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A new optimization particle filtering
navigation location method for aquatic
plants cleaning workboat in crab farming

Chengzhi Ruan1,2 , Dean Zhao2, Shihong Ding2, Yueping Sun2,
Jinhui Rao1, Xiaoyang Liu2 and Weikuan Jia3

Abstract
Chinese river crabs are important aquatic products in China, and the accurate operation of aquatic plants cleaning
workboat is an urgent need for solving various problems in the aquaculture process. In order to achieve the accurate
navigation positioning, this article introduces the visual-aided navigation system and combines the advantages of particle
filter in nonlinear and non-Gaussian systems. Meanwhile, the generalized regression neural network is used to adjust the
particle weights so that the samples are closer to the posterior density, thus avoiding the phenomenon of particle
degradation and keeping the diversity of particles. In order to improve the network performance, the fruit fly optimization
algorithm is introduced to adjust the smoothing factor of transfer function for the generalized regression neural network
model layer. On this basis, the location filtering navigation method based on fruit fly optimization algorithm-generalized
regression neural network-particle filter is proposed. According to the simulation results, the meanR of root-mean-square
error of the proposed fruit fly optimization algorithm-generalized regression neural network- particle filter method
decreases by 12.39% and 6.87%, respectively, compared with those of particle filter and generalized regression neural
network methods, and the meanT of running time decreases by 16.04% and 9.14%, respectively. From the repeated
experiments on the aquatic plants cleaning workboat in crab ponds, the latitude error of the proposed method decreases
by 23.45% and 12.68%, respectively, and that the longitude error decreases by 29.11% and 17.65%, respectively, compared
with those of particle filter and generalized regression neural network methods. It is proved that our proposed method
can effectively improve the navigation positioning accuracy of aquatic plants cleaning workboat.
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Introduction

As an important aquaculture species in China, Chinese

river crabs are rich in nutrition and have high economic

value.1,2 In the process of river crab farming, farmers gen-

erally take the aquaculture mode of planting aquatic plants.

Aquatic plants not only provide favorite food and habitats

for crabs but also improve the survival environment of

crabs through increasing the dissolved oxygen level,
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decreasing harmful substances, adsorbing heavy metals,

and purifying the water.3,4 In river crab farming, the gen-

eral required height from the top of aquatic plants to water

surface is about 20 cm. In view of this, the cleaning and

maintenance of aquatic plants always play a key role in

successful crab farming.5

At present, the cleaning of aquatic plants in river crab

farming is mainly accomplished through manual operation,

which means heavy labor intensity and high cost.6 In order

to reduce the labor intensity, it is of great significance to

design an intelligent automatic workboat for cleaning aqua-

tic plants in crab farming. Currently, the aquatic plants

cleaning workboat mainly relies on the global positioning

system (GPS) navigation mode.7 However, under this kind

of navigation mode, the workboat can only navigate along

the preset artificial route, whereas aquatic plants are not

always in the preset route. As a result, the errors between

the workboat sailing trajectory and actual aquatic position-

ing are usually large, and the cleaning effect on aquatic

plants is not desirable. In this study, a more advanced visual

navigation is introduced to obtain the visual information

through the camera and complete the auxiliary navigation

work.8 Visual navigation is a hot issue in current navigation

research, especially in agricultural machinery. In the navi-

gation route extraction algorithm of visual navigation sys-

tem, a navigation route detection method based on

improved genetic algorithm was proposed. Genetic optimi-

zation selected the individuals with the highest fitness as

the straight line coding of crops and then got the navigation

line.9 In order to effectively and quickly identify the navi-

gation and location of parallel lines in farmland, a parallel

line recognition based on machine vision was proposed,

and an improved parallel recognition algorithm based on

Hough transform was used to identify and locate ridge

lines.10 Meanwhile, in order to ensure the system reliability

in the complex background environment of aquaculture

ponds, this study combines the advantages of visual navi-

gation and GPS navigation and establishes an integrated

navigation method to improve the positioning accuracy and

workboat efficiency.11,12

In navigation and positioning filtering, the particle filter

(PF) method is often used to improve positioning accuracy

and reduce positioning error.13,14 PF is a kind of filtering

technique based on Monte Carlo’s thought,15 and its state

function and observation function are both based on non-

linear and non-Gaussian hypothesis. Hence, this method is

widely used in the field of nonlinear and non-Gaussian

navigation and target tracking.16,17 Gordon et al. proposed

a resampling algorithm. However, this method can easily

lead to particle depletion and thus affect the accuracy of

particle filtering.18 Torma and Szepesvári proposed an

adaptive adjustment PF algorithm based on likelihood dis-

tribution.19 The algorithm selected the importance density

function as the priori density and neglected the influence of

the latest measurement information in the system.

Although the filtering stability was improved to some

extent, new particles would be generated when the non-

normalized likelihood function values were more than the

preset threshold. So the navigation accuracy was relatively

low. Zhao et al. proposed a fast quasi-Monte Carlo (QMC)-

based PF algorithm. However, this method relied on the

spatial location of the parent particle, and the selection of

the subspace size still needed to be optimized.20 Guo and

Wang proposed a sequential QMC algorithm to achieve

higher estimation accuracy by randomizing the QMC sam-

ples in the sample space, but this method had too high

computational complexity for convenient applications.21

In the study by Talantzis,22 a novel speaker tracking frame-

work of PF based on information theory was discussed. In

the study by Zhong et al.,23 an extended Kalman particle

filtering (EKPF) approach for tracking nonconcurrent mul-

tiple talkers was proposed. Furthermore, a decentralized

particle filter (DPF) method was presented based on the

consensus filter over sensor networks to implement track-

ing task, in which each node performs a local PF and only

interacts with its neighbor nodes to calculate a global state

estimation.24 Actually, DPF methods are more robust than

the centralized PF ones.

Particle depletion and diversity issues are the main

problems that affect the accuracy and localization of par-

ticle filtering. In order to solve these problems, intelligent

algorithms are often introduced to optimize the PF. In

navigation and positioning, the optimized particle filter-

ing method is a hot research topic. Firefly algorithm is a

popular intelligent optimization algorithm in recent years,

which is proposed by Professor Yang of Cambridge Uni-

versity in 2009.25 On this basis, Tian et al. proposed a PF

based on firefly algorithm optimization, which dynami-

cally optimized the particle set through brightness and

attractiveness so as to solve the problem of particle deple-

tion caused by resampling.26 Chen et al. proposed a bat

algorithm-optimized PF algorithm.27 The simulation

results show that this algorithm is superior to other pop-

ulation intelligent optimization algorithms. However,

based on the population optimization algorithm, the opti-

mal particles number of PF is set to a priori fixed value.

