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1. Introduction

It has been an interesting object in algebraic geometry to study parabolic moduli over
algebraic varieties. The notion of parabolic bundle over algebraic curves has been intro-
duced by Mehta and Seshadri [6]. They have constructed the moduli space of parabolic
vector bundles over a smooth projective curve and shown that the moduli space is a pro-
jective variety. This has been generalized for higher dimensional varieties by Maruyama
and Yokugawa [7]. On the other hand, Desale and Ramanan [3] gave a nice geometric
description of the usual moduli space of rank 2 vector bundles over a hyperelliptic curve
in terms of variety of isotropic linear subspaces of smooth intersection of two quadrics in
a certain projective space.

In this paper, our aim is to give an analogous geometric description of a certain moduli
space of rank 2 parabolic vector bundles over an arbitrary hyperelliptic curve of genus
≥ 2. We state the main result of this article:

Let ω1, ω2, . . . , ω2g+2 be (2g + 2) points (g ≥ 2) on the affine line over the field of
complex numbers and X be the irreducible nonsingular projective curve obtained as two
sheeted covering of the projective line ramified precisely at ω1, ω2, . . . , ω2g+2. Then X
has exactly 2g+2 Weierstrass points. We also denote them as ω1, ω2, . . . , ω2g+2. Our aim
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in this paper is essentially to give an explicit description of the moduli space of parabolic
vector bundles of rank 2 on X with parabolic structure along a reduced divisor D of
degree 4.

LetY be the two-sheeted cover of X ramified exactly at D andω
(1)
1 , . . . , ω

(1)
2g+2, ω

(2)
1 , . . . ,

ω
(2)
2g+2 are the fibers over ω1, . . . , ω2g+2. Then Y is also hyperelliptic with Weierstrass

points ω
(1)
1 , . . . , ω

(1)
2g+2, ω

(2)
1 , . . . , ω

(2)
2g+2. We also denote the points in the projective line

corresponding to the Weierstrass points by ω
(1)
1 , . . . , ω

(1)
2g+2, ω

(2)
1 , . . . , ω

(2)
2g+2. Let Q1 and

Q2 denote the following quadrics in (4g + 3)-dimensional projective space P,

Q1 ≡
2g+2∑

i=1

X2
i +

2g+2∑

i=1

Y 2
i = 0, Q2 ≡

2g+2∑

i=1

ω
(1)
i X2

i +
2g+2∑

i=1

ω
(2)
i Y 2

i

and V1, V2 are the linear subspaces of P defined by Xi = Yi and Xi = −Yi respectively.
Then we have

Theorem 1.1. The moduli space Pη of isomorphism classes of rank 2 stable parabolic
vector bundles with parabolic structures at x2, x3 and x4 of weights (0, 1

2 ) and trivial
parabolic structure at x1 with weights (0, 0), where D = x1 + x2 + x3 + x4 and fixed
determinant η, where η is defined in section 4 is isomorphic to the variety of (2g − 1)-
dimensional linear subspaces � of the projective space P, contained in the quadrics Q1
and Q2 such that dim(V1 ∩ �) + dim(V2 ∩ �) = 2g − 2.

The idea of the proof of our theorem is very simple. If a finite group � acts on a
smooth irreducible projective curve Y such that the quotient X := Y/� is also smooth and
irreducible with natural projection p : Y −→ X , then there is an equivalence of categories
between the category of �-bundles on Y and the category of parabolic bundles on X with
parabolic structure along the divisor of ramification points. On the other hand, there is a
close relation with the moduli of �-bundles and the moduli space of � fixed points of the
natural � action on the usual moduli space. In fact there is a forgetful map from the moduli
space of �-bundles to the moduli space of �-fixed points.

If M(n, δ) denote the usual moduli space of rank n stable vector bundles with fixed
determinant δ, where δ is a �-invariant line bundle of odd degree, then the �-fixed locus
of the natural action of �, namely E → α∗(E), where α ∈ � and E ∈ M(n, δ), is not in
general irreducible (see [1]).

However, we will show in the case when � = Z2 and n = 2, and δ is of the form
O(

∑m
i=1 ni xi ), where all ni ’s are odd integers except one and x1, x2, . . . , xm are the

fixed points of �-action on Y , it is in fact irreducible and the above forgetful map is an
isomorphism. In this case, the �-structures on a �-fixed bundle (existence of �-structure
on a �-fixed bundle is shown in Lemma 2.3) have non-trivial local type at all points except
at one point.

