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Abstract.

We introduce three different types of periodically-driven multiparametric two-level models whose

analytical solutions are given in terms of Heun functions. These results are applied to obtain exact analytical results
for certain types of periodic potentials and asymmetric double-well potentials. In particular, it is shown that under
special parameter conditions, an experimentally realised periodic potential supports the exact in-gap solutions. In
the asymmetric double-well potentials, some exact results of the bound-state wave functions and associated energies

are found in explicit form.
Keywords.
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1. Introduction

In recent years, Heun equation (HE) and its confluent
forms have attracted extensive interest of research [ 1-3].
This is partly due to their applications in many physical
systems, including lattice systems [4—6], few-body sys-
tems [7—10], quantum spin chains [11], and quasiexactly
solvable quantum potentials [12—17]. The list provided
here is far from exhaustive. In particular, it has been
shown that the energy spectrum of the well-known quan-
tum Rabi model can be obtained with the help of the
confluent HE [18-20]. The semiclassical form of the
quantum Rabi model describes the interaction of a two-
level model (TLM) with a classical monochromatic
field. Such a monochromatically-driven TLM has long
been an important paradigm for understanding many
fundamental phenomena in diverse branches of physics
[21,22]. Interestingly, the confluent HE also appears in
the semiclassical form of the quantum Rabi model [23].

In recent series of works, these Heun-type equations
have been used to construct exactly solvable time-
dependent TLMs [24-29]. By using a proper variable
transformation, the Schrodinger equation of these mod-
els can be transformed into the HE and its confluent
forms. Most of the obtained TLMs describe the interac-
tion of the TLMs and the time-dependent pulsed laser
fields. The exactly solvable periodically-driven TLMs
remain rare [27].

Two-level models; Heun equation; periodic potential; exact in-gap solutions.

In this paper, we introduce three different types of
periodically-driven multiparametric TLMs in relation to
the HE. An analytical solution for these systems is given
in terms of Heun function (HF). As a simple application
of our results, we found certain analytical exact results
for in-gap solutions in a type of periodic potential under
certain special parameter conditions. In addition, it is
found that the hyperbolic version of the periodic poten-
tial shows an asymmetric double-well structure where
some of the bound-state wave functions and associated
energies are found in an explicit form.

2. Periodically-driven two-level systems

We begin with the time-dependent TLM described by
the following Hamiltonian:

_ S0, o0

H=rotmon

(D
where oy ; are the usual Pauli matrices for the two-level
system. f(¢) and v(¢) are the time-dependent energy
difference and coupling between the two levels, respec-
tively. In our study, we focus on the case where f(¢)
and v(¢) are periodic with respects to 7. The probability
amplitudes a1 (¢) and a»(¢) in the two levels satisfy the
coupled first-order differential equations
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By eliminating a; (¢) and a; (t), we get two second-order
differential equations for a;(¢) and a;(t)
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where we have used the variable transformation T = o,
the dot denotes the derivative with respect to z, f =
df/dr and v = dv/dr. Equations (4) and (5) have a
property that if ¥ (7) is a solution of eq. (4), ¥*(7) is a
solution of eq. (5). Therefore, we may only discuss the
solutions of either eq. (4) or eq. (5). Here, we focus on
the solutions of eq. (4).

For a given set of f(¢) and v(¢), a general idea for
solving eq. (4) is to find appropriate variable transfor-
mations

a1(z) = ¢(2)¢(2), (6)

so that eq. (4) can be reduced to a well-known equation

for ¢ (z)

d2
df+P(z)—¢+Q(z)¢_0 (7)

z = z(1),

As a result, the solutions of the driven systems can be
expressed by known functions. Most of the previously
obtained solvable TLMs are related to the hypergeomet-
ric and confluent hypergeometric equations [30-33]. If
eq. (7) takes the form of the HE, we have [34-36]

P(z)=—+ZL+ , (8)

afz —
0(2) Z(Z_l)(z_a), ©)
where v, 6, o, B,¢g,a,ande = a+B+1—y — 4
are parameters for the HE. The analytical solutions of
the HE are given in terms of the HF, a special function
[34-36]. In ref. [27], Ishkhanyan et al have found three
different forms of f(¢) and v (),

fi

f(f)=f0+m,

v(t) =g (10)
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and
S @) = fo,

Vi

V@) = (1 4 g cos(wt))k’

k=1/2,1,
(1)

whose solutions are related to the HE. Here —1 < g < 1
is a parameter.

In this work, we found three additional cases where
the TLMs are in relation to the HE, as shown in the
following.