But in actual use, in order to ensure the performance of

the algorithm, a larger particle sampling size is usually

used. As a result, the efficiency of the algorithm drops

drastically. Due to the weighted summation step of the

PF, much redundant particles would lead to the decrease

of the calculation accuracy. At present, many advanced

intelligent algorithms were used to optimize particle fil-

tering and apply it to the research of navigation and posi-

tioning, especially in the applications of robots, target

tracking, and so on. However, many optimization algo-

rithms are still difficult to meet the system’s require-

ments, so the problem of navigation of the optimized

PF deserves further study.

With the development of neural network technology, it

is also a hot topic in the research of the optimization of

PF. Tyan and Kim proposed a compact convolutional
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neural network (CNN)-based tracker in conjunction with

a PF architecture. This method had higher positioning

accuracy for the target tracker of motion, but because

of the introduction of convolution operations, the amount

of calculation was relatively large and the efficiency of

the algorithm need to be improved.28 Chen et al. proposed

a new method, which used generalized regression neural

network (GRNN) to calculate the weights of the

offsprings. It can improve the precision and the speed

of the filter. The experimental results showed that the

algorithm can be used to track the radar target with higher

computational accuracy than the standard QMC PF. How-

ever, the method did not optimize the transfer function of

the model layer in the network, and it affects the perfor-

mance of the network to some extent, so the stability of

GRNN needs to be improved.29 As a new intelligent

algorithm, the fruit fly optimization algorithm (FOA) was

appeared in recent years, which was put forward by Pan

in 2012.30 It has many advantages, such as the amount of

calculation is smaller, operation time is shorter, and

optimization precision is higher.31 In this study, we intro-

duced the FOA to optimize the GRNN network, which

was used to improve the stability of GRNN.

For the above-mentioned tracking methods based on

the PF or DPF, the variance of particle weights generally

increases with time extension. As a result, traditional PF

methods in the positioning filter often encounter the

phenomenon of particle depletion, which greatly affect

the accuracy of state estimation.32 In this study, the impor-

tance density function is optimized by GRNN firstly.33

Then, after the prediction step, in order to improve the

filtering accuracy, the sample is adjusted by GRNN so

that it is closer to the posterior density. For the model

layer of GRNN, the smoothing factor of the transfer func-

tion has a great influence on the operation of network

performance, so this study introduces the FOA to adjust

the smoothing factor of GRNN in the space optimiza-

tion.30 In this study, an FOA method is proposed to adjust

the smoothing factor of GRNN, and then PF is optimized

to obtain the aquatic cleaning workboat navigation filter-

ing method (FOA-GRNN-PF). Furthermore, the proposed

method is verified through simulation and navigation

experiments.

The rest of this article is organized as follows.

“Materials and methods” section establishes the system

model and the coordinate system and describes the prin-

ciples of the FOA-GRNN-PF method. In “Experimental

results and discussion” section, the performance results

and related analysis are given from three aspects of image

processing experiment, simulation experiment, and navi-

gation experiment. Especially in the simulation, naviga-

tion experiment, and result analysis, the proposed method

is compared with PF and GRNN-PF methods. Finally,

some conclusions and suggestions for further work are

summarized in “Conclusions and future work” section.

Materials and methods

System model

In order to obtain accurate navigation and positioning

effect, an optimized PF is used to locate and filter the

integrated navigation.34 Hence, the basic model of the

system should be established firstly. The most important

thing is to obtain the location information of the aquatic

plants-cleaning workboat. Since the workboat sails in the

crab pond, it can be approximated as a pure azimuth track-

ing model. Thus, the state equation and the measurement

equation can be established by the target position and

velocity as follows.

State equation

For studying the aquatic plants-cleaning workboat, it is

necessary to establish the visual coordinate system and the

world coordinate system when the workboat is sailing. The

coordinate system is established as shown in Figure 1.

In Figure 1, we select the current location and the target

location of the workboat as the objects. For generating the

navigation point, it is actually the position information of

the workboat and target location. We assume that the state

vector of the navigation system is Xk , and then the system

state equation can be defined as follows

X ðkÞ ¼ fX ðk � 1Þ þ  Hðk � 1Þ ð1Þ

In the process of establishing the navigation system

model of this study, the position information is obtained

through the state equation. And the state equation is com-

posed of xcðkTÞ; ycðkTÞ; uxk
; vyk

; xpðkTÞ, and ypðkTÞ.
xcðkTÞ; ycðkTÞ are the coordinate values of the target in the

Figure 1. The coordinate system.
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coordinate system X and Y, respectively, which can be

obtained in real time through GPS; uxk
and vyk

represent

the speed of the workboat corresponding to the coordinate

system X and Y, respectively, which are also acquired by

the GPS model. xpðkTÞ and ypðkTÞ represent the position

coordinates of the target point in the coordinate system X

and Y, respectively. The vision system can calculate the

coordinate position of the target point through the obtained

image information and the camera parameters.

In formula (1), T is the sampling period and

k ¼ 1; 2; � � � n. f represents a state transition matrix from

the time k � 1 to k.  represents the system state noise

matrix. f and  are, respectively, as follows

f ¼

1 0 T 0 0 0

0 1 0 T 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2666666664

3777777775
ð2Þ

 ¼

1 0

0 1

1 0

0 1

1 0

0 1

2666666664

3777777775
ð3Þ

Moreover, Hðk � 1Þ ¼ ½Hxk�1
Hyk�1

�T represents the

model error and system noise caused by disturbance.

Hxk�1
and Hyk�1

, respectively, denote the system noise in

the X and Y directions at time k�1. Among them, the

system noise is zero-mean Gaussian white noise, which

satisfies the following formula

E½Hk � ¼ 0

E½HkHT
j � ¼ Qkdkj

(
ð4Þ

where Qk denotes the symmetric nonnegative variance

matrix of system noise, dkj is the function of Kronecker-

d, E½Hk � is the mean of system noise, and E½HkHT
j � is the

system noise variance estimation matrix.

