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ABSTRACT

Obesity is a major risk factor for many metabolic diseases. To understand the genetic
characteristics of obese individuals, single-nucleotide polymorphisms (SNPs) derived from
next-generation sequencing (NGS) provide comprehensive insight into genome-wide genetic
investigation. However, interpretation of these SNP data for clinical application is difficult
given the high complexity of NGS data. Hence, in this study, obesity risk prediction models
based on SNPs were designed using machine learning (ML) methods, namely support vector
machine (SVM), k-nearest neighbor, and decision tree (DT). This investigation obtained
clinicopathological features, including 130 SNPs, sex, and age, from 139 eligible individuals.
Various feature selection methods, such as stepwise multivariate linear regression (MLR),
DT, and genetic algorithms, were applied to select informative features for generating
obesity prediction models. Multivariate logistic regression was used to evaluate the im-
portance of the selected features. The models trained from various features evaluated their
predictive performances based on fivefold cross-validation. Three measures, namely accu-
racy, sensitivity, and specificity, were used to examine and compare the predictive power
among various models. To design obesity prediction models using ML methods, nine SNPs,
including rs10501087, rs17700144, rs2287019, rs534870, rs660339, rs7081678, rs718314,
rs9816226, and rs984222, were selected based on stepwise MLR. In evaluation of model
performance, the SVM model significantly outperformed other classifiers based on the same
training features. The SVM model exhibits 70.77% accuracy, 80.09% sensitivity, and
63.02% specificity. This investigation has demonstrated that the selected SNPs were effective

1Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.
2Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University,

Taoyuan City, Taiwan.
3Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.
4Department of Information Management, Chang Gung University, Taoyuan City, Taiwan.
5Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan.
6Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City, Taiwan.
7Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.
8School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
9Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan.
*These authors should be regarded as joint First Authors.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 25, Number 12, 2018

# Mary Ann Liebert, Inc.

Pp. 1347–1360

DOI: 10.1089/cmb.2018.0002

1347

D
ow

nl
oa

de
d 

by
 "

N
at

io
na

l S
ci

en
ce

 L
ib

ra
ry

, C
hi

ne
se

 A
ca

de
m

y 
of

 S
ci

en
ce

s"
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
18

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



in the detection of obesity risk. Additionally, the ML-based method provides a feasible mean
for conducting preliminary analyses of genetic characteristics of obesity.

Keywords: machine learning, next-generation sequencing (NGS), obesity, single-nucleotide

polymorphisms (SNPs).

1. INTRODUCTION

The prevalence of obesity has become a significant global health problem. Numerous epidemiological

studies have demonstrated that obesity is associated with an increased risk for chronic diseases, such as

type 2 diabetes (T2D), cardiovascular disease, cancer, and chronic respiratory diseases (Guh et al., 2009;

Seyednasrollah et al., 2017). Obesity develops due to increased food intake and decreased physical activity,

resulting in energy intake rather than energy expenditure. However, complex interactions among many

variables, such as genes and environmental factors, also contribute to the obesity phenotype. Recent genome-

wide association studies have identified numerous genetic loci associated with various obesity traits (Loos,

2012). Increased understanding of genomic characteristics could provide risk information for individual

susceptibility to environmental factors in the development of obesity (Maes et al., 1997). Therefore, single-

nucleotide polymorphisms (SNPs) near or within obesity-associated genes play an important role as genomic

characteristics related to obesity (Chen et al., 2009; Wheeler et al., 2013).

To study SNPs in a more effective manner, next-generation sequencing (NGS) techniques provide a

powerful tool for a more comprehensive view of obesity-associated genomic characteristics. The charac-

teristics of NGS include fast, high resolution, and cost-effectiveness (Metzker, 2010). However, NGS data

are generally highly complicated for analysis. The association of a single SNP or gene with a disease or

phenotype has been widely studied. The associations between SNPs and phenotype have provided more

clear insights into the mechanisms of disease development (Chen et al., 2009; Berndt et al., 2013; Wheeler

et al., 2013). However, it is still difficult to integrate all the dispersed single associations together for

clinical application.