2.1 Casel

In the first case, f1(¢) and vi(¢) have the form

f1 sin(wt)

S1(t) = fo+ m,

vi(r) = vo, (12)
where f1(¢) is periodic and vi(¢) is a constant. This
model is characterised by five parameters { fo, f1, , g,
vo}. When g = 0, the resulting model corresponds to
the well-known monochromatically-driven TLM. Due
to the introduction of the additional parameter g, fi(¢)
represents an oscillating bias with multiple frequencies
[37]. This can clearly be seen by the Taylor expansion
of fi(¢) in the limit of small g,

fi) = fo+ fisin(n) Y (—g)" cos" (wr).

n=0

(13)

Itis found that if we apply the following transformations
elt A\ 3
i=—, @@ =ME-DP <Z B _2> ¢(2).
ri r
(14)
eq. (4) can be reduced to the HE for ¢(z). Here, r| =

—(1+1 - g 2)/gandry = —(1—+/1 — g2)/g are the
two roots of 72 4+ gr/2 + 1 = 0. The three parameters
A1,2,3 are given as

=

The relevant parameters in the HE are given asa = rp/
ri,q = r2(1+2x1)(1=243) /r1—423(fo /20411 +43)/

gri.a = hithatisty (folo—ififwg)? + v fw?)2,

B = +r+rs— \/(fo/a) —ifi/wg)? + v§/w? /2,
y =14 2A1,and § = 2A;.

Inref. [27], Ishkhanyan ef al have found all the classes
of the exactly solvable TLMs in terms of the HFs. In the
following, we show that the first five-parametric model

15)
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belongs to these classes. To do this, we first apply the
transformations

a1(v) = ci(r)e " Jo F6)ds/20

ar(1) = c(v)el Jo S6)ds/ 20 a6
and then get

i% - ‘}(—Ze""“’)cz, (17)
i% - ‘}(—fe"‘“’)ﬂ, (18)
where

5(t) = —/T f(s)ds/w.
0

These equations describe the interaction between the
two-level system and the amplitude- and frequency-
modulated laser field. The amplitude and frequency
modulations of the laser field can be designed with the
quantum optimal control theory [38,39]. Here v(¢) /2w
corresponds to U (¢) in ref. [27] in different notation. To
obtain solvable TLMs, it is found that ¢(z), v(t), and
8(t) have the forms [27]

9(z) = Mz — D2 (z —a), (19)

v(T) d

S = v - DAG —a)k3£, (20)

b _ f@o _ (5_1+ b & >g 21
dt w Z z—1 z—a) drt

where the parameters 1123, v*, k123, and 8123 are
constants to be determined. An exactly solvable TLM
is defined by triads of parameters {ki, kz, k3}, which
run over a set of 35 possible choices [27]. It is found
that the first five-parametric model belongs to the class
{k1, ky, k3} = {—1, 0, 0}, and can be achieved with the
transformation z = /d exp(i7) and the specific param-
eters

% .V 1 . (1 + d)fl
= —i— 5 =—|2 7
v sy 0 20)(lf0+ Nz ,
14+d 2/d
52:33=_M’ :_i' (22)
2Vdw 1+d
2.2 Casell
In the second case, we have
f1 sin(wt)
1) = —_
ful®) = fo+ 1 + g cos(wt)
V1
v (t) = (23)

1 + gcos(wt)’
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where both fi1(¢) and vp(z) are time-dependent. It is
found that the second five-parametric model belongs
to the class {k1, ko, k3} = {0, — 1, — 1} [27], and can
be achieved by the same transformation and the same
specific parameters (22) but with v* = jv;/2w. In this
case, the parameters A1 2 3 are given as

Al =—l (ﬁ—i-iﬂ),

2\ w gw
1 g2 v ff
A3 = —— L2 24
23 Zg\/l—g2w2 w? 24

The parameters in the HE read as, a = ry/r1, ¢ =
—(ifi + 8fo)(ifi = 2gwha)/rig’w® e = 1 — fo/w+
M4+ A3, B=—ifi/gw+Aiy+ A3,y =2A1,and 6 =
14+ 2xs.