Measurement equation. In Figure 1, the angle between PG
�!

and PQ
�!

is defined as the azimuth, which is denoted as q.
It can be calculated as follows

qðkTÞ ¼ arctan
xp � xc

yp � yc

� �
ð5Þ

Then, the measurement equation of the operating vessel

navigation system can be expressed as

qðkTÞ ¼ arctan
xp � xc

yp � yc

� �
þ vðtÞ ð6Þ

where nðkÞ is the system measurement noise. Among them,

the system measurement noise is zero-mean Gaussian

white noise, which satisfies the following formula

E½vk � ¼ 0

E½vkvT
j � ¼ Rkdkj

(
ð7Þ

where Rk denotes the variance matrix of measurement

noise; and dkj is the function of Kronecker-d.

Principles of FOA-GNRR-PF

PF is a widely used filtering method in related studies of

navigation and positioning. Its basic idea is resampling

algorithm that PF samples with large weights will be

repeated, whereas small-weight samples will be directly

discarded. This feature of PF not only easily leads to

particle depletion but also results in the loss of particle

diversity.35 To avoid the phenomenon of particle deple-

tion and maintain particle diversity, GRNN is introduced

to adjust particle weights so that the samples can be made

closer to the posterior density. For GRNN parameters, we

only need to adjust the smoothing factor s in the model

kernel function, since the suitable s value has a great

influence on the GRNN performance. In this study, we

introduce FOA in the spatial search to find the best s
value using the keen sense of smell and visual function

of fruit fly.

Basic principles of PF. PF is an approximate Bayesian filtering

algorithm based on Monte Carlo’s idea.36 This method

uses a number of discrete and random particles to approx-

imate the probability density function of random variables

in the system and replaces the integral operation by aver-

aging the samples to obtain the minimum variance esti-

mate of the state. The Monte Carlo method collects the

weight of particle sets (sample sets) from the posteriori

probability sampling, and then uses the particle sets to

represent the posterior distribution.16,24

In two-dimensional target positioning system, according

to the state equation (1) and the measurement equation (5)

of the workboat system, PF algorithm is implemented,

which is as follows:

Step 1. Sampling. In this study, the prior probability den-

sity function is chosen as the importance function, and its

expression formula is

X i
k*P

�
Xk jX ðmÞk�1

�
ð8Þ

After sampling, we get the particle setting as fXk
ðmÞgN

m¼1

at the time k, m ¼ 1; 2; � � � ;N . The workboat state formulas

are as follows

x
ðmÞ
c;k ¼ x

ðmÞ
c;k�1 þ uðmÞxk�1

þ H ðmÞxk�1
ð9Þ

y
ðmÞ
c;k ¼ y

ðmÞ
c;k�1 þ uðmÞyk�1

þ H ðmÞyk�1
ð10Þ
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uðmÞxk
¼ uðmÞxk�1

þ H ðmÞxk�1
ð11Þ

vðmÞxk
¼ vðmÞxk�1

þ H ðmÞyk�1
ð12Þ

x
ðmÞ
p;k ¼ x

ðmÞ
p;k�1 þ H ðmÞxk�1

ð13Þ

y
ðmÞ
p;k ¼ y

ðmÞ
p;k�1 þ H ðmÞyk�1

ð14Þ

Step 2. Normalized weight calculation. In this system, the

measurement noise is set to zero mean Gaussian white

noise. The weight is calculated as

w
ðmÞ
k ¼ w

ðmÞ
k�1p

�
qk jxðmÞk

�
¼ w

ðmÞ
k�1

1ffiffiffiffiffiffiffiffiffiffi
2pd2

v

q exp

(
� 1

2d2
v

qk � arctan
x
ðmÞ
p;k � x

ðmÞ
c;k

y
ðmÞ
p;k � y

ðmÞ
c;k

0@ 1A24 359=;
ð15Þ

When the weight of each particle is calculated, the

weights are normalized as

w
ðmÞ
k
� ¼ w

ðmÞ
kXN

m¼1

w
ðmÞ
k

ð16Þ

Step 3. Re-sampling. The resampling algorithm is used to

get a new set of particles f ~X
ðmÞ
k ; ~w

ðmÞ
k g

N

m¼1
.

Step 4. Estimate of output state. The position coordinate

of the workboat, the speed values in the X and Y directions,

and the values of the target point position coordinate are

determined as follows:

bxðmÞc;k ¼
XN

m¼1

w
ðmÞ
k
�x
ðmÞ
c;k ð17Þ

byðmÞc;k ¼
XN

m¼1

w
ðmÞ
k
�y
ðmÞ
c;k ð18Þ

buðmÞc;k ¼
XN

m¼1

w
ðmÞ
k
�u
ðmÞ
c;k ð19Þ

bvðmÞc;k ¼
XN

m¼1

w
ðmÞ
k
�v
ðmÞ
c;k ð20Þ

bxðmÞp;k ¼
XN

m¼1

w
ðmÞ
k
�x
ðmÞ
p;k ð21Þ

byðmÞp;k ¼
XN

m¼1

w
ðmÞ
k
�y
ðmÞ
p;k ð22Þ

Through the PF algorithm, the structure of the workboat

navigation and positioning filtering system can be

described as follows: Firstly, the PF system initializes the

samples. The system determines the prior probability of the

target state and assigns the corresponding initial value to

each particle. At the next moment, the system carries out

the transfer of running state and spreads its own state accord-

ing to the state transition equation. The system is monitored

to get the observed value, and the weights of all particles are

calculated. Finally, the weights of all particles are obtained,

and the output of the posterior probability is accomplished.

After the sample is resampled, the system state is transferred

to form a navigation positioning and filtering system.

By the above analysis, we can find that the adjustment of

the weight is the key technology in the process of PF, which

is the only input value in the whole algorithm. It is the

azimuth of the target in the system. Each time a value of

q is entered, in order to obtain a state estimate, it will go

through four steps: sampling, normalization weight calcu-

lation, resampling, and output of the state estimate. Accord-

ing to the whole algorithm steps, we know that for each

measured value we need to deal with a large number of

particles, and there are more steps to be performed. If the

number of particles is large, the amount of algorithm cal-

culation is also large, and the computation speed will be

slower. To speed up the algorithm operation, it will sacri-

fice the diversity of particles, so it will be easy to cause

particle depletion phenomenon.

