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Abstract
Background/Aims: mTOR is an important therapeutic target for human head and neck 
squamous cell carcinoma (HNSCC). The current study tested the anti-HNSCC cell activity by a 
mTOR kinase inhibitor CZ415. Methods: HNSCC cells were treated with CZ415. Cell death was 
tested by lactate dehydrogenase (LDH) assay and MTT assay. Cell proliferation was tested by 
BrdU ELISA assay and [H3] thymidine incorporation assay, with apoptosis assayed by the TUNEL 
staining. A Western blotting assay was applied to test autophagy-associated proteins, mTOR 
and signalings. The nude mice xenograft model was established to study CZ415-mediated 
anti-tumor activity. Results: In established (SCC-9, SQ20B and A253 lines) and primary 
human HNSCC cells, CZ415 efficiently inhibited cell survival and proliferation. CZ415 blocked 
mTORC1/2 activation and inhibited ERK in HNSCC cells. CZ415 provoked feedback autophagy 
activation. Conversely, autophagy inhibitors (3-methyladenine and chloroquine) or Beclin-1 
shRNA sensitized CZ415-induced HNSCC cell death. In vivo, CZ415 gavage inhibited SCC-
9 tumor growth in nude mice, showing higher efficiency against Beclin-1-silenced tumors. 
Conclusion: CZ415 inhibits HNSCC cell growth in vitro and in vivo. Inhibition of autophagy 
can further sensitize CZ415 against HNSCC cells.

Introduction

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous family of 
carcinomas [1-3]. HNSCC is often diagnosed at late- or advanced-stage [1-4]. The lack of 
effective treatment can cause HNSCC progression [1-4]. Deregulation of mTOR (mammalian 
target of rapamycin) signaling plays a critical role in HNSCC progression [5-7]. mTOR 
activation promotes a number of key cancerous behaviors [8-11]. Therefore, mTOR is an 
important therapeutic target for HNSCC [5-7]. Our previous study has demonstrated that 
GSK1059615, a novel PI3K-mTOR dual inhibitor, inhibited HNSCC cell growth in vitro and in 
vivo [12].
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mTOR signaling is mediated through two multiple-protein complexes, including mTOR 
complex 1 (mTORC1) and mTOR complex 2 (mTORC2) [8]. mTORC1 is composed of mTOR, 
PRAS40, Raptor, and mLST8 [13, 14]. Its activity can be inhibited by rapamycin and its 
analogs [8]. mTORC1 phosphorylates two major substrates, p70S6K1 (S6K1) and eIF4E-
binding protein 1 (4E-BP1) [8, 15]. mTORC2 is primarily formed by mTOR, Rictor and mSin1 
[8, 13, 14]. mTORC2 is the upstream kinase of AKT (at Ser-473) [8, 13, 14]. CZ415 is a highly-
selective, extremely potent and orally-available mTOR kinase inhibitor [16]. It has excellent 
selectivity against mTOR [16]. Its activity in human HNSCC cells has not been tested.

Materials and Methods

Chemicals and reagents
CZ415 was provided by Dr. Yin [17]. Autophagy inhibitors 3-methyladenine (3-MA) and chloroquine 

(Cq) were purchased from Sigma (Shanghai, China). Puromycin was also obtained from Sigma. Cell culture 
reagents were provided by Gibco (Suzhou, China). OSI-027, rapamycin and everolimus (RAD001) were 
purchased from Selleck (Shanghai, China). Antibodies for phosphorylated (“p”)-AKT (Ser-473) (9271), 
p-AKT (Thr-308) (9275), AKT1 (2967), p-p70 S6 kinase 1 (S6K1, Thr 398, 9209), S6K1 (9202), p-p44/42 
MAPK (ERK1/2) (9102) and ERK1/2 (9102), Beclin-1 (3495), ATG-5 (12994), ATG-7 (8558), p62 (5114), 
and LC3B-I/II (12741), as well as cyclin D1 (2922), cyclin B1 (4138) and β-actin (4970) were all purchased 
from Cell Signaling Tech (Shanghai, China). The β-tubulin antibody (T2200) was obtained from Sigma-
Aldrich (St. Louis, MO).