We will use this fact by constructing a hyperelliptic curve Y from the given hyperelliptic
curve X as a 2-sheeted cover ramified along a divisor of degree 4. By Riemann–Hurwitz
formula, the genus of Y is 2g+ 1. On the other hand, it is known [3] that the moduli space
of rank 2 stable vector bundles over hyperelliptic curves of genus g is isomorphic to the
variety of (g−2)-dimensional linear subspaces of a projective space of dimension 2g+1,
contained in a smooth intersection of two quadrics. Therefore, by the above discussion, the
moduli space of parabolic vector bundles over X is isomorphic to the Z2-invariant linear
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subspace of dimension 2g − 1 of a projective space of dimension 4g + 3, contained in a
smooth intersection of two quadrics.

2. �-bundles and parabolic bundles

2.1 �-bundles

Let Y be an irreducible smooth projective curve over C. The group of algebraic automor-
phisms of Y is denoted by Aut(Y ). It is known that Aut(Y ) is finite. Let � be a subgroup
of Aut(Y ) and p : Y −→ X = Y/� be the projection. Assume X is also smooth.

A �-bundle on Y is a vector bundle E together with a lift of the action of � to E . Let
�x denote the isotropy group at x ∈ Y . Then �x is trivial for all but finitely many x ∈ Y .
In fact �x is non-trivial if y = p(x) is a ramification point of X . It is also known [8] that
locally at x , �-bundles are classified by equivalence class of representations of �x into
GL(n).

We say that a �-bundle E of rank r on Y is of type τ , where τ represents representations
ρi : �xi −→ GL(r), xi being a point of Y chosen over every ramification point yi ∈ X of
p : Y −→ X , if at xi , E is locally �xi isomorphic to the �xi -bundle defined by ρi .

Remark 2.1. Let x ∈ Y . Then an equivalence class of representation ρ of �x into GL(r)
can be identified with a diagonal representation of the form

ρ(α) =

⎡

⎢⎢⎣

ζ d1 0 . . . 0
0 ζ d2 . . . 0
.. . .. .

0 . . . 0 ζ dr

⎤

⎥⎥⎦ ,

where α is generator of �x , ζ is the primitive nx -th root of unity and the local action of α

on Y is defined by α · z = ζ · z (z a local coordinate at x) and 0 ≤ d1 ≤ · · · ≤ dr < nx −1,
where nx is the order of �x .

DEFINITION 2.2

A �-bundle E is said to be of type αx = (α1, . . . , αp), p ≤ r at x ∈ Y if at
x , E is locally �x isomorphic to the �x -bundle defined by diagonal representation
(α1nx , . . . , α1nx︸ ︷︷ ︸

k1 times

, . . . αpnx , . . . , αpnx︸ ︷︷ ︸
kp times

), k1 + · · · + kp = r .

A �-bundle E is �-semistable if the underlying bundle is semistable. A �-bundle E is
stable if it is �-semistable and for every proper �-subbundle F of E , we have μ(F) <

μ(E), where μ(E) = degreeE
rankE .

Let p�∗ (E) denote the �-invariant part of the bundle p∗E . Choose a point xi over each
ramification point yi ∈ X . We define �-degree of E as follows:

� − degree E = degree p�∗ (E) +
∑ d1 + · · · + dr

nxi
,

where the sum has been taken over xi .



57 Page 4 of 9 Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:57

2.2 Parabolic bundles

Let E be a vector bundle of rank r on X . Recall that a parabolic structure of length p(≤ r)
at a point x ∈ X is a filtration

Ex = F1Ex � F2Ex � · · · � F pEx ,

where Ex denotes the fiber of E at x and weights α′
i s attached to Fi E ′

x s with 0 ≤ α1 <

α2 < · · · < αp < 1, i = 1, . . . , p. Set ki = dim Fi Ex − dim Fi+1Ex . Then the parabolic
degree of E is defined as

par deg E = deg E +
∑

kiαi .

We write par μ(E) = par deg E
rank E .

If W is a subbundle of E , it acquires, in an obvious way a quasi parabolic structure
by taking the induced distinct flags. To make it a parabolic subbundle, attach weights as
follows: Given i0, Fi0W ⊂ F j E for some j . Let j0 be such that Fi0W ⊂ F j0 E and
Fi0W � F j0+1E . Then weight of F j0 E = weight of Fi0W . Define E to be parabolic
stable (respectively semistable) if for every proper parabolic subbundle W of E , one has
par μ(W ) < par μ(E) (respectively ≤).