Machine learning (ML) methods have garnered considerable attention this decade, given their excellent

ability in dealing with classification or prediction problems. Their good performance in nonlinear classifi-

cation has also been reported (Yan and Shao, 2002; Davatzikos et al., 2005). Moreover, the application of ML

methods in several fields was successful, including biomedical studies (Cruz and Wishart, 2006; Wang and

Huang, 2011). The advantageous features of ML methods include objectiveness, reproducibility, flexibility,

comprehensiveness, and capability of analyzing multivariable or complicated data. Several hundred obesity-

associated SNPs have been reported (Frayling et al., 2007; Scuteri et al., 2007; Chen et al., 2009; Cho et al.,

2009; Speliotes et al., 2010; Berndt et al., 2013; Wheeler et al., 2013). The influence of each obesity-

associated SNP was difficult to integrate because these SNPs were evaluated separately in various studies or

populations. However, Mao et al. (2017) have investigated worldwide population differentiation in allele

frequencies of obesity-associated SNPs. Their results indicated that 195 obesity-associated SNPs possess

effect alleles significantly enriched or depleted in at least one of the 26 populations. To investigate the relation

between the combination of specific SNPs and obesity risk, ML methods are adequate tools to access

complicated data with multiple features (Bui et al., 2016a, 2016b; Huang et al., 2016).

In regard to the application of ML method on obesity prediction, Dugan et al. (2015) have tried six

different ML approaches to predict childhood obesity after age 2. Recently, Seyednasrollah et al. (2017)

integrated childhood clinical factors and the genetic factors (97 SNPs) to predict adulthood obesity based

on ML. Their model not only improved the prediction of adulthood obesity but also performed best among

young children (3–6 years), whereas the obesity risk among older children (9–18 years) can be identified

using childhood clinical factors.

Additionally, a comprehensive study, which has identified 10 SNPs associated with obesity and T2D-related

traits as well as other 3 SNPs associated with prostate cancer from mixed ethnicity cohorts, was published recently

on IJCNN (2017 International Joint Conference on Neural Networks, DOI: 10.1109/IJCNN.2017.7966194). In this

study, several well-designed feature selection methods, including stepwise multivariate linear regression (MLR),

decision tree (DT), and genetic algorithm (GA), were employed to figure out informative attributes for generating

obesity risk prediction models. Additionally, several supervised learning methods, such as support vector machine
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(SVM), k-nearest neighbor (KNN), and DT, were applied to generate binary classifiers for discriminating between

obese and nonobese individuals based on selected features (obesity-associated SNPs). Moreover, we elucidate their

effectiveness in obesity risk evaluation and compare the predictive performance among SVM, KNN, and DT

models.

2. MATERIALS AND METHODS

2.1. Eligibility of study subjects

Figure 1 presents the flowchart of this work, mainly including characterization of SNPs via NGS,

features selection, model training and evaluation, as well as performance comparison of various ML

methods. This study was reviewed and approved by the ethics committee of the Chang Gung Memorial

Hospital (IRB No. 102-4256A3). Informed consent was obtained from each subject before recruiting.

Body mass index (BMI) was used as an indicator of obesity in this study. BMI was calculated as weight

(measured in kilograms) divided by the square of height (measured in meters). One hundred thirty-nine

subjects were recruited from 2014 to 2015, including 74 obese individuals (BMI ‡27 kg/m2) and 65

nonobese individuals (BMI <24 kg/m2). All the included individuals have no known history of metabolic

or endocrine disorders, undergoing steroid treatment, or undergone surgical treatment for obesity. There

was also no pregnant individual. Specimen of each individual was collected via venipuncture for SNPs

examination.

2.2. Potential SNPs selection

In the investigation of genome-wide SNP analysis, 130 SNPs located in 72 obesity-associated loci were

selected for examination. These loci are associated with BMI, body fat percentage, waist circumference

(WC), waist-to-hip ratio (WHR), or early-onset extreme obesity in mostly Caucasian or Asian populations

(Clement et al., 1995, 1996; Beamer et al., 1998; Ishiyama-Shigemoto et al., 1999; Siffert et al., 1999;

Pereira et al., 2003; Chen et al., 2009; Cho et al., 2009; Ma et al., 2010; Loos, 2012; Asai et al., 2013;

FIG. 1. Flowchart of obesity risk prediction based on the ML methods. ML, machine learning.
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Berndt et al., 2013; Wheeler et al., 2013). Information of the reported SNPs is detailed in Supplementary

Table S1.