HNSCC cell lines
As described [12], established HNSCC cell lines, SCC-9, SQ20B and A253, were from Dr. Cui’s group 

[18], and cells were maintained in FBS-containing DMEM medium [18].

Primary culture human cancer cells and epithelial cells
The detailed protocols of primary culture of human oral cavity carcinoma (OCC) cells and oral (cavity) 

epithelial cells were described in our previous study [12]. Four lines of primary OCC cells (“OCC1-4”) and 
two lines of oral epithelial cells (“Oepi1-2”) were established [12]. The protocols were approved by the 
Institutional Ethics Committee and Internal Review Committee of authors’ institutions, and were conducted 
according to World Medical Association (Declaration of Helsinki). The privacy rights of human subjects 
must always be observed.

MTT assay
To test cell viability, the routine MTT (Sigma) assay was performed with manufactory’s recommendation 

[12, 19]. MTT OD at 590 nm was recorded.

Clonogenicity assay
SCC-9 cells (1×104 per 10-cm dish) were originally plated in 0.5% agarose-containing complete 

medium. After applied CZ415 treatment of 10 days, the survival SCC-9 colonies were manually counted.

Lactate dehydrogenase (LDH) assay
Release of LDH to the conditional medium is a characteristic marker of cell death. We utilized the two-

step LDH assay kit (Takara, Tokyo, Japan) [20] to examined medium LDH content [12, 20].

In vitro proliferation assay
Test of cell proliferation by the BrdU ELISA assay or the [H3] thymidine incorporation assay was 

described in detail in our previous studies [12, 15]. The value of treatment groups was always normalized 
to that of the untreated control group.

TUNEL assay
The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay allows quick and 

easy demonstration of cell apoptosis. In line with our previous study [12], The TUNEL In Situ Cell Death 
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Detection Kit (Roche, Shanghai, China) was utilized to stain nuclei of apoptotic cells. TUNEL ratio of 200 
cells per treatment was recorded.

Western blotting assay
Following the applied treatment, cells or tumor tissues were lysed via RIPA lysis buffer (Biyuntian, 

Shanghai, China). For each treatment, thirty µg of lysate proteins per lane were separated by the 
SDS-polyacrylamide gel electrophoresis (PAGE) gel (10-12.5%), which were then transferred to the 
polyvinylidene fluoride (PVDF) membrane (Millipore, Shanghai, China). After blocking in 10% milk, the blot 
was incubated with designated primary and corresponding secondary antibodies [21]. The ECL reagents 
(Amersham Biosciences, Shanghai, China) were employed to detect antibody-antigen binding. The total gray 
of each band was quantified via Image J software (NIH).

shRNA knockdown of Beclin-1
The two verified Beclin-1-targeting lentiviral shRNAs (“a/b”, with non-overlapping sequence), as 

well as the scramble control lentiviral shRNA were provided by Dr. Jiang [22]. The lentiviral shRNA was 
added to cultured SCC-9 cells (50% confluence in basic medium) for 12 hours. Cells were then subjected to 
puromycin (5 μg/mL, Sigma) selection for additional 6 passages. Beclin-1 expression in the stable cells was 
tested by Western blotting assay.

Tumor xenograft assay
Five millions of SCC-9 cells or primary human OCC cells per mouse were inoculated s.c. into the female 

nude mice (5-6 week age, 18.2-19.1 grams in weight). Within 2-3 weeks, xenograft tumors were established, 
and tumor volumes were around 0.1 cm3. The mice were then randomly assigned into groups as mentioned 
in the text (n=10 per group). Tumor volume was measured once every week as described [12]. Estimated 
daily tumor growth was calculated according to our previous study [12]. The animal procedures were 
approved by the Institutional Animal Care and Use Committee (IACUC) of authors institutions and comply 
with the National Institutes of Health guide for the care and use of Laboratory animals.