FOA-GRNN network structure. By measuring the workboat

azimuth to adjust the corresponding weights, it will greatly

influence the speed and efficiency of the algorithm. But the

GRNN has certain advantage in optimization PF. In this

study, GRNN is introduced to adjust particle weights. After

adjustment, the samples can be closer to the posterior den-

sity, thus avoiding particle dilution and maintaining parti-

cle diversity. GRNN is similar in structure to radial basis

function neural network. It can be divided into four layers

including input layer, pattern layer, summation layer, and

output layer. The unit of the input layer is a simple linear

unit. The model layer is also called the implicit regression

layer, in which each unit corresponds to a training sample.

The summation layer is composed of two units, of which

one unit calculates the weighted sum of the output of each

neuron in the model layer and the other calculates the sum

of the output of each neuron in the pattern layer. The output

layer divides the summation layer molecule unit by the

denominator unit to obtain the output values.37

The work process of GRNN does not need to adjust the

weight between the layers. It only needs to adjust the para-

meters of the model layer transfer function, that is, the

smooth factor s. This parameter has a great impact on the

network performance.38,39 In this article, we try to intro-

duce the FOA algorithm in the space search optimization,

and the smoothing factor s is used as the taste concentra-

tion judgment value Si. Here, the mean square error (MSE)

of the network target value and the actual value is the taste

concentration judgment function, and it is also defined as

the fitness function. Using the sensory smell and visual

Ruan et al. 5



function of fruit fly, the smoothing factor s is dynamically

adjusted to optimize the GRNN model. The GRNN model

is shown in Figure 2.

In the training procedure of GRNN, the number of hid-

den layer neurons and the connection weights between

layers are uniquely determined by the training samples. The

value of the smoothing factor s directly affects the perfor-

mance of the neural network, so the training procedure of

the network is to search the optimal smooth factor s value.

We assume that the position of the fruit fly in the three-

dimensional space is FlyðiÞðxi; yi; ziÞ, and then the distance

between an individual fly and the origin is

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i þ z2

i

q
ð23Þ

In the training process of the network, the corresponding

Si of fruit fly individuals are brought into the GRNN model

as the smoothing factor s, that is, the network model is

obtained through the training sample of the network. Then,

the difference between the target value and the actual mea-

surement value of the training sample is calculated, which

is used as the taste concentration of fruit fly individuals.

The calculation formula is

SðiÞ ¼ MSEðiÞ ¼ 1

n

X
ðy output � yÞ ð24Þ

where y output is the output value, and y is the target value.

The number of neurons in GRNN is equal to the number

of samples n, and the transfer function of each neuron is

Pi ¼ exp � ðX � XiÞT ðX � XiÞ
2s2

" #
ð25Þ

The taste concentration determination function is cal-

culated to determine whether the current best taste

concentration is better than the previous iteration of the

best taste concentration. And the coordinates of best

smoothing factor s are reserved. Finally, according to the

optimal s value, determine whether the maximum number

of iterations is satisfied. If yes, it substitutes into GRNN to

optimize PF location filter, and the test samples and mea-

sured values can output.

FOA can optimize GRNN to obtain the best s value, and

then the best s substitutes GRNN to optimize PF location

filter. The flow chart is shown in Figure 3.

Procedure of the FOA-GRNN-PF algorithm. The proposed

method can avoid the phenomenon of particle dilution and

Figure 2. Structural model of FOA to adjust the GRNN’s
smoothing factor. FOA: fruit fly optimization algorithm; GRNN:
generalized regression neural network.

Figure 3. FOA-GRNN flow chart. FOA: fruit fly optimization
algorithm; GRNN: generalized regression neural network.
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keep the diversity of particles. It can realize information

sharing between particles, thus enhancing the global optimi-

zation ability of the algorithm and improving the efficiency

of the filtering algorithm. In the workboat positioning sys-

tem, the steps of this algorithm are as follows:

Step 1. Particle sample initialization. At the initial moment,

N particles are sampled as the initial particles of the algo-

rithm. The importance density function is represented by

the formula (8).

Step 2. Calculate the importance of the weight of each
particle. It is calculated using formula (15).

Step 3. Optimize GRNN parameters according to FOA.

1. Randomly generate the initial position, individual

number, and maximum number of iterations of FOA

population.

2. Randomly give the flying direction and distance of

an individual fruit fly searching for food.

3. Calculate the distance and the taste concentration

determination value between each individual and

the atom and use them as distribution parameters.

Step 4. Optimize PF by GRNN and use GRNN to calculate
the weights of the offspring particles.

1. Construct the input value and target value to train

the GRNN network. The structure is selected as 1�
q � 2 � 2, and the SðiÞ of individual flies are taken

into the GRNN model as the smoothing factor s.

The SðiÞ of the sample training value and the experi-

mental value are calculated.

2. After network training, the GRNN model is trained

by the parent particles, and the weights of the off-

spring particles are obtained by GRNN. Then, the

weights of the two generations of particles are com-

bined to obtain the new weight matrix.

Step 5. Normalize the weights of all particles. The formula

(16) is used to calculate the weights, which are normalized

to obtain the new weights in the PF update process.

Step 6. Resampling techniques are applied to get a new set of
particles.

Step 7. System output. The estimate value of the state

equation of the system by using the formulas (17) to (22),

that is the result of output state estimate of optimization

particle filtering. The estimate values of workboat position

coordinates are calculated by the formulas (17) and (18),

the estimate speed values in the X and Y directions are

calculated by the formulas (19) and (20), and the estimate

values of target point position coordinates are calculated by

the formulas (21) and (22).

Step 8. Determine whether the maximum number of
iterations is achieved. If the answer is right, exit the algo-

rithm; else return to step 2.

Experimental results and discussion

Image processing experiment

Image collection. The image acquisition location is the crab

farming base in Anfeng Town, Xinghua City, Jiangsu

Province, China.

The simulation environment is as follows: CPU Intel

Core2 Duo E7300 2.66 GHz, RAM 3.24GB, Intel ® G33/

G31 ECF, MATLAB R2014a.

The image collection demand is as follows. Lens (China

Shenzhen Jinghang Technology Co., Ltd.) is the megapixel

industrial KBE-RT6200E/S lens. The focal length is 3.9–

85.8 mm, and the view angle is �6�–54�. F1.6-C is the

aperture parameter of the lens, and the aperture F is the

ratio of lens’ focal length f to the diameter of the lens’

aperture D. We select C-type interface of the lens for this

study. The surface size of image is 1/3, and the nearest

distance is 0.15 m. The camera performs data transmission

with the computer through USB2.0.