Let D be a reduced divisor in X and E be a parabolic vector bundle on X , with weights
at a point x ∈ D given by α1, α2, . . . , αp whose multiplicities are k1, k2, . . . , kp. Then
the parabolic degree of E is defined by

par deg E = deg E +
∑

x∈D

(∑
kiαi

)
.

2.3 Comparison of �-bundles and parabolic bundles

Let X,Y, � be as in section 2.1 and D be the ramification divisor. Let D′ = p−1(D). Then
for any �-bundle E of a given type, the bundle p�∗ E has a natural parabolic structure along
the divisor D [6]. If E is of type αxi at xi , where xi is a point lying over a ramification
point yi , yi ∈ D, we fix weights αxi at yi for the parabolic structure of p�∗ E at yi . Then
�-degree of E is same as parabolic degree of p�∗ E .

Conversely, given a parabolic bundle on X with parabolic structure along D, one can
associate a �-bundle on Y [2], where the author called them as orbifold bundle. In fact, this
is an equivalence of categories [2], [6]. In this correspondence, a �-bundle is semistable
if and only if the corresponding parabolic bundle is semistable ([2], Lemma 3.16). Thus
the study of the moduli space of parabolic bundles of fixed degree and rank on X with
parabolic structure along a divisor D is same as studying the moduli space of �-bundles
on Y of a given type.

Let M denote the moduli space of stable bundles of rank 2 and fixed determinant δ,
where δ is �-equivariant line bundle of odd degree. Then � has a natural action on M. Let
M� denote the locus of �-fixed points of M. From now on, we will assume � = Z2.

Lemma 2.3. For each E ∈ M� , there exist exactly two Z2-structures on E.

Proof. Let E ∈ M� . In other words, σ ∗E � E where σ is a generator of �. We fix an
isomorphism f1 : σ ∗E → E . Now we claim that there is a � equivariant structure on E . It
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is known that giving a � equivariant structure on E is the same as giving an isomorphism
φ : σ ∗E → E such that σ ∗φ ◦ φ = I dE as (σ ∗)2 = I d, σ ∈ Z2. Now since E is stable,
σ ∗ f1 ◦ f1 = c · I dE for some non-zero c ∈ C

∗. Thus replacing the isomorphism f1 by
1√
c
f1, by the above observation, we will get an � equivariant structure on E . Our next

claim is there are exactly two non isomorphic � equivariant structure on E . Let f1, f2 be
two �-structure on E . Then we have σ ∗ f1 ◦ f1 = I dE and f2 = c · f1. But since f2 also
gives an �-structure, we have σ ∗ f2 ◦ f2 = I dE , which implies that cσ ∗ f1 ◦ c f1 = I dE .
Thus we have c2

2 = 1. Therefore, f2 = f1 or − f1 which proves our claim. �

Since δ is an Z2-equivariant bundle, Z2 acts on each fiber corresponding to the points
in D′ and since the degree of δ is odd, the number of points in x ∈ D′ such that Z2 acts
on the fiber δx as identity is odd.

From now on, we will assume the line bundle δ is of the form O(
∑r

i=1 ni xi ), where
(x1 + x2 + · · · + xr ) = D′ and all ni ’s are odd integers except one. Let x1 ∈ D′ and
D1 = D′ − x1. Since Y is a 2 : 1 cover, D1 has odd degree. For simplicity, we then take δ

to be the line bundle associated to the divisor D1 + dx1, where d is an even integer. Then
Z2 acts on the fiber δx1 by Id and by −Id on all other fibers associated to the points in
D′ − x1.

Let ρx1 : Z2 → GL(2, C) be the representation given by

ρx1(α) =
[

1 0
0 1

]
,

where α is the nontrivial element of Z2 and ρxi : Z2 → GL(2, C) be the representation
given by

ρxi (α) =
[

1 0
0 −1

]
,

for all other points xi ∈ D′, i �= 1. Let τ represent the representations ρxi .

Lemma 2.4. Each bundle E ∈ M� admits a unique �-structure of type τ .

Proof. Let E ∈ M� . Then by Lemma 2.3, E admits exactly two Z2-structures. More
specifically, if an isomorphism f : α∗E � E gives a �-structure, then the other one will
be given by − f . These �-structures induce Z2 representations on each fibers Exi and
these representations induce (taking determinant) representations on