Immunohistochemistry (IHC) staining
The detailed protocol of IHC staining was described in published studies [23]. Tumor tissues were first 

fixed, embedded in paraffin, and cut into the 4 μm sections. The paraffin sections were deparaffined and 
incubated with 3% hydrogen peroxide. Then, the sections were blocked, incubated with anti-S6K1 antibody 
(1 : 100) and horseradish peroxidase (HRP)-coupled secondary antibody (Santa Cruz). The peroxidase 
activity was visualized through the 3-amino-9-ethyl-carbazol (AEC) and MAYER’S method (Merck) [23].

Statistical analysis
The results of one whole set of experiment were shown. Results were compared by one-way analysis 

of variance (ANOVA) followed by Turkey’s test. Values of p < 0.05 were considered as statistically significant. 
Experiments in Figs 1-5 were repeated at least three times, and similar results were obtained each time.

Results

CZ415 inhibits HNSCC cell survival
First, SCC-9 human HNSCC cells [12] were treated with gradually-increased 

concentrations of CZ415 (from 1 to 300 nM). MTT viability assay results in Fig. 1A show 
that CZ415 dose-dependently inhibited SCC-9 cell survival (MTT OD). CZ415 IC-50 was close 
to 30-100 nM (72-96 hour treatment) (Fig. 1A). At a low concentration (1 nM), CZ415 was 
however ineffective (Fig. 1A). CZ415 displayed a time-dependent response in inhibiting 
SCC-9 cell viability (Fig. 1A). It requires at least 48-72 hours to exert significant cytotoxicity 
(Fig. 1A). The clonogenicity assay shows that CZ415 at 10-300 nM significantly reduced the 
number of viable SCC-9 colonies (Fig. 1B). Additionally, CZ415 induced LDH release in SCC-9 
cells, confirming cell death (Fig. 1C).

SQ20B and A253 HNSCC cells were treated with CZ415 as well. A MTT assay shows that 
CZ415 (100 nM, 72 hours) was cytotoxic to these cells (Fig. 1D). Conversely, the same CZ415 
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treatment (100 nM, 72 
hours) was non-cytotoxic 
to the oral epithelial cell 
(“Oepi1/2” [12]). CZ415’s 
potential effect in the 
primary human oral cavity 
carcinoma (OCC) cells 
was tested. As described 
previously [12], four 
lines of primary OCC cells 
(namely “OCC1/2/3/4”) 
were established. Following 
treatment of CZ415 (100 
nM, 72 hours), a MTT 
assay shows that CZ415 
decreased viability of the 
primary OCC cells (Fig. 1E). 
The MTT assay results in 
Fig. 1F show that CZ415 
was significantly more 
potent in inhibiting SCC-9 
cell viability than the same 
concentration of rapamycin 
and RAD001, two mTORC1 
inhibitors [24]. CZ415 was 
even more efficient than 
the mTOR kinase inhibitor 
OSI-027 [25] (Fig. 1F). 
Collectively, these results suggest that CZ415 inhibits HNSCC cell survival.

CZ415 inhibits HNSCC cell proliferation
As described [12], the BrdU ELISA assay and [H3] thymidine incorporation assay were 

performed to test cell proliferation. Results show that CZ415 dose-dependently inhibited 