2.3. Characterization of SNPs via NGS

Genomic DNA was extracted from whole blood specimens using the QIAamp DNA Mini Kit (Qiagen,

Hilden, Germany) according to the manufacturer’s instructions. An Ion AmpliSeq custom panel was

designed using the Ion AmpliSeq Designer (ThermoFisher Scientific, Waltham, MA) for the 130 SNPs.

Primers for the 130 SNPs were combined in two-primer pools. The average size of DNA fragments was 253

base pairs. The library was prepared using the Ion AmpliSeq Library Kit 2.0 and the Ion Xpress Barcode

Adapter (ThermoFisher Scientific). Quantitation and size distribution analyses of the libraries were per-

formed by an Agilent Bioanalyzer using a High Sensitivity Kit (Agilent, Santa Clara, CA). Emulsion PCR

and subsequent enrichment were performed using the Ion PGM Template OT2 200 Kit and the Ion

OneTouch 2 Instrument (ThermoFisher Scientific). Sequencing was performed using the Ion PGM Se-

quencing 200 Kit (v2) with the Ion 316 chip of the Ion Torrent PGM System (ThermoFisher Scientific)

according to the manufacturer’s instructions. The raw sequencing data were processed on the Torrent

Server using the Ion Torrent Suite Software (Version 4.2.1; ThermoFisher Scientific). The Torrent Variant

Caller plugins were adapted for data analysis. Each SNP genotype was coded as 0 (wild type), 1 (het-

erozygous), and 2 (homozygous) depending on the number of risk alleles.

2.4. Feature selection methods

Stepwise MLR, DT, and GA were used as feature selection methods and evaluated in this study. Stepwise

MLR is a statistics-based method for feature selection. The model for a MLR analysis is defined as

y = b0 + b1x1 + b2x2 + � � � + bmxm + e‚

where y is a dependent variable, X = x1‚ x2‚ � � � ‚ xmð Þ is the independent variables with m-dimensional

vector, and e is the random error following normal distribution. The matrix form is determined as y = bX,

where b = b0‚ b1‚ � � � ‚ bm½ � and X = 1‚ x1‚ � � � ‚ xm½ �T . Herein, y denotes the class labels (obese and nonobese)

and X represents the SNP attributes (m = 130). The MLR analysis is to solve the y = bbX with the least square

estimation of bb. The objective is minimizing the error, which is determined as

min
i = 1‚ ...‚ n

ei =
Xn

i = 1

ei
2 =
Xn

i = 1

yi - b0 - b1xi1 - b2xi2 - � � � - bmximð Þ2:

To minimize the sum of squares, the partial derivative for bj j = 1‚ 2‚ � � � ‚ mð Þ should be made as:

@
Pn

i = 1 ei
2

@bj

= - 2
Xn

i = 1

yi - b0 - b1xi1 - b2xi2 - � � � - bmximð Þxij = 0 :

In the process, each SNP attribute xj j = 1‚ 2‚ � � � ‚ mð Þ obtains its coefficient bbj j = 1‚ 2‚ � � � ‚ mð Þ ac-

cording to the effect on the response y. Attributes with a larger coefficient are selected in a forward stepwise

manner based on significance. In this investigation, the stepwise MLR was performed using the ‘‘step-

wisefit’’ function of Matlab (Version 2013b; MathWorks, MA).

DT is a rule-based classification algorithm, which was widely applied in supervised ML (Han, 2005). DT

constructs a tree-like structure in a top-down manner, where each internal node denotes a test on a feature,

each branch denotes an outcome of the test, and each leaf node holds a class label. At each internal node,

the best feature is chosen to partition the training data of this node into individual classes. The features that

appear in the tree are assumed to be relevant to the given classification problem. Before the construction of

DT, the information gain of each attribute should be determined by calculating the entropy value for each

attribute. Given a training data set X containing positive and negative samples, the entropy function of X is

described as

Entropy Xð Þ = - p + log2 p + - p - log2 p - ‚

where p + is the percentage of positive samples and p - is the percentage of negative samples. Then, the

information gain of an attribute A is defined as
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Gain X‚ Að Þ = Entropy Xð Þ -
X

w2W Að Þ

Xwj j
Xj j Entropy Xwð Þ‚

where W(A) is the domain range of A, X is the sample set, and Xw is the sample set with attribute A equal to

w. Then, all attributes (130 SNPs) were ranked by its information gain values. In this investigation, the J48

program, with an enhanced DT algorithm included in Weka toolkit (Hall et al., 2009), was adapted to

perform the feature selection against 130 SNPs.

