using the formula

Maneuver Cost

=
√

(xcheb − xini t )
2 + (ycheb − yini t )

2 + (zcheb − zini t )
2 (25)

where (xcheb, ycheb, zcheb) is the velocity vector required
to transfer the satellite form one state to another
obtained after applying Chebyshev collocation method
and (xinit , yinit , zini t ) is the initial velocity vector.

3. Validation of numerical solution

The validation of the numerical method is carried out
by two ways: (i) the response of solution to the order
of polynomials considered in Chebyshev approximation
for M1 model (Table 1), and (ii) the final relative state of
the chaser satellite is computed using Matlab function
ode113() for initial conditions obtained by collocation
method and compared with the desired state (Table 2).
From Table 1, it can be seen that terminal velocities
obtained using collocation method converges as order
of polynomial increases. Accuracy improves up to 10
digits for 41 orders of polynomials. Further by using the
initial state of the satellite, its state after the desired time
is computed and compared with the possible solution.

From Table 2, it can be seen that positions and
velocities after a desired time are accurate of the order of
millimeter and millimeter/sec, respectively. In Table 2,
the desired final position is (0, 4, 0) km.

4. Results and discussion

In this work, author solved three different models of
the relative equations of motion in Hill’s frame without
considering any perturbations on the satellites by using
Chebyshev collocation method. The considered three
different models are (i) CW equations (M3), (ii) non-
linear model by considering circular motion of target
satellite (M2), and (iii) generalized non-linear equations
(M1). The required maneuver cost, to transfer chaser
from one location to the desired location in Hill’s frame,
in terms of delta velocity is computed as a function
of time of flight and inter-satellite distances. The rel-
ative equations of motions are solved for when (i) to
change only along track separation, (ii) to change along
track and radial separation together, and (iii) to change
along, across and radial separation together. Results
are presented in two sections. In first section a rela-
tive comparisons of M1, M2 and M3 models are made
as a function of ISD, time of flight and eccentricities.
In second section a maneuver strategy is discussed by
consider (a) only along track separation, (b) along-track
as well as radial separation and (c) along-track, radial
& cross-track separations, respectively.

Table 1. Comparison of final position of chaser obtained by using ode113() function of Matlab by using initial conditions
obtained by (NK/CPS) and actual position of chaser with a time of flight of 6000s.

Model
used

Initial velocity
(NK/CPS)

Final velocity
(NK/CPS)

Final position obtained
by using ode113()

Final velocity obtained
by using ode113()

M1 (−0.135094, 0.321104, 0) (−0.107482, 0.333981, 0) (2.4e−07, 3.999997, 0) (−0.107482, 0.333981, 0)
M2 (−0.141383, 0.321807, 0) (−0.107413, 0.334439, 0) (8.0e−11, 3.999999, 0) (−0.107413, 0.334439, 0)
M3 (−0.017250, 0.336964, 0) (0.017250, 0.336964, 0) (3.0e−10, 3.999999, 0) (0.017250, 0.336964, 0)

Table 2. Dependency of the radial and along-track velocities (m/s) at the terminal points for different order of base polyno-
mials for a time of flight of 6000 s for only along track traveling.

Order of polynomials x0 = (0, 10, 0) (Radial, alongTrack, crossTrack) x f = (0, 4, 0) (Radial, alongTrack, crossTrack)

11 (−0.1224950840, 0.3197420584, 0) (−0.1076356327, 0.3331225083, 0)
21 (−0.1224776252, 0.3197017214, 0) (−0.1076198094, 0.3330733002, 0)
31 (−0.1224776001, 0.3197017214, 0) (−0.1076197843, 0.3330732998, 0)
41 (−0.1224776001, 0.3197017214, 0) (−0.1076197843, 0.3330732998, 0)
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4.1 Relative comparisons of M1, M2 and M3 models

In this section an attempt has been made to establish the
result that which model (among M1, M2 and M3) can
be used for relocating the satellite from one position to
another in Hill’s frame. As M3 model is derived from
M2 by the assumption that relative distance between
target and chaser is very small and due to this linear
assumption is assumed to be valid. Due to this fact,
models M2 and M3 are compared as a function of time
of flight and ISD & plotted in Figs 1 and 2 by using
initial conditions obtained for M3 model.

It can be seen that in Fig. 1, initially for time of flight
of 6000 seconds there is a significant difference in the
path profile of chaser for M2 and M3 models but as
time of flight reduces the difference in the path pro-
file also reduces and both models perform same for
time of flight of 1000 seconds for relocating a satellite
from (0, 10, 0) km to (0, 1, 0) km. But this time
of flight for which M2 and M3 models path profile

overlaps in this case is a function of ISD also (results
are not shown here). In Fig. 2 path profiles of M2 and
M3 models are shown for fixed time of flight but vary-
ing ISD to relocate the chaser from (0, 10, 0) km to (0,
9, 0) km. It can be seen that in this case path profiles
not matched even for moving chaser satellite around
100 m (Fig. 2(d)).