Fig. 1. CZ415 inhibits HNSCC cell 
survival. The established HNSCC 
cells (SCC-9, SQ20B and A253) 
(A-D, F), the primary human oral 
cavity carcinoma (OCC) cells 
(“OCC1-4 lines”) (E) or the oral 
epithelial cells (“Oepi1/2 lines”) 
(D) were treated with designated 
concentration of CZ415 (“CZ”), 
rapamycin (“Rap”), RAD001 
(“RAD”) or OSI-027 (“OSI”), cells 
were further cultured for indicated 
time, and cell survival/death were 
tested by assays mentioned in 
the text. “C” stands for untreated 
control group (Same for all Figs). 
For each assay, n=5. Bars stand for 
mean ± standard deviation (S.D., 
Same for all Figs). * p<0.05 vs. group “C”. # p<0.05 vs. CZ415 only (F). Experiments in this Fig. were repeated 
three times, and similar results were obtained.
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Fig. 2. CZ415 inhibits HNSCC cell proliferation. The established HNSCC 
cells (SCC-9, SQ20B and A253) (A-D, F), the primary human OCC cells 
(“OCC1-4 lines”) (E) or the oral epithelial cells (“Oepi1/2 lines”) (D) 
were treated with designated concentration of CZ415 (“CZ”), rapamycin 
(“Rap”), RAD001 (“RAD”) or OSI-027 (“OSI”), cells were further 
cultured for indicated time, and cell proliferation and expression of 
proliferation-associated proteins were tested by assays mentioned 
in the text. Cyclin D1 and Cyclin B1 expression were quantified and 
normalized to Tubulin (C). For each assay, n=5. * p<0.05 vs. group “C”. # 
p<0.05 vs. CZ415 only (F). Experiments in this Fig. were repeated four 
times, and similar results were obtained.
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SCC-9 cell proliferation 
(Fig. 2A and B). BrdU 
ELISA OD (Fig. 2A) and 
[H3] thymidine (Fig. 
2B) were significantly 
decreased after CZ415 
(30-300 nM) treat-
ment. Additionally, cy-
clin D1 and cyclin B1 
were downregulated 
in CZ415-treated cells 
(Fig. 2C).

In SQ20B and 
A253 cells, BrdU in-
corporation was in-
hibited after CZ415 
treatment as well (Fig. 
2D). CZ415 was inef-
fective on BrdU incor-
poration in the oral 
epithelial cell (“Oepi1/2”) 
(Fig. 2D). Significantly, BrdU 
ELISA OD was decreased by 
CZ415 in the primary HNSCC 
cells (Fig. 2E). Again, CZ415 
was more efficient in sup-
pressing SCC-9 cell prolifera-
tion than rapamycin, RAD001 
and OSI-027 (Fig. 2F). Collec-
tively, these results show that 
CZ415 inhibits HNSCC cell 
proliferation.

CZ415 blocks mTORC1/2 
activation and inhibits 
ERK activation in HNSCC 
cells
CZ415 is a mTOR kinase 

inhibitor [16, 17, 26]. mTOR 
signaling in CZ415-treated 
cells was tested. As shown, in 
SCC-9 cells, phosphorylation 
(“p-”) of the mTORC1 
substrate S6K1 (Ser-389) and 
the mTORC2 substrate AKT 
(Ser-473) were inhibited by 
CZ415 (Fig. 3A). p-AKT at 
Thr-308 was not significantly 
affected (Fig. 3A). Importantly, CZ415 inhibited ERK activation, and p-ERK1/2 (T202/
Y204) level decreased in SCC-9 cells (Fig. 3A). The basal activation of mTORC1 (p-S6K1) and 
mTORC2 (p-AKT Ser-473) were high in the primary human OCC cells (“OCC-1/4”), but low in 
the oral epithelial cells (“Oepi1/2”) (Fig. 3B). In the primary human OCC cells (“OCC1”), CZ415 
blocked mTORC1 (p-S6K1) and mTORC2 (p-AKT Ser-473) activation, whiling inhibiting ERK 
activation (Fig. 3C). p-AKT at Thr-308 was again not affected by CZ415 (Fig. 3C). Conversely, 