GA has been a well-studied optimization method as it usually succeeds in searching the optimal solution out

from a set of parameters (Yang and Honavar, 1998; Saeys et al., 2007). In the implementation of GA, the

parameters to be optimized are represented by a chromosome in which each parameter is regarded as a gene. A

binary array is typically adapted to represent the chromosome. In this work, a chromosome includes a total of 130

attributes (SNPs) to be optimized. As presented in Figure 2, an initial population, which comprises a specified

number of chromosomes, is generated by randomly assigning ‘‘1’’ (the SNP is used) and ‘‘0’’ (the SNP is not

used) to all attributes. The chromosomes were used to generate the predictive models and were evaluated by the

so-called fitness function, which is the performance in fivefold cross-validation. Reproduction, crossover, and

mutation are the three major processes for generating offspring chromosomes in GA. The offspring chromosome

is reproduced by the crossover and mutation of the best chromosomes selected by fitness function. A crossover

process exchanged attributes in potential combinations in an attempt to create offspring with better discrimi-

nation ability. Subsequently, essentiality of attributes was tested by mutation process. The reproduction process

shall be repeated until a certain number of chromosomes reaching a convergence criterion on fitness function.

2.5. Construction of SVM models

In this study, a binary classification problem (nonobesity vs. obesity) was considered. The SVM models

used in this study were constructed using the Matlab version of the LIBSVM 3.20 software package, which

FIG. 2. Flowchart of applying ge-

netic algorithm on selection of attri-

butes (SNPs). SNP, single-nucleotide

polymorphism.
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is the most well-known and widely applied SVM software tool (Chang and Lin, 2011). An effective SVM

model was constructed using the procedures outlined in the manual by a previous study (Hsu et al., 2010).

Briefly, the procedures mainly included two steps: (1) select an appropriate feature mapping kernel function

such that the two groups might become linearly separable after mapping the samples into high-dimensional

space and (2) determine the parameters c (penalty for misclassification) and c (function of the deviation of

the radial basis function [RBF] kernel). In this study, the RBF kernel was selected based on superiority

compared with other kernel functions on performance in our preliminary trial. Subsequently, the values of c

and c were determined through an iterative grid search by fivefold cross-validation, as detailed in previous

studies (Hsu et al., 2010; Wang and Huang, 2011).

2.6. Construction of KNN models

KNN is an instance-based algorithm used for classification. The KNN models used in this study were

constructed using the Matlab (MathWorks). In this study, the number of the nearest number was set to 9

according to our preliminary trial. For each case in the validation set, the Euclidean distances from the

cases in the training set were calculated. The class categories of the nine cases with Euclidean distances

closest to the validation case were recorded. The class of the validation case was accordingly predicted on

the basis of the major class categories of these nine closest cases.

2.7. Construction of J48 models

In J48, the classification of a query sample of an unknown class is a top-down process that tests the

feature values of the sample against the nodes of the DT. The process starts from the test of the root node

and follows the appropriate branch based on the test. If another node is reached, the test of the node is

subsequently applied. If a leaf is reached, the class label associated with the leaf is assigned to the query

sample. The J48 model was generated in WEKA (Version 3.6). All the parameters of J48 were set as

default unless specified.

2.8. Validation and comparison of various predictive models

The obesity risk prediction models based on various different ML methods were trained and validated

via fivefold cross-validation. The training data set was divided into five subgroups with approximately

equal size. The ratio of the testing set to the training set was 1:4, and the cross-validation process was

repeated five times. The five validation results were then combined to generate a single estimation.

Obviously, one of the benefits of k-fold cross-validation is the improvement on the reliability of eval-

uation because all the original data, including the training and testing data sets, were considered, and

each subset should be tested only once (Lu et al., 2011). Moreover, fivefold cross-validation was repeated

by randomized allocation for 100 rounds. In an attempt to estimate the predictive performance of each

trained model, measures such as sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews corre-

lations coefficient (MCC) were used:

Sn =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + FP + TN + FN

MCC =
TP · TNð Þ - FP · FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ · TN + FPð Þ · TP + FPð Þ · TN · FNð Þ
p ‚

where TP, TN, FP, and FN represented the number of true positives, true negatives, false positives, and

false negatives, respectively. The MCC value shall be ranging from -1 to +1, where the value of +1

represents a perfectly correct classification between the two data sets, whereas the values 0 and -1 represent

a random prediction and a completely wrong classification, respectively. Additionally, the ROC (receiver

operating characteristic) curve of the three different models is used for the comparison of the area under the

curve of ROC values.
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2.9. Statistical analyses