Further as in M2 model assumption is that target is
moving on a circular orbit hence here comparison of
M1 and M2 models is performed for different values
of target satellite eccentricity. The relative motion of
chaser w.r.t. target are plotted in Fig. 3(a)–(c) for three
different values of eccentricities viz. e = 0.001, 0.0005,
and 0.0001. From these plots, it can be clearly seen that
impact of target satellite eccentricity cannot be ignored
for motion of chaser w.r.t. target as even for e = 0.001
chaser path profiles are deviates from each other by
using M1 and M2 models. These path profiles converges
for very small values of target eccentricities like e =
0.0001.
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Figure 1. Comparisons of M2 (solid lines) and M3 (dotted lines) model as a function of time of flight for a given position
relocation of satellites from (0, 10, 0) km to (0, 1, 0) km as a function of time of flight.
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Figure 2. Motion of Chaser satellite with respect to target with M2 (— solid lines) and M3 models (…… dotted lines) for
a change of ISD form (a) (0, 10,0) km to (0, 9, 0) km (b) (0, 10, 0) km to (0, 9.5, 0) km (c) (0, 10, 0) km to (0, 9.8, 0) km (d)
(0, 10, 0) km to (0, 9.9, 0) km.

Hence from the above study it can be concluded that
M1 model (generalized model) deviates from M2 and
M3 significantly as a function of time of flight, ISD and
eccentricity so in the further studies only M1 model is
considered.

4.2 Computation of maneuver cost as a function of
time of flight using M1 model

4.2.1 Only along-track separation is considered In
this section only along-track separation is assumed.
Table-1 shows the cost function for M1 models for three
different inter-satellite distances travels in along track
direction, viz (a) (0, 10, 0) to (0, 1, 0), (b) (0, 10, 0) to
(0, 2, 0), and (iii) (0, 10, 0) to (0, 5, 0) as a function of
time of flight (TOF). It can be seen that maneuver cost
is an increasing function of inter satellite distance for a

fixed TOF. But as a function of TOF first it decreases,
then increases and again decreases for the considered
duration and for a fixed ISD. Also maneuver cost is
minimal for TOF of one orbital period of target. Min-
imum maneuver costs are 1.035, 0.924, and 0.584 m/s
for transferring satellite from 10 km to 1, 2, and 5 km,
respectively (Table 3).

4.2.2 Only along-track and radial separations are con-
sidered In this section, both along track and radial
separations are considered. First, chaser is moved from
position (1, 10, 0) to (0, 1, 0) km and maneuver cost
are tabulated in Table 4. Further, study is extended by
taking radial separation as −1 km but for same along-
track separation and results are tabulated in Table 5.
Results show that there is significant quantitative and
qualitative change in transfer cost with the inclusion
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Figure 3. Motion of Chaser satellite with respect to target with M2 (solid lines) and M3 models (dotted lines) for a change
of ISD form (0, 10,0) km to (0, 1, 0) km for three different values of eccentricities.

Table 3. Maneuver cost in m/s as a function of time of flight for three different along track travels, viz.
(a) (0, 10, 0) km to (0, 1, 0) km, (b) (0, 10, 0) km to (0, 2, 0) km, and (c) (0, 10, 0) km to (0, 5, 0) km for
M1 models.

Time of Flight Cost Function in case (a) Cost Function in case (b) Cost Function in case (c)

100 180.333 160.296 100.185
200 90.649 80.576 50.360
500 37.357 33.206 20.753
1000 19.499 17.332 10.831
2000 8.945 7.951 4.969
3000 4.679 4.158 2.597
4000 2.541 2.258 1.406
5000 1.389 1.233 0.761
6000 1.035 0.924 0.584
7000 1.727 1.534 0.953
8000 7.057 6.273 3.911
9000 4.167 3.701 2.302
10000 1.414 1.255 0.777
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Table 4. Maneuver cost as a function of TOF for three different along track and radial travels, viz. (a)
(1, 10, 0) km to (0, 1, 0) km, (b) (1, 10, 0) km to (0, 2, 0) km, and (c) (1, 10, 0) km to (0, 5, 0) km for M1
model.