2.3 Case Ill

In the third case, we have

S (t) = f1sin(wt),

In this case, it is found that under the condition of f| =
v1, we may apply different transformations of the form

z=sin’(t/2), @) = (z—a)’. (26)

The parameters in the HE are given as, a = 1/2,q =

1 —ifi/4o — f2/80% a = 3/2 + /1 + f2/w?/2,
B =3/2— 1+ f}/w?/2,and y = § = 1/2. The

third two-parametric model does not belong to any class
given in ref. [27]. However, if one takes a general form
of ¢(z), v(t), and 6(7)

v () = vy cos(wt). (25)

0(2) = ™M (z — DM (z — a)™3, (27)
v(7) dz
- = VR (2 — DAz - a>k3a, (28)
dé(r) _ S
drt w
) ) S dz
:<50+—1+ 2+ = )-, (29)
z z—1 z—a) drt
with A9 = —idp/2, the third model may belong to

the class {ki, kp, k3} = {—1/2,—1/2, 1}, and can be
achieved by the transform z = sin?(t/2) and the spe-
cific parameters 80 = —2 fi/w, 8123 = 0,v* = if]/w,
A12 =0, and A3 = 2.

3. Analytical solutions in terms of the HFs

In this section, we present an analytical solution for these
periodically-driven TLMs in terms of the HF.



19 Page 4 of 7

HE has four regular singularities at z = 0, 1, a, co. If
y is not zero and a negative integer, HE has two linearly
independent local Frobenius solution ¢ 2(x) around the
regular singular point z = 0 [34-36]

$1(2) = Hl(a,q; 0, B,v,8:2) = ) ha", (30)
n=0
$2(z) = 2"V HI(a, g + (e + Sa)(1 — y);

Here, Hl(a,q; o, B,v,8;2) = Y poqhnz" is usually
known as the HF [36]. In such an infinite series solution,
the coefficients &, are obtained by using the three-term
recurrence relation: A(n)h,—1+Bmn)h,+Cn)h,+1 =
0 with the initial conditions hg = 1 and 2_; = 0. Here,
An)=m—-14+a)n—1+8), B(n) = —q —n(n —
1+y)(14+a)—n(aé+e¢e),and C(n) = an+1)(n+vy).
In the three cases of fi, fi1, and fim1, y is not zero and
a negative integer. Therefore, ¢1 2(¢) are two linearly
independent solutions, and thus we have two linearly
independent solutions for a;(t) near z(t) =0

Yi(r) = @()Hl(a,q; a, B,y, 8; 2), (32)
Y2(t) = e(z)Hl(a,q + (¢ + a)(1 — y);
a—y+1,8—yv+1,2—1y,8;2). (33)

In terms of 1 2(7), the general solutions for a; () and
ay (7) take the form

a1 (t) = 11 (1) + 22 (7),
ar(t) = diy{ (t) + o5 (1),

where the constants ¢j > and d;, are determined by
the initial conditions a(tg), a1 (o), a>(7y), and a»(1g).
After a straight calculation, we obtain the time-evolution
operator from 7g to t

_( Un(zr,0) Upa(z, 10)
v = (—Ul*z(r, w) Uy (5, %) )

where Uni(z,0) = Ar2(7, 10)/A1,2(70, T0)
+ if(10)A12(7, 10)/20A12(T0, T0), Uia(r,70) =
iv(70)A1,2(7, 10)/2wA1,2(10, T0),  With  Ap2(7, 70)
= Y1(D)V2(10) — Y2(0)¥1(r0) and Aj (7, 70) =
Y1(0)¥2(t0) — Y2 () Y1 (70)-

In principle, the HF Hl(a, g; «, B, y, §; z) is ana-
Iytic under the condition of |z| < min{l, a} [34-36].
In the case of fiy, we have a = (1 — /1 —g2)/(1 +
V1 — g2) <1 from the condition of —1 < g < 1, and
thus Hl(a, q; o, B, y, §; z) is analytic in the range of
|z| < |al|. Since |a| < |z] = 1/(1 +{1—g2) < 1,
the time-evolution operator U (t, 79) is invalid in prin-
ciple. In the case of fy, we have ¢ = 1/2, and

(34)
(35)

(36)
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thus Hl(a, q; «, B, v, §; z) is analytic in the range of
|z] < 1/2. As z = sin2(1/2) < 1, the time-evolution
operator U (7, 19) is also invalid for a certain instant, for
example, T = 7 /3. This problem can be solved in terms
of a central two-point connection problem for the HE
[40,41], and thus the time-evolution operator valid for
any later instant can be constructed [23].

4. Applications

When f (¢) is periodic and v(¢) is constant, eqgs. (4) and
(5) have a similar form with the Schrodinger equation for
certain periodic potentials. This motivates us to consider
a type of the periodic potentials

Vo + V3 sin(x)
(1 + gcos(x))?