Fig. 3. CZ415 blocks mTORC1/2 activation and inhibits ERK activation in 
HNSCC cells SCC-9 cells (A), primary human OCC cells (“OCC1/2/3/4”) (B 
and C) or oral epithelial cells (“Oepi1/2”) (C and D) were treated with/out 
CZ415 (100 nM) for 6 hours; Expression of listed kinase proteins in the fresh 
cell lysates were tested, and blot data were quantified. β-Tubulin was tested 
as the loading control. Experiments in this Fig. were repeated four times, and 
similar results were obtained.
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Fig. 4. Autophagy inhibition sensitizes CZ415-induced killing of 
SCC-9 cells. SCC-9 cells were treated with/out CZ415 (100 nM) 
for the indicated time, expression of listed proteins were tested by 
Western blotting assay (A and B). SCC-9 cells were pretreated with 
3-methyladenine (3-MA, 10 mM) or chloroquine (Cq, 100 μM) for 
1 hour, followed by CZ415 (100 nM) treatment for applied time; 
Cell viability (MTT assay, C), cell death (LDH release assay, D) and 
apoptosis (TUNEL assay, E) were tested. Blot data were quantified (A 
and B). For each assay, n=5. * p<0.05 vs. group “C” (C-E). # p<0.05 vs. 
“DMSO” (0.1%) (C-E). Experiments in this Fig. were repeated three 
times, and similar results were obtained.
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CZ415 had only minor inhibition on mTORC1/2 and ERK in oral epithelial cells (“Oepi2”, Fig. 
3D). These might explain the in-effectiveness of the mTOR kinase inhibitor in epithelial cells 
(Fig. 1 and 2).

Autophagy inhibition sensitizes CZ415-induced SCC-9 cell death
AKT-mTOR in-activation can induce feedback autophagy activation, which serves as a 

chemo-resistance factor. Autophagy-associated proteins in CZ415-treated HNSCC cells were 
then tested. CZ415-induced mTORC1/2 inactivation in SCC-9 cells lasted for 12-24 hours 
(Fig. 4A). Significantly, CZ415 induced Beclin-1, ATG-5, and ATG-7 upregulation, light chain 
3B (LC3B)-I to LC3B-II conversion and p62 degradation (Fig. 4B), indicating autophagy 
activation [22, 27, 28]. Two well-known autophagy inhibitors, 3-methyladenine (3-MA) 
[29], chloroquine (Cq) [30], were applied next. CZ415-induced SCC-9 cell viability reduction 
(Fig. 4C) and cell death (Fig. 4D) were significantly potentiated by 3-MA or Cq. Therefore, 
autophagy inhibition can sensitize CZ415-induced SCC-9 cell death. Intriguingly, SCC-9 cell 
apoptosis was only induced by CZ415 when combined with the autophagy inhibitors (Fig. 
4E). Feedback autophagy activation could be the reason of non-apoptosis in CZ415-treated 
cells. Inhibition of autophagy can re-provoke SCC-9 cell. The autophagy inhibitors alone 
failed to affect cell survival and apoptosis (Fig. 4C-E).

Beclin-1 knockdown sensitizes CZ415
A shRNA method was utilized to knockdown Beclin-1, which is a key autophagy protein 

[31, 32]. Two different Beclin-1-targeting shRNAs (“a/b”), with non-overlapping sequences, 
were from Dr. Jiang’ [22]. A Western blotting assay confirm that both shRNAs induced 
significant Beclin-1 downregulation in SCC-9 cells (Fig. 5A). Consequently, CZ415-induced 
SCC-9 cell viability reduction (Fig. 5B) and cell death (Fig. 5C) were significantly potentiated. 
CZ415 induced apoptosis activation in Beclin-1-silenced SCC-9 cells (Fig. 5D). Beclin-1 
shRNA alone had no significant effect on SCC-9 cell survival, death and apoptosis (Fig. 5B-
D). Therefore, Beclin-1 shRNA results confirm that autophagy activation is a key resistance 
factor of CZ415. In A253 cells (Fig. 5E) and the primary human OCC cells (“OCC1 line”, Fig. 5F), 
the autophagy inhibitor 3-MA significantly potentiated CZ415-induced viability reduction. 
In contrast, CZ415 and 3-MA combination was non-cytotoxic to the epithelial cells (“Oepi1”, 
Fig. 5G).