Time of Flight Cost Function in case (a) Cost Function in case (b) Cost Function in case (c)

100 181.437 161.539 102.168
200 91.174 81.6154 51.336
500 37.379 33.262 20.992
1000 19.056 16.920 10.589
2000 8.241 7.304 4.618
3000 4.269 3.844 2.708
4000 2.657 2.500 2.217
5000 2.899 2.922 3.042
5500 4.943 4.966 5.048
5700 8.277 8.293 8.345
5900 38.275 38.366 38.611
6000 42.643 42.518 42.116
6100 13.846 13.842 13.823
6300 6.192 6.211 6.278
6500 4.247 4.277 4.387
7000 2.761 2.800 2.998
8000 2.935 2.465 2.846
9000 2.396 2.191 2.519
10000 2.277 2.323 2.529

of out-of-plane separation. Due to inclusion of radial
separation, transfer cost attains its one local maximal
around the period of the target orbit (6000 s) whereas
for only along track separation transfer cost attains its
one local minimal around the period of the target orbit.
Transfer cost is minimal for time of flight of 4000 and
7000 seconds. This quantitative result is very important
from mission design point of view. Similar results are
valid for transferring chaser from the state (−1, 10, 0)
km to (0, 1, 0), (0, 2, 0) and (0, 5, 0) km (Table 5)

4.2.3 Along-track, radial and cross-track separations
are considered In this section, transfer cost is com-
puted for three-dimensional initial separation. All three
separations viz (i) radial, (ii) along-track, and (iii) cross-
track are assumed. Out-of-plane separation is taken as 1
km and like in earlier section, radial and along track sep-
arations are taken as 1 and 10 km, respectively. Results
are tabulated in Table 6. Results shows that compara-
tively amount of transfer cost for all three models not
varies much but there is a significant quantitative and
qualitative change in transfer cost with the inclusion
of out of plane separation. Due to out of plane separa-
tion, transfer cost attains its one local maximal around
the half period of the target (3000 s) unlike the radial

separation where transfer cost attains its one local min-
imal around the period of the target orbit. Transfer cost
is minimal for time of flight of 4000 and 7000 s. This
quantitative result is very important from mission point
of view. Another important observation is that in this
case two local maximal are obtained, one at half period
and another at full period of the target orbit.

5. Conclusions

In this work, author solved three different models of
the relative equation of motions in Hill’s frame without
considering any perturbations on the satellites by using
Chebyshev collocation method. The considered three
different models are (i) CW equations, (ii) non-linear
model by taking circular motion of target satellite, (iii)
generalized equations. Following conclusions can be
made from this study

1. Maneuver cost of a transfer is a monotonic
increasing function of inter-satellite distance.

2. Maneuver cost of transfer first reduces, then
increases and again reduces as a function of time
of flight for only along-track separation.
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Table 5. Maneuver cost in m/s as a function of time of flight for three different along track and radial
travels, viz. (a) (−1, 10, 0) km to (0, 1, 0) km, (b) (−1, 10, 0) km to (0, 2, 0) km, and (c) (−1, 10, 0) km
to (0, 5, 0) km for M1 model.

Time of Flight Cost Function in case (a) Cost Function in case (b) Cost Function in case (c)

100 181.460 161.562 102.191
200 91.265 81.263 51.425
500 37.876 33.758 21.480
1000 20.409 18.269 11.904
2000 10.429 9.470 6.648
3000 6.459 5.982 4.598
4000 4.658 4.418 3.727
5000 4.263 4.149 3.825
5500 5.673 5.611 5.439
5700 8.643 8.609 8.523
5900 37.842 37.937 38.260
6000 42.178 42.059 41.745
6100 13.986 13.951 13.861
6300 6.829 6.771 6.613
6500 5.268 5.184 4.947
7000 4.778 4.622 4.169
8000 12.727 11.966 9.687
9000 7.940 7.500 6.199
10000 4.034 3.907 3.536

Table 6. Maneuver cost as a function of time of flight for three different along track travels form (a) (1,
10, 1) km to (0, 1, 0) km, (b) (1, 10, 1) km to (0, 2, 0) km, and (c) (1, 10, 1) km to (0, 5, 0) km for M1
model.

Time of Flight Cost Function in case (a) Cost Function in case (b) Cost Function in case (c)

100 182.534 162.770 104.104
200 91.717 81.782 52.294
500 37.584 33.492 21.354
1000 19.153 17.029 10.761
2000 8.477 7.572 5.051
3000 87.171 86.650 85.141
4000 3.433 3.341 3.207
5000 3.664 3.679 3.764
5500 6.606 6.623 6.686
5700 11.425 11.440 11.486
5900 53.882 54.014 54.393
6000 60.056 59.883 59.348
6100 19.375 19.363 19.324
6300 8.428 8.440 8.484
6500 5.587 5.609 5.690
7000 3.471 3.497 3.637
8000 3.717 3.432 3.660
9000 28.169 28.107 27.969
10000 3.184 3.204 3.310
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3. Model M1 and M2 are closer in the form of
position profile compared to M3 model for a
given time of flight and transfer distance.

4. For only along-track separation, maneuver cost is
minimum while it is maximum for (along-track,
radial, across-track) separations.

5. For along-track motion, maneuver cost shows a
minimal around one orbital period of target, but
with the inclusion of radial separation, its shows
one maximal at same point.

6. For three-dimensional motion, local maximal
are found around half period and one period of
target.
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