Vi) = Vo + Vi sin(x)
1 + gcos(x)

(37)

We note that the periodic potential with V, = V3 =
0 has been realised in recent experiment [42,43]. The
Schriédinger equation for such a periodic potential is
givenas Cm =h = 1)

dy B
—— T VYO = Ed(x).

dx? (38)
By making the following transformations
ix

8¢

_l—l—\/l—gz’
V() ="z — DM (z —

=

1—4/1—g2

A3
wﬁ) ¢ (z) (39)

with
Vi
A= E—i—,
8
1 1 4V 4V
N | ALY 3
2 2 1—¢g g1 —g2
1 1 | 4V ny 4V3 (40)
3=-—5 11— i ,
2 2 1—g2 g/l_g2

the Schrodinger equation is reduced to the HE. The rel-
evant parameters in the HE are given as, a = (1 —

V1I=82/A+y1=g?».q = —[2i(Vi—=V3)—g2Vo+
(1422 ((A =1 = gH)r+(1++/1 — g2Hr3)]/g(1+
Vi—g2),a = MAI A~ VE+iVi/g B =

AMAA+A3+VE+iVi/g, Yy = 1420,and s = 24,.
If y = 1+ 2 is not zero and a negative integer, we
have two linearly independent solutions of the form
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Y1) =M@ - DR —a)

x HI (a,q; o, B,y,8; —

geix
1+/1—-g2)"

(41)
Ya(x) = 27 (z — D2 (z — a)™
x HI (a, g+ (e+da)(l—y);
a—y+1L,B—y+1,2-y,0;
geix
__ &) 42
) -

It is evident that the solutions v 2(x) can repre-
sent the Bloch-wave solution with the wave vectors
k = A& = —VE —1iVi/g. From the expression of
A1, we know that the wave vectors k = A; may
be complex. It is well-known that the Bloch waves
of real wave numbers are amplitude-bounded oscilla-
tory solutions, and the Bloch waves of complex wave
numbers show unbounded exponential behaviour [45].
The energy spectrum for the infinitely periodic poten-
tial V(x) consists of bands in which there exist only
amplitude-bounded oscillatory solutions and gaps in
which there exist unbounded oscillatory solutions. In
the infinitely periodic potential V (x), the solutions with
the complex wave numbers are non-physical. However,
in a finite potential V (x), they may represent the phys-
ical solutions [46]. In the following, we shall show that
under certain conditions, one can obtain certain exact
in-gap solutions.

In general, there exists a necessary condition [34-36]

(43)
(44)

a=—-—N, N=0,1,2,...,
hyt1 =0,

under which the HF Hl(a,q;«, B,y,d8;z) can be
reduced to a polynomial in z. It follows that as « is
related to E, eq. (43) gives the special values of E, and
eq. (44) gives the relation between V12,3 and g. In the
following, we present certain exact results in the case of
V, = V3 = 0 where the resulting periodic potential has
been realised in recent experiments [42,43].
In 1 (x), from condition (43) with N = 2, we have

E=1- V—lz (45)
4g2

For an arbitrary value of Vi, we get from h3 =0

Vo= 1. (46)

The corresponding solution is given as

Y(x) =e V17295 (1 4 g cos(x)). (47)
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Figure 1. Band-gap structures for V(x). (a) The first two
bands for Vo = 1, V| = 1/2, V, = V3 = 0, and
g = 1/10. The blue circle in (a) corresponds to the exact
result £ =1 — V]2/4g2. (b) The first band at k = 0 and the
in-gap E as a function of V| with Vo =1, V, = V3 =0, and
g = 1/10. The blue circle in (b) corresponds to the one in

(a).

In comparison with the band-gap structure, if V| # 0,
we find that £ = 1 — V12 /(4g?) falls into the semi-
infinite gap below the lowest band (see figure 1). This
means that the solutions are a kind of in-gap states. If
V1 = 0, the in-gap solutions become stable Bloch-wave
solutions, as the wave numbers become real. As the in-
gap states grow without bound, they are non-physical
states for the infinite periodic system. However, the in-
gap states are important for the surface waves for finite
periodic potential.

In addition, it is found that the hyperbolic version of
the periodic potential V (x) is

Vo + Vi sinh(x)
1 + g cosh(x)

V2 + V3 sinh(x)

Vi) = (1 + g cosh(x))?