Image analysis. Floating aquatic plants generally exist in a

variety of shapes in crab ponds. In this study, the aquatic

plants present a striped distribution. In crab ponds, the

collected aquatic images are generally affected by

the diffuse reflection of water surface, especially when

the light intensity is high. To reduce or eliminate the effect

of surface reflection on the image acquisition quality, a

polarizer is installed at the front of the camera, which can

reduce the impact of water reflection on the collected

images. Figures 4 and 5 show the comparison of images

acquired with and without polarizer.40

From the visual perspective of Figures 4(a) and 5(a), the

luminance of the original image collected after the instal-

lation of the polarizer is darken to some extent, and the

brightness of the image is reduced. We can get the corre-

sponding image histogram according to the original color

image, as shown in Figures 4(b) and 5(b). The gray value of

the corresponding histogram is also decreased to a great

extent. We calculate the average gray value of the two

images, we can get the gray value G1 ¼ 126.71 of Figure

4(a) and the gray value G2 ¼ 109.32 of Figure 5(a), so the

gray value is decreased by 13.72%. The comparison

shows that the gray value of the image is reduced after

the installation of the polarizer, the brightness of the

image is also reduced to a certain extent, and the influence

of the reflected light on the image quality can be reduced

to a certain extent, which can reduce the difficulty of the

image processing.

Image processing. In the visual system, the collected image

information is used to segment the aquatic target, and the

position of the aquatic area is determined. The straight line

Ruan et al. 7



is fitted through the calculation of aquatic area, and then the

visual navigation reference line is extracted. The main pro-

cess of image processing is shown in Figure 6.

Navigation line extraction. In order to provide correct naviga-

tion information for the navigation system, the key is to use

the image processing system to fit out the visual navigation

baseline. Image segmentation is very important in image

processing. In this study, we use the optimized pulse coupled

neural network (PCNN) for image segmentation.41,42 This

method can not only optimize the weighted combination of

PCNN maximum Shannon entropy and minimum cross

entropy by particle swarm optimization (PSO) but also eval-

uate the optimization effect of parameters using the yield

function, thus realizing the automatic optimization of net-

work parameters and improving the operating efficiency and

segmentation accuracy of PCNN.2 For image de-noising, a 3

� 3 arithmetic mean filter window is used. In morphological

treatment, a 1 � 3 template is used for expansion, and a 3 �
1 template is selected for corrosion.43

In the process of extracting the navigation route, in order

to reduce calculation time and memory usage of the Hough

transform method, we choose to map the nonzero pixels in

the binarized image to the accumulating units with large

possibility rather than all accumulating units based on the

traditional Hough transform algorithm, thus significantly

reducing the computational complexity.44,45 The image

processing results are shown in Figure 7.
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Figure 4. The original image and grayscale histogram without
polarizer. (a) The original image and (b) grayscale histogram.
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Figure 5. The original image and grayscale histogram with
polarizer. (a) The original image and (b) grayscale histogram.

Figure 6. The flow chart of image processing.

Figure 7. Results of image processing: (a) grayscale, (b) de-noising
image, (c) image segmentation, (d) morphological processing,
(e) feature point extraction, and (f) extraction of navigation lines.
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The experimental results are analyzed by the statistical

analysis method. The image recognition accuracy rate g is

calculated by the following formula

g ¼ R

N
� 100% ð26Þ

In the formula (26), R represents the number of images

that can be correctly identified. N represents the total num-

ber of experiment collected images. We collected 60

images by the industrial camera. From the image process-

ing experiment, it can be found that 49 images can accu-

rately extract the navigation reference routes, and the

recognition accuracy rate is 81.67%. Meanwhile, the aver-

age algorithm running time of an image is 653 ms. The

accuracy rate and running time can meet the real-time and

accuracy requirements for the automatic navigation sys-

tem of aquatic plants-cleaning workboat.

Simulation experiment

In order to simulate the bearings-only tracking two-

dimensional motion navigation model, the simulation of the

state equation and measurement equation are shown in for-

mulas (1) and (5). Three different navigation and positioning

methods, that is, PF, GRNN-PF, and FOA-GRNN-PF, are

used to conduct the comparative experiments by MATLAB

R2014a.

The model parameters are set as follows: wðtÞ is the

Gaussian system noise, which obeys the distribution of

Nð0; 0:1Þ; vðtÞ is the observed noise, which obeys the dis-

tribution of Nð0; 0:5Þ; and X ð0Þ ¼ ½5:5; 0:8; 3:5; 0:2� is the

initial state. In the simulation experiment, we face more

difficulty to get the true value of the initial moment, and

we usually give the state value through the priori informa-

tion, but there is usually a margin of error. In order to match

the actual real value, we add a certain margin of random

error on the basis of the real value and obtain the initial value

of the state estimation. The size of the random error has a great

influence on filtering performance in the front time, but PF

has a certain feedback mechanism. The prediction error of the

current moment will participate in the correction of the filter-

ing result at the next moment, so the initial error has less

influence on the filtering accuracy at a later moment. In this

article, we set the initial time coordinate random error upper

limit as 2.5 and the maximum random error rate as 0.1. The

initial value range of the coordinate state is set to [�2, 2], and

the initial value range of the velocity state is [�0.5, 0.5].

Finally, the particle swarm at the initial moment is obtained

by the normal distribution. The root mean square error

(RMSE) formula is as follows

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

qðktÞ � qðktÞ
^

� 	2

vuut ð27Þ

where qðktÞ represents the measurement azimuth and qðktÞ
^

represents the estimated value of measurement azimuth.

For better testing the accuracy and efficiency of the

proposed method, the numbers of the selected particles are

set as N1 ¼ 30, N2 ¼ 60, and N3 ¼ 100, respectively, and

the sampling time step is set to 50 s. These experiments can

be simulated separately to obtain the filter positioning sta-

tus estimate and the absolute value of filter error. The

results are shown in Figures 8 to 13.

As can be seen in Figures 8 to 13, compared with the PF

and GRNN-PF methods, the optimized s value of GRNN

can be obtained by FOA space optimization, and the parti-

cle state updating equation of PF can be further iterated by

the optimized GRNN to improve the particle distribution.