To evaluate the performance of the ML models, a one-way analysis of variance (ANOVA) with a

statistical significance level of 0.05 was used to examine the performance of various feature selection

methods and the effect of different ML methods on discrimination accuracy. The Tukey honestly signif-

icant difference post hoc test was used to determine the differences when the null hypothesis of ANOVA

was rejected. p-Values less than 0.05 and 0.01 were labeled separately. All statistical analyses were

performed using SPSS (Version 20; SPSS Inc.).

3. RESULTS AND DISCUSSION

3.1. Data distribution of obese and nonobese individuals

In this investigation, a total of 139 individuals, consisting of 74 obese individuals (BMI ‡27 kg/m2) and

65 nonobese individuals (BMI <24 kg/m2), were recruited from 2014 to 2015. All the studied individuals

have no history of metabolic or endocrine disorders or undergoing steroid treatment or surgical treatment

for obesity, and no pregnant individuals were included. As presented in Table 1, the sample size of men (88

individuals) was greater than that of women (51 individuals). In the men data set, there were 47 obese

individuals and 41 nonobese individuals. The average age among men is *41 years. In addition, the

women data set contained 27 obese and 24 nonobese individuals. The average age among women is *38

years. Overall, the sample numbers of obesity versus nonobesity were *1:1 in both males and females. In

addition, the average age of males and females was not significantly different.

3.2. Performance evaluation of 130 SNPs in obesity risk prediction

In this study, genomic DNA was extracted from whole blood specimens of 139 individuals using the

QIAamp DNA Mini Kit. Additionally, a customized Ion AmpliSeq panel containing 130 SNPs associated

with obesity was designed using the Ion AmpliSeq Designer. Before the identification of informative SNPs

by feature selection methods, all 130 SNPs were used to evaluate their predictive performance in obesity

risk prediction. To evaluate the predictive performances of three various ML methods, fivefold cross-

validation was repeated by randomized allocation for 100 rounds. Then, the average values of sensitivity,

specificity, and accuracy were determined as well as 95% confidence interval (CI) values were determined.

Table 2 shows that the SVM model trained with 130 SNPs performs better than KNN and J48 models in

both predictive sensitivity and specificity. Overall, the SVM model yields an average accuracy of 0.67 in

classifying 74 obese and 65 nonobese individuals. Additionally, Supplementary Figure S1 provides the

comparison of ROC curves among the SVM, KNN, and DT models trained using 130 SNPs based on the

evaluation of fivefold cross-validation.

3.3. Examination of informative SNPs in obesity risk prediction

To determine the informative SNPs in obesity risk prediction, three feature selection methods were

employed, and their performance in terms of predictive accuracy was compared. As presented in Figure 3,

among the SVM models, the one trained using the SNPs selected by the stepwise MLR attained best

performance; likewise, the KNN model also revealed significantly higher accuracy on the basis of stepwise

Table 1. Data Distribution of Obese

and Nonobese Individuals

Nonobesity

(BMI <24 kg/m2)

Obesity

(BMI ‡27 kg/m2) Age

Men (88) 41 47 41.09 – 11.60

Women (51) 24 27 38.11 – 10.46

Total (139) 65 74

Age data were presented as the mean – standard deviation.

BMI, body mass index.
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MLR. By contrast, the J48 model performed best when using the SNPs selected by information gain of DT.

Overall, the predictive models trained using the SNPs selected by the stepwise MLR exhibited the best

performance in obesity risk prediction. An appropriate feature selection process can reduce the dimen-

sionality of features and result in less intensive computation. Dimensionality reduction is an important issue

especially in -omics studies, with hundreds or even thousands of features (Ghosh and Poisson, 2009; Guo

et al., 2010). Feature selection is also crucial to avoid the curse of dimensionality, especially when the size

of the data set is not sufficient. The stepwise MLR is a feature selection method based on statistics. The

advantage of using the stepwise MLR may be correlated with the rule of gene expression. SNPs near or in

the obesity genes potentially affect the transcription level.