(48)

shows an asymmetric double-well structure under cer-
tain parameter conditions, as shown in figure 2. The case
Vi = V3 = 0 corresponds to the symmetric double-
well potential for certain specific parameters, and has
been discussed in our previous work [14]. In this asym-
metric double-well potential, we can use the following
transforms:

X

ge
B 1+\/1—g2’

A3
_ M e I_Vl_gz ‘
V() =z"(z—-1) (Z—I+W> ¢ (2),
(49)
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(@)

0

-20 0 20 -20 0 20

Figure 2. Profiles of the exact results i (x) and the dou-
ble-well potentials with (a) Vo = (—18g+,/ V32 +36g%)/4g,

Vi = 0, and V, = 151 — g*/4 + V}/16g*> and
) Vo = (—18g — \/V}+36g%/4g, Vi = 0, and
Vo = 15(1 — g*)/4 + V2/16g%. In (a) and (b), we have

g = 1/10 and V53 = 1/10. The dashed lines represent the
analytical energies E = —1.

with
Vi
)\'1 = —-E — R
8
1 1 4V, 4V3
)\'2:___ 1+ - 9
2 2\/ 1—82 g,/l_g2
N 1 1 4 4V, n 4V3 (50)
3= 53— 3 ,
2 2 1— g2 g1 —g2

to reduce the Schrodinger equation into the HE. The
other relevant parameters in the HE are given as,

a=(1-y1-g)/1+yl1-gH q=—[2(V) -
Vi) + g2V — (1 + 240 — V1 —=gHi — (1 +
2000+ V1 =gM)a3)l/g( + V1 —g?), & = A +
MAM+V-E B=AM+l+A3—V—E y =
1+ 211, and § = 2A;. For this asymmetric double-
well potential, under certain conditions, one can also
obtain certain exact solutions. For example, if we take
Vo = 15(1 — g%)/4 + V{/16g? and V| = 0, we have
E = —land Vy = (—18g & ,/Vi + 36g%)/4g from
conditions (43) and (44) with N = 1. In the case of
Vo = (—18g + /V} + 36g%)/4g, the corresponding
solution is given as
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Y(x) = Nie"* (" —r)2(e* — )™

V308t + Vi = V3

x|1-— 6g2 e

In the case of Vy = (—18g — V22 + 36g%)/4g, the

corresponding solution is given as

(5D

Y(x) = NoeM*(e* —r)2(e" — )™

V308t + Vi Vs

x|1— 6g2 e

(52)

Here N  are the normalisation constants. Under certain
parameter conditions, the exact solutions represent the
bound-state wave functions. For example, when g =
1/10 and V3 = 1/10, ¥ (x) in eq. (51) corresponds to
the ground state and ¥ (x) in eq. (52) corresponds to the
first excited state, as shown in figure 2.

In ref. [44], the potentials solvable in terms of the HFs
have been fully classified. It is found that the periodic
potential (37) and its hyperbolic version (48) belong
to the ninth family with {m, m>, m3} = {1,0,0}. In
addition, series expansions of the solutions of the HE in
terms of special functions other than simple powers have
been discussed [47-50]. For example, the expansion of
Gauss hypergeometric functions takes the form

$(2) =Y an2Fi(a, B, yo —1,2),

n=0

(53)

where the coefficients a, s obey the following three-term
recurrence relation:

Rpan + Qn-1an-1 + Pr—2ap—2 =0 (54)

with

Ry=0—-a)e+y+n-1), (55)

On=—-R,+a(l+n—-98)(+n)+aaB —q, (56)

P, = —m(n +¢)
xXn+e+y—a)ynt+e+y—p5). 57

Similarly, there also exists a necessary condition

any+1 =0, (58)

g&,e+y—a or e+y—F=—N, (59)

under which this series expansion is terminated at some
n = N.Such atermination may result in more particular
exactresults. For example, in the simplest caseof N = 0
with the parameters Vo = —6,V; = 0,V, = 6(1 — gz),
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and V3 = —@/@, we have the energy E = —9/4
and the solution

e3x/2

(e —ri)?
Here N3 is the normalisation constant. It is evident that
the exact solution describes the bound state.

¥ (x) = N3 (60)

5. Conclusion

In conclusion, we have presented three different sets
of exactly solvable periodically-driven multiparamet-
ric TLMs whose solutions are given in terms of the
HE. Our results are applied to construct exact analytical
solutions for certain periodic potentials and asymmetric
double-well potentials in relation to the HE. Under spe-
cial parameter conditions, the HF can be terminated as a
polynomial. This allows us to obtain some exact analyt-
ical results for the two kinds of potentials. In particular,
it is shown that under special parameter conditions,
an experimentally realised periodic potential allows the
existence of the exact in-gap solutions.
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