The mean of RMSE and running time can be calculated

from the simulation results of different particles filter
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Figure 8. Status estimation of filter (N1 ¼ 30).
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Figure 9. Absolute value of filter error (N1 ¼ 30).
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methods and the number of particles. The results are shown

in Table 1. From Table 1, the meanR of RMSE of the FOA-

GRNN-PF state values decreases by 12.39% and 6.87%,

respectively, compared with those of PF and GRNN-PF.

The meanT of the running time decreases by 16.04% and

9.14%, respectively, compared with those of PF and

GRNN-PF. It can be seen that the proposed method

improves the accuracy of PF and the computational effi-

ciency of the algorithm, which has certain advantages.

In theory, the running time of PF is approximately linear

relation with the number of particles, that is, the more the

number of particles, the longer the running time and the

higher the precision. One of the purposes of this simulation

experiment is to show that the proposed method can

achieve the desired precision using fewer particles. By fur-

ther analysis of Table 1, it can be found that the estimation

accuracy results are close to each other when the numbers

of particles are 30 and 60, which are better than the experi-

mental results when the number of particles is 100. This

also demonstrates that the proposed method can use fewer

particles to achieve the required accuracy, and thus reduce

the running time of algorithm.

In summary, through the simulation experiment, it can

be obtained that the proposed method has advantages in

operational accuracy and efficiency compared with PF and

GRNN methods. In addition, the FOA-GRNN-PF method

can achieve the required precision and efficiency in the

fewer number of particles, therefore it has a higher com-

prehensive performance.

Navigation experiment and result analysis

Experimental object. Figure 14 illustrates the structure of

aquatic plants-cleaning workboat in the navigation experi-

ment. The workboat is mainly composed of a hull, two

wheel propellers, the GPS sensor module, a cutting
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Figure 11. Absolute value of filter error (N2 ¼ 60).
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Figure 12. Status estimation of filter (N3 ¼ 100).

0 5 10 15 20 25 30 35 40 45 50
–30

–20

–10

0

10

20

30

40

Time step

St
at

us
 v

al
ue

PF

GRNN-PF

FOA-GRNN-PF

Actual value

Figure 10. Status estimation of filter (N2 ¼ 60).
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Figure 13. Absolute value of filter error (N3 ¼ 100).

10 International Journal of Advanced Robotic Systems



conveyor, a cutting depth regulator, the aquatic plants pav-

ing device, and other devices.

The digital photo of aquatic plants cleaning workboat is

shown in Figure 15. The workboat has three working

modes, including remote control, manual navigation, and

autonomous navigation. It adopts the design of a single

hull. The positive and negative wheels are installed on both

sides of the hull as the power devices to achieve a spot turn

of 360� of the workboat. The main controller uses 32-bit

processor S3C2440A based on ARM920T from SAM-

SUNG Electronics Company (Giheung-Eup Yongin-City,

Gyeonggi-Do, Korea), and is configured with the Linux

operating system LCD can display battery power informa-

tion and other information as well as user operation inter-

faces such as electronic map navigation interface, and

navigation trajectory can also be scheduled on it. All

devices of the system are driven by a 48 V lithium battery

with a capacity of 120 AH. In order to get the navigation

point information of the workboat system in real time, GPS

navigation module used the BD982 model, and the naviga-

tion device is developed by the United States Trimble

navigation company. Lens is the megapixel industrial

KBE-RT6200E/S device which is developed by China

Shenzhen Jinghang Technology Co., Ltd.

Navigation experiment design. According to the distribution

characteristics of aquatic plants in crab ponds, the geo-

graphic information system can provide the latitude and

longitude coordinates of pond water. The target waypoints,

that is, the preset route, are set in the system interface. The

system then uses the image detection visual navigation line

to judge whether there are aquatic plants in the vicinity of

the workboat and further chooses the navigation method

according to the results of image detection. If there is no

visual navigation route from image detection, it uses the

GPS navigation; if there is visual navigation line, it uses the

visual navigation. In the design process, the visual

Figure 15. Digital photo of the aquatic plants cleaning workboat.

Figure 14. Structure diagram of the workboat.

Table 1. Experimental data of simulation.

Number of particles

RMSE

Number of particles

Running time (s)

PF GRNN-PF FOA-GRNN-PF PF GRNN-PF FOA-GRNN-PF

30 7.1245 7.0346 6.3891 30 0.2143 0.2076 0.1679
60 7.3017 6.5354 6.3126 60 0.1810 0.1731 0.1595
100 9.1784 8.6378 7.9794 100 0.2687 0.2328 0.2301
MeanR 7.8682 7.4026 6.8937 MeanT 0.2213 0.2045 0.1858

RMSE: root mean square error; PF: particle filter; FOA: fruit fly optimization algorithm; GRNN: generalized regression neural network.
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coordinates in the visual information need to be trans-

formed into the earth coordinates, and the coordinate sys-

tem must be unified. The position information in the

unified coordinates is optimized by the proposed method

to obtain the new position coordinates.

Navigation experiment. In order to further verify the method

proposed in this study, we also use those above three meth-

ods in the simulation experiment to repeat the navigation

experiment. The experiment site is selected from the crab

farming base of Anfeng Town, Xinghua City, Jiangsu

Province, China. Through the navigation experiment, we

can get the corresponding latitude and longitude coordi-

nates. Since the workboat sails on the water surface, the

skyward direction is not taken into account in this study

and the navigation route follows a two-dimensional tra-

jectory. The latitude and longitude coordinates of the

starting and ending points of the boundary for aquatic

plants can be obtained manually by GPS. In crab ponds,

the shape of floating aquatic plants is considered as a

striped one, so the connection line between the starting

and ending points can be approximated as the ideal route.

To compare the visual effects with the objective data from

the route, two groups of representative navigation experi-

ment routes are selected for analysis, and the results are

shown in Figures 16 and 17.

These two groups of experiments are conducted in two

different crab ponds. The crab area for navigation experi-

ment (1) is about 28 acres, and the workboat sailing dis-

tance is about 85.12 m, with a sailing speed of 0.48 m/s.

The crab area for navigation experiment (2) is about 20

acres, and the workboat sailing distance is about 58.36 m,

with a sailing speed of 0.56 m/s. Because the width ranges

of latitude and longitude coordinates are quite different, the

corresponding coordinate unit scale is reduced when the

navigation maps are drawn. The unit scale of latitude coor-

dinate is narrowed to get Figure 16, and that of longitude is

narrowed to get Figure 17. In order to evaluate the position-

ing effect of the three navigation methods relative to the

objective data, five equal points (including the starting and

ending points) are selected as the target points on the ideal

route. The line connecting the black points is the ideal

navigation route, and the red, blue, and green solid lines

represent the navigation routes of PF, GRNN-PF, and

FOA-GRNN-PF, respectively.