The number of mutant SNP alleles correlates with the transcriptional level and subsequent phenotype in a

proportional manner. Consequently, the numeric relation between SNPs and BMI could be successfully

illustrated by regression. According to the feature selection result of stepwise MLR, nine obesity-associated

SNPs, including rs10501087, rs17700144, rs2287019, rs534870, rs660339, rs7081678, rs718314, rs9816226,

and rs984222, and sex were selected as informative features to construct obesity risk prediction models. In this

investigation, MLR analysis was performed to evaluate the significance of each variable (SNP); furthermore,

one-way ANOVA with a statistical significance level of 0.05 was adapted to examine the accuracy and effect

of various combinations of SNPs on discrimination between obese and nonobese individuals. Supplementary

Table S2 presents the coefficients of the features (SNPs) in the regression equation and their significance

values. In the combination of nine selected SNPs, four (rs10501087, rs534870, rs718314, and rs984222) were

significantly associated with the accuracy of obesity risk prediction ( p < 0.05).

Table 2. Predictive Performance of Three Different Models Trained Using

130 Single-Nucleotide Polymorphisms on Obesity Risk Prediction

Method

Sensitivity

(95% CI)

Specificity

(95% CI)

Accuracy

(95% CI) MCC (95% CI) AUC

SVM 0.72 (0.64–0.77) 0.62 (0.53–0.72) 0.67 (0.64–0.76) 0.34 (0.30–0.39) 0.70

KNN 0.70 (0.63–0.75) 0.52 (0.44–0.57) 0.61 (0.56–0.66) 0.22 (0.19–0.28) 0.63

DT 0.56 (0.39–0.74) 0.54 (0.46–0.60) 0.55 (0.44–0.64) 0.10 (-0.05–0.12) 0.57

AUC, area under the curve of ROC; CI, confidence interval; DT, decision tree; KNN, k-nearest neighbor;

MCC, Matthews correlations coefficient; SVM, support vector machine.

FIG. 3. Predictive accuracy of various feature selection methods based on three ML methods. J48, KNN, and SVM

models were designed on the basis of selected features obtained from MLR, DT, and GA. The results demonstrate that

KNN and SVM models significantly ( p < 0.05) attained higher accuracy based on MLR compared with DT or GA. DT,

decision tree; GA, genetic algorithm; MLR, multivariate linear regression; KNN, k-nearest neighbor; SVM, support

vector machine.
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3.4. Distribution of obese and nonobese individuals of nine selected SNPs

The distribution of individuals for nine selected SNPs according to three genotypes (wide type, het-

erozygous, and homozygous) is provided in Table 3. Wild type was predominant at SNPs rs17700144

(96.40%), rs2287019 (56.83%), rs7081678 (96.40%), rs718314 (50.36%), and rs9816226 (85.61%). By

contrast, the heterozygous type was more abundant at SNPs rs10501087 (47.48%), rs534870 (53.24%),

rs660339 (42.45%), and rs984222 (56.83%). However, the homozygous type was rare to absent for

rs17700144 (0.00%), rs2287019 (2.88%), rs7081678 (0.00%), and rs9816226 (0.00%). Furthermore, Fig-

ure 4 provides more detailed information about comparing the distribution of obese (red chart) and non-

obese (blue chart) individuals for each selected SNP. At SNP rs10501087, the number of obese individuals

containing the homozygous type (23 samples) was significantly increased compared with nonobese indi-

viduals with the homozygous type (9 samples). Additionally, at SNP rs9816226, obese individuals also had

a higher abundance of the homozygous genotype compared with nonobese individuals. However, at SNPs

Table 3. Sample Distribution of the Nine Single-Nucleotide

Polymorphisms Selected by Multivariate Logistic Regression

SNP

No. of individuals

in wild type %

No. of individuals

in heterozygous %

No. of individuals

in homozygous %

rs10501087 41 29.50 66 47.48 32 23.02

rs17700144 134 96.40 5 3.60 0 0.00

rs2287019 79 56.83 56 40.29 4 2.88

rs534870 48 34.53 74 53.24 17 12.23

rs660339 52 37.41 59 42.45 28 20.14

rs7081678 134 96.40 5 3.60 0 0.00

rs718314 70 50.36 55 39.57 14 10.07

rs9816226 119 85.61 20 14.39 0 0.00

rs984222 43 30.94 79 56.83 17 12.23

SNP, single-nucleotide polymorphism.