Fig. 5. Beclin-1 
knockdown sensi-
tizes CZ415. The 
SCC-9 cells, express-
ing Beclin-1-target-
ing shRNA (“a/b”) 
or scramble control 
shRNA (“shSCR”), as 
well as the parental 
control SCC-9 cells 
(“Parental”) were 
treated with/out 
CZ415 (100 nM) for 
applied time; Be-
clin-1 expression 
(A), cell viability (MTT assay, B), cell death (LDH release assay, C) and apoptosis (TUNEL assay, D) were 
tested. A253 cells (E), the primary human OCC cells (“OCC1”) (F) or the primary human oral epithelial cells 
(“Oepi1”) (G) were pretreated with 3-methyladenine (3-MA, 10 mM) for 1 hour, followed by CZ415 (100 
nM) treatment for 72 hours; Cell viability was tested by MTT assay. For each assay, n=5. * p<0.05 vs. group 
“C”. # p<0.05 vs. “shSCR” cells (B-D). # p<0.05 vs. CZ415 only treatment (E-G). Experiments in this Fig. were 
repeated three times, and similar results were obtained.
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Beclin-1 shRNA sensitizes CZ415-induced anti-tumor activity in vivo
At last, the CZ415’s anti-tumor activity in vivo was tested. The SCC-9 tumor xenograft 

nude mice model was applied [12]. The tumor growth curve results, Fig. 6A, demonstrate 
that daily oral administration of CZ415 (20 mg/kg [16]) significantly inhibited growth of 
SCC-9 tumors with control scramble shRNA (“sh-C”). The estimated daily SCC-9 tumor 
growth (in mm3 per day, Fig. 6B) and tumor weights (at week-6, Fig. 6C) were both decreased 
after CZ415 treatment. The CZ415’s activity in vivo was largely sensitized against tumors 
expressing Beclin-1 shRNA (Fig. 6A-C). Beclin-1 shRNA alone didn’t affect SCC-9 tumor 
growth (Fig. 6A-C). The Mice body weight was not significantly different between the groups 
(Fig. 6D). When analyzing tumor tissue samples by a Western blotting assay, we show that 
activation of mTORC1 (p-S6K1), mTORC2 (p-AKT Ser-473) and ERK were inhibited by 
CZ415 (Fig. 6E). Beclin-1 expression was increased in CZ415-treated tumor tissues, blocked 
by Beclin-1 shRNA (Fig. 6E). An immunohistochemistry (IHC) staining assay demonstrates 
inhibition of p-S6K1 in CZ415-treated SCC-9 tumors (Fig. 6F).

Next, the primary human OCC cells (OCC-1 line) were inoculated via s.c. injection to 
the nude mice. Within 2-3 weeks, the xenograft tumors were established. Results in Fig. 6G 
demonstrate that the growth of the primary human OCC cells was significantly inhibited by 
CZ415 (20 mg/kg, daily) as well. CZ415 didn’t affect the mice body weight (Fig. 6H). mTORC1 
(p-S6K1), mTORC2 (p-AKT Ser-473) and ERK activation in tumor tissues were inhibited by 
CZ415 as well (Fig. 6I). Beclin-1 expression was increased, suggesting autophagy induction 
(Fig. 6I). These results together suggest that autophagy inhibition by Beclin-1 shRNA 
sensitizes CZ415-induced anti-tumor activity in vivo.

Fig. 6. Beclin-1 shRNA 
sensitizes CZ415-induced 
anti-tumor activity in 
vivo. The nude mice 
bearing SCC-9 tumors 
with Beclin-1 shRNA 
(“a”) or scramble control 
shRNA (“sh-C”) were 
administrated daily with 
CZ415 (20 mg/kg body 
weight, gavage); Tumor 
volumes (A) and mice 
body weights (D) were 
recorded every week for a 
total of 5 weeks; Estimated 
daily tumor growth was 
also calculated (B); At the 
end of experiment (Week-
6), SCC-9 tumors were 
isolated and weighted 
(C). At day-21, one tumor 
per group was isolated, 
tumor tissue lysates were 
subjected to Western blotting assay of listed proteins (E) and IHC staining assay of p-S6K1 (F, bar= 100 μm). 
The nude mice bearing the primary human OCC cells (OCC-1 line) were administrated daily with CZ415 
(20 mg/kg body weight, gavage) or vehicle control (“Saline”), tumor volumes (G) and mice body weights 
(H) were recorded; At day-21, one tumor of each group was isolated, signalings were tested (I). Blot data 
were quantified (E). For each group, n=10 (mice). * p<0.05 vs. group of “sh-C” only (A-C). # p<0.05 vs. “sh-
C+CZ415” group (A-C). * p<0.05 vs. group of “Vehicle” (G).
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Discussion