According to the visual effects of the route coordinates

in Figures 16 and 17, PF, GRNN-PF, and FOA-GRNN-PF

can all complete the navigation experiment. However, the

distance between the trajectory route of the PF location

method and the ideal route is the largest, and PF has the

Figure 16. Navigation experiment (1).

Figure 17. Navigation experiment (2).
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worst cleaning effect on the aquatic plants. GRNN-PF has

passable navigation and positioning effect, but its cleaning

effect on the aquatic plants needs to be improved. The

FOA-GRNN-PF method has the best navigation and posi-

tioning effect, and the distance between the trajectory route

and the ideal route is the smallest. Its navigation route is the

closest to the ideal route, and the best cleaning effect on the

aquatic plants can be achieved.

Result analysis

In Figure 16, A1–E1 are equal points that are used as the

target position. We can get the actual route through all

these three navigation experiment methods, and the actual

latitude and longitude coordinates can be read through

GPS. On one hand, there are some differences in the navi-

gation path and navigation time between any two equal

points for the three methods. On the other hand, according

to Figure 16, the workboat sails roughly along the longitude

direction, and the longitude coordinate varies rapidly as the

workboat sails. Therefore, it is difficult to compare the

positioning error of the three methods by the longitude

error for the navigation experiment (1). In view of this,

we choose the latitude error as the calculation object. In

the three navigation methods, the longitude value of the

equal point is used as the reference, and the latitude value

of each method can be obtained as the measured latitude

value. The measured latitude value minus the target latitude

value is the latitude error. The measured latitude values and

latitude errors of the three methods are given in Table 2.

In Figure 17, A2–E2 are equal points that are used as the

target position. For the selected navigation experiment

(2), the workboat generally sails along the latitude direc-

tion, and the latitude coordinate varies rapidly as the

workboat sails. Therefore, it is difficult to compare the

positioning error of the three methods by the latitude

error. In view of this, we choose the longitude error as the

calculation object. The measured longitude value sub-

tracts the target longitude as the longitude error. The mea-

sured longitude values and longitude errors of the three

methods are given in Table 3.

It can be seen from Table 2, with the ideal target position

as the reference, PF has the largest latitude error while

FOA-GRNN-PF has the smallest. Compared with those

of PF and GRNN-PF, the latitude error of FOA-GRNN-

PF decreases by 23.45% and 12.68%, respectively.

Table 2. Measured latitude values and error values (�).

Position

Measured latitude values Absolute error (�10�8)

Target position PF GRNN-PF FOA-GRNN-PF PF GRNN-PF FOA-GRNN-PF

A1 33.06359115 33.06359238 33.06359203 33.06359024 123 88 91
B1 33.06359373 33.06359451 33.06359475 33.06359324 78 102 49
C1 33.06359631 33.06359562 33.06359568 33.06359684 69 63 53
D1 33.06359889 33.0635997 33.06359832 33.06359951 81 57 62
E1 33.06360147 33.06360203 33.06360104 33.06360202 56 43 55
Mean 33.06359631 33.06359685 33.06359636 33.06359637 81 71 62

PF: particle filter; FOA: fruit fly optimization algorithm; GRNN: generalized regression neural network.

Table 3. Measured longitude values and error values (�).

Position

Measured longitude values Absolute error (�10�8)

Target position PF GRNN-PF FOA-GRNN-PF PF GRNN-PF FOA-GRNN-PF

A2 120.12858464 120.12858412 120.12858415 120.12858516 52 49 52
B2 120.12858492 120.12858593 120.12858455 120.12858401 101 37 91
C2 120.12858520 120.12858616 120.12858581 120.12858486 96 61 34
D2 120.12858548 120.12858517 120.12858669 120.12858501 31 121 47
E2 120.12859577 120.12859462 120.12859651 120.12859519 115 74 58
Mean 120.12858601 120.12858615 120.12858627 120.12858572 79 68 56

PF: particle filter; FOA: fruit fly optimization algorithm; GRNN: generalized regression neural network.

Figure 18. Schematic of the distance error.
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Similarly, according to Table 3, the longitude error of

FOA-GRNN-PF decreases by 29.11% and 17.65%, respec-

tively, compared with those of PF and GRNN-PF.

To further compare the positioning effect of these three

methods, the distance error is calculated. The length of the

vertical line segment between the actual position coordi-

nate point and the ideal path is defined as the distance error

d, which can be obtained by the following method.

In Figure 18, the position information can be directly

read according to the latitude and longitude coordinates

of GPS. P(x1,y1) is the current position of the workboat,

and A(x2,y2) and E(x3,y3) are the starting and ending

points of the target route. Q(x4,y4) is the vertical projection

point of P on the AE line. Among them, xi (i ¼ 1 to 4) is

the longitude coordinate of each position, yi (i ¼ 1 to 4) is

the latitude coordinate of each position, the unit is degree.

In addition, the direction of the waterway is A!E, d is the

distance error.

Once the hull deviates from the waterway, one can

draw a line from point P along the direction

perpendicular to the route AE, which intersects with the

route AE at the point Q(x4,y4). Then the coordinates of

Q can be derived according to formulas (28) and (29)

that describe the perpendicular distance from a point to

a line.

x4 ¼
ðy1 � y2Þ½x1ðy3 � y2Þ þ x2ðy1 � y3Þ� þ y3ðx1 � x2Þ2

ðx2 � x3Þ2 þ ðy2 � y3Þ2

ð28Þ

y4 ¼
ðx1 � x2Þ½y2ðx1 � x3Þ � y1ðx2 � x3Þ� þ y3ðy1 � y2Þ2

ðx2 � x3Þ2 þ ðy2 � y3Þ2

ð29Þ

Considering the spherical coordinate plane, it is more

accurate through calculating the haversine distance error as

the distance error. Thus, the distance between the points P

and Q can be derived through the formula of computing the

distance between two points based on longitudinal and lati-

tudinal coordinates:

d ¼ 2 � R � arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ðy1 � y4Þp

360

� 	
þ cos

y1 � p
180

� �
� cos

y4 � p
180

� �
� sin2 ðx1 � x4Þp

360

� 	s( )
ð30Þ

where R ¼ 6,378,137 m is the radius of the earth, and the

unit of d is m.