FIG. 4. Comparison of sample distributions of nine selected SNPs between obese and nonobese individuals.
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rs534870 and rs660339, obese individuals had a significant abundance of the heterozygous genotype

compared with nonobese individuals. Obese individuals had a remarkable abundance of wild type at SNPs

rs2287019 and rs984222.

3.5. Performance comparison among ML methods considering only nine selected SNPs

Models trained on the basis of three different ML algorithms were compared regarding predictive

accuracy. The SVM model trained using selected nine SNPs attained highest accuracy (0.71, 95% CI: 0.64–

0.78), sensitivity (0.80, 95% CI: 0.72–0.88), and specificity (0.63, 95% CI: 0.54–0.72). As presented in

Table 4, the SVM model significantly outperformed the KNN and DT models in obesity risk prediction.

Moreover, the KNN model also significantly attained higher accuracy compared with the DT model. In an

overall evaluation based on the nine SNPs selected by the stepwise MLR, the SVM model outperformed

other ML methods in prediction of obesity risk. Moreover, based on the evaluation of fivefold cross-

validation, the comparison of ROC curves among the SVM, KNN, and DT models trained only using nine

SNPs is presented in Supplementary Figure S2. SVM has been reported as a superior ML method in some

classification problems (Cruz and Wishart, 2006; Wang et al., 2016).

There are several advantageous features about the construction and calibration of SVM. First, SVM

conducts relatively higher resistance to noise and outliers (Cruz and Wishart, 2006; Chang and Lin, 2011).

This property makes it an adequate classifier in biomedical classification issues. Second, SVM performs

well in nonlinear classification problems when incorporating an appropriate kernel function. In this study,

RBF was used as the kernel function of SVM. Some clinical studies have reported that RBF kernel

outperformed other kernel functions in generating SVM (Wang and Huang, 2011; Wang et al., 2016). The

appropriateness of RBF kernel was also observed in this study. Third, only the models but not the entire

data set is stored and used after training and validation, avoiding a massive demand of storage and

computation. Briefly, the SVM model not only attains higher performance but also provides a cost-effective

method appropriate for routine clinical practice.

3.6. Biological role and significance of the selected SNPs

Based on the stepwise MLR analysis, nine SNPs were selected to construct an SVM model with best

performance in obesity risk prediction. As presented in Table 5, all nine SNPs were associated with obesity.

In the SNP combination, rs10501087 is an intronic SNP located within the BDNF gene, which encodes a

neurotrophin protein. BDNF and its receptor TrkB are key components in the MC4R signaling pathway,

which plays an important role in the balance of energy and metabolism (Yeo and Heisler, 2012). Loss of

BDNF function results in obesity (Gray et al., 2006). The relation between the BDNF gene and BMI was

also studied in an East Asian population (Wen et al., 2012). It is hypothesized that variation in rs10501087

leads to obesity by reducing BDNF function. Another study also reported rs10501087 as a key BDNF-

associated SNP in an obesity risk score (Speliotes et al., 2010). The importance of rs10501087 was also

identified in the one-way ANOVA of this study. Generally, the finding was in accordance with the previous

studies. Moreover, the nine SNPs were selected on the basis of best discrimination ability between obesity

and nonobesity, consequently implying that the nine SNPs may be involved in the metabolic pathways

associated with obesity.

Table 4. Predictive Performance of Three Different Models Trained

Only Using Nine Selected Single-Nucleotide Polymorphisms

on Obesity Risk Prediction

Method

Sensitivity

(95% CI)

Specificity

(95% CI)

Accuracy

(95% CI) MCC (95% CI) AUC

SVM 0.80 (0.72–0.88) 0.63 (0.54–0.72) 0.71 (0.64–0.78) 0.41 (0.22–0.50) 0.73

KNN 0.76 (0.70–0.82) 0.50 (0.43–0.56) 0.63 (0.59–0.66) 0.17 (0.10–0.25) 0.60

DT 0.56 (0.38–0.74) 0.54 (0.48–0.61) 0.54 (0.44–0.64) 0.16 (-0.06 to 0.23) 0.59

The accuracy of the SVM and KNN models significantly outperformed that of the DT model

( p < 0.01). In addition, the accuracy of the SVM model was significantly higher than that of the KNN

model ( p < 0.01).
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3.7. Obstacles in applying obesity-associated SNPs in clinical practice

Obesity is attributed to multiple factors. The genome is the basic and intrinsic component that is

influenced by environmental factors. The mechanism and level at which the intrinsic factors interact with

the extrinsic factors define the development and severity of obesity. Consequently, a profile of obesity-

associated SNPs could provide a basic illustration of obesity risk. Individuals with higher risk of intrinsic

obesity risk should take more consideration upon exposure to other environmental factors, such as food

intake, exercise, and lifestyle. Obesity-associated SNPs have been widely studied, mostly in Caucasian

populations (Clement et al., 1995, 1996; Beamer et al., 1998; Pereira et al., 2003; Ma et al., 2010; Loos,

2012; Asai et al., 2013; Berndt et al., 2013; Wheeler et al., 2013).