mTORC1 inhibitors, including rapamycin and its analogs, can have several limitations. 
Rapamycin binds to FKBP12, which indirectly and only partly inhibits mTORC1 activity [33]. 
mTORC1 inhibition can also lead to feedback activation of several key oncogenic signalings, 
including AKT and ERK [13, 34-36]. The in vivo and clinical use of mTORC1 inhibitors is 
limited due to the poor solubility [37, 38]. The most important of all is that mTORC1 
inhibitors have no direct inhibition on mTORC2 activity [7].

Due to these drawbacks of mTORC1 inhibitors, recent research effects have developed 
“the second-generation of mTOR inhibitors” [37, 38]. These compounds, including OSI-027 
[25, 39], AZD-8055 [40], AZD-2014 [18, 28] and XL388 [41], directly inhibit mTOR kinase 
to block activity of both mTORC1 and mTORC2 [37, 38]. Here, we show that CZ415 blocked 
mTORC1 and mTORC2 activation, but failed to induce feedback AKT and ERK activation. 
CZ415 was more efficiently in killing HNSCC cells than the knonw mTORC1 inhibitors 
(rapamycin and RAD001).

The anti-HNSCC cell activity by CZ415 is even more potent than the mTOR kinase 
inhibitor OSI-027. It is possible that CZ415may have better efficiency in blocking mTOR 
[16] than OSI-027. It is possibly due to the co-current inhibition of ERK signaling by CZ415 
as well. Another key advantage of CZ415 is its orally bioactivity. CZ415 oral administration 
inhibited growth of SCC-9 cells and primary human OCC cells in the nude mice. These results, 
together with the fact that CZ415 is non-cytotoxic to oral epithelial cells, suggest that this 
novel mTOR kinase could be a novel and promising anti-HNSCC agent.

When autophagy is activated, cells actively degradate its own components (i.e. organelles 
and cell proteins), which provides nutrition and energy for survive [42-44]. In cancer cells, 
many anti-cancer agents could induce feedback autophagy activation [42-45]. Conversely, 
autophagy inhibition can sensitize the anti-cancer activity [42-45]. Activated mTOR shuts 
down autophagy. mTOR phosphorylates unc-51-like kinase 1 (ULK1) [46] and autophagy-
related protein 13 (ATG-13) [47] to inhibit autophagy initiation. mTOR inhibition, on the 
other hand, shall lead to autophagy induction [48-50]. Here, we show that CZ415 induced 
autophagy activation in HNSCC cells. Autophagy was evidenced by Beclin-1/ATG-5/ ATG-
7 upregulation, LC3B-I to LC3B-II conversion and p62 degradation. Conversely, autophagy 
inhibitors sensitized CZ415-induced anti-HNSCC cell activity, causing profound cell death 
and apoptosis.

Beclin-1 is a Bcl-2-interacting protein, it is the mammalian orthologue of the yeast 
protein Apg6/Vps30 [32, 51, 52]. Beclin-1 is required for autophagosome formation, also 
indispensable for autophagy initiation and progression [32]. Here, we show that shRNA-
mediated knockdown of Beclin-1 sensitized CZ415-induced anti-HNSCC cell activity. In vivo, 
CZ415-induced anti-tumor activity was further potentiated against Beclin-1-silenced SCC-9 
tumors. These evidence suggests that Beclin-1-driven autophagy is the primary resistance 
factor of CZ415 in HNSCC cells.

Conclusion

Together, targeting mTOR by CZ415 inhibits HNSCC cell growth in vitro and in vivo. 
Inhibition of feedback autophagy can further sensitize CZ415 against HNSCC cells.
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