The calculated distance d is the distance error. Using

the above method, we can obtain the distance error curves

of the three navigation methods respectively. The

results for navigation (1) and (2) experiments are shown

in Figure 19(a) and (b), respectively.

According to the experimental results, the distance error

of PF is the largest, followed by that of GRNN-PF, and that

of the proposed method is the smallest. From the

perspectives of navigation time and work efficiency, the

PF method has relatively longer actual route distance and

its working time is the longest, which means the lowest

working efficiency. In contrast, the proposed method has

the shortest actual route distance due to its smallest dis-

tance error, and its working time is the shortest, which

means the highest working efficiency.

Through the above simulation and navigation experi-

ments, it can be concluded that the navigation accuracy

of the proposed navigation filtering method can be further

Figure 19. Distance error curves of PF, GRNN-PF, and FOA-GRNN-PF. (a) Navigation experiment (1) and (b) navigation experiment
(2). PF: particle filter; FOA: fruit fly optimization algorithm; GRNN: generalized regression neural network.
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improved compared with that of PF and GRNN-PF; mean-

while, the RMSE of the proposed method is reduced. These

results confirm that the proposed FOA-GRNN-PF method

has certain practicability and feasibility.

Conclusions and future work

1. The smoothing factor s of transfer function for the

GRNN model layer is obtained by FOA space opti-

mization, which can improve the global optimiza-

tion ability of particles by iterating the particle state

updating equation through the optimized GRNN.

The new method can avoid particle dilution and

keep its diversity. Compared with those of PF and

GRNN-PF, the RMSE of FOA-GRNN-PF state val-

ues decreases by 12.39% and 6.87%, respectively,

and the running time decreases by 16.04% and

9.14%, respectively.

2. Through repeated navigation experiments for the

aquatic plants-cleaning workboat in the river crab

ponds, it is found that the latitude error of the pro-

posed method decreases by 23.45% and 12.68%,

respectively, and that the longitude error decreases

by 29.11% and 17.65%, respectively, compared

with those of PF and GRNN-PF.

3. The proposed method has further improved the posi-

tioning accuracy of the aquatic plants-cleaning work-

boat. It has certain practicability and feasibility, and

can improve the level of accurate operation in clean-

ing aquatic plants of crab farming in China.

4. Image processing technology is the key technology

in our navigation positioning system. In this study,

we only focus on the image processing system where

the aquatic plants present a striped distribution in the

sunny weather with good lighting conditions. In fact,

it is a complex problem to investigate the image

processing system with different lighting conditions,

weather conditions, and water ripples, and further

efforts should be made on this issue in the future.

5. The proposed method in this article is applied to

aquatic plants-cleaning workboat in crab farming.

It is of great significance to improve the navigation

and positioning accuracy and work efficiency of the

workboat. In the future work, through combining

with the method model, the proposed method can

be used in other agricultural robots, such as

unmanned rice transplanter, weeding robot, and so

on. It can also be used in the navigation and position-

ing study of other industrial robots, such as under-

water robot, automated guided vehicle, and so on.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work is supported by the National Natural Science Foundation of

China (no. 31571571); Natural Science Foundation of Fujian

Province (no. 2018J01471); Priority Academic Program Develop-

ment of Jiangsu Higher Education Institutions (PAPD); Ordinary

University Graduate Student Research Innovation Projects of

Jiangsu Province (no. KYLX15_1075); Natural Science Founda-

tion of Jiangsu Province (no. BK20170536); The Key R&D Proj-

ect (Modern Agriculture) of Jiangsu Province (no. BE2017331);

Jiangsu Province Ocean and Fishery Technology I&P Project (no.

Y2017-36); The College Student Innovative Training Project of

Fujian Province (no. 201710397047). The Science and Technol-

ogy Project of Fujian Province Education Department (no.

JAT160506); and The Science and Research Fund of Wuyi Uni-

versity (no. 201504).

ORCID iD

Chengzhi Ruan http://orcid.org/0000-0001-9491-4126

References

1. Sun YP, Zhao DA, Hong JQ, et al. Design of automatic and

uniform feeding system carried by workboat and effect test

for raising river crab. Trans Chin Soc Agric Eng 2015;

31(11): 31–39.

2. Ruan CZ, Zhao DA, Zhao DJ, et al. Aquatic plants image

segmentation based on PSO-PCNN in crab farming. Int Agric

Eng J 2017; 26(1): 199–211.

3. Li XY, Shang SY, Du JM, et al. Design on 9GSCC-1.4H type

submerged plants harvesting boat. Trans Chin Soc Agric

Mach 2006; 37(1): 59–62.

4. Liu HG, Zhao DA, Sun YP, et al. Control system for auto-

matic aquatic plant cleaning ship. Trans Chin Soc Agric Mach

2014; 45(S1): 281–286.

5. Ruan CZ, Zhao DA, Liu XY, et al. Integrated navigation

positioning method based on IPSO-UKF for aquatic plants

cleaning workboat. Trans Chin Soc Agric Mach 2017; 48(7):

38–45.

6. Ruan CZ, Zhao DA, Sun YP, et al. Design and testing of a

control system associated with the automatic feeding boat for

farming Chinese river crabs. Comput Electron Agric 2018;

150: 14–25.

7. Jaldehag RT, Johansson JM, Davis JL, et al. Geodesy using

the Swedish permanent GPS network: effects of snow accu-

mulation on estimates of site positions. Geophys Res Lett

2013; 23(13): 1601–1604.

8. Gui J, Gu D, Wang S, et al. A review of visual inertial odo-

metry from filtering and optimisation perspectives. Adv

Robot 2015; 29(20): 1289–1301.

9. Meng QK, Zhang M, Qiu RC, et al. Navigation line detection

for farm machinery based on improved genetic algorithm.

Trans Chin Soc Agric Mach 2014; 45(10): 39–46.

10. Jiao C, Jiang GQ, Du SF, et al. Crop rows detection based on

parallel characteristic of crop rows using visual navigation.

Trans Chin Soc Agric Eng 2009; 25(12): 107–113.

Ruan et al. 15

http://orcid.org/0000-0001-9491-4126
http://orcid.org/0000-0001-9491-4126
http://orcid.org/0000-0001-9491-4126
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