To generate the population-specific obesity-associated SNPs profile, Chinese Han adults were included

in this study. Although some obesity-associated SNPs have been studied and reported, the application of the

SNPs in clinical practice remains limited. There are several contributing reasons. In addition to the

variation of studied populations, it was doubtful whether the risk of each SNP could be integrated by simple

summation. To address these issues, the ML methods were applied and evaluated in this study. The risk of a

specific combination of SNPs could be studied comprehensively for a specific population.

To generate a population-specific obesity risk score, the sample size of this study may be not sufficient.

The limitation was mainly attributed to the high cost of NGS tests. The performance of the ML models has

been examined by fivefold cross-validation for 100 rounds to ensure a robust outcome. For wider clinical

applications, external validation with a larger sample size is necessary. Moreover, the progressive reduction

on the cost of NGS tests will also assist in the general application.

4. CONCLUSION

This investigation employed various feature selection methods, such as stepwise MLR, DT, and GA, to

identify informative features for the construction of obesity prediction models. Evaluation by fivefold

cross-validation indicated that the selected SNPs were effective in the detection of obesity risk based on

139 individuals. According to the MLR feature selection, nine SNPs, including rs10501087, rs17700144,

rs2287019, rs534870, rs660339, rs7081678, rs718314, rs9816226, and rs984222, could provide the best

predictive power (80.09% sensitivity, 63.02% specificity, and 70.77% accuracy) based on the SVM

Table 5. List of Genomic Information of Nine Selected Single-Nucleotide Polymorphisms

SNP Gene

Genomic

location (bp)

Functional

class EA Obesity trait Reference

rs10501087 LGR4, LIN7C,

BDNF

Chr11: 27626684 Intron region T BMI Thorleifsson et al.,

2009

rs17700144 MC4R Chr18: 60144750 Intron variant A Early-onset

extreme obesity

Scherag et al.,

2010

rs2287019 QPCTL Chr19: 50894012 Intron variant C BMI Speliotes et al.,

2010

rs534870 SPRY2 Chr13: 79857208 Intron variant A Body fat

percentage

Kilpeläinen et al.,

2011

rs660339 UCP2 Chr11: 73366752 Intron region T BMI Kaushik et al.,

2009

rs7081678 ZEB1 Chr10: 32030629 Intron region A WHR Heid et al.,

2010

rs718314 ITPR2-SSPN Chr12: 26344550 — G WHR Heid et al.,

2010

rs9816226 ETV5 Chr3: 187317193 Intron variant T BMI Speliotes et al.,

2010

rs984222 TBX15-WARS2 Chr1: 119305366 Intron region G WHR Heid et al.,

2010

EA, effect allele; WHR, waist-to-hip ratio.
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classifier. Additionally, the predictive model generated by SVM attained better performance than other ML

methods. This work demonstrated that the ML-derived method could provide a feasible means for con-

ducting preliminary analyses of obesity based on genetic characteristics.

This study used BMI as a measure of obesity because it is a simple and convenient determinant to

identify obese participants. Other evaluating traits such as WC, WHR, body fat percentage, and the

presence of early-onset extreme obesity have also been demonstrated to predict their associations with

obesity in many studies (Loos, 2012). The aim of this work was to select SNPs from loci associated with

BMI as well as those associated with other obesity-related traits. Of nine SNPs that were selected by MLR,

four SNPs have been reported to be associated with BMI (rs10501087, rs2287019, rs660339, and

rs9816226). This study also found three SNPs that were previously proposed to be associated with WHR

(rs7081678, rs718314, and rs984222), and one SNP was confirmed to be related to each of body fat

percentage (rs534870) and early-onset extreme obesity (rs17700144). This investigation has revealed the

relationship between the loci of SNPs and the obesity-related traits (Table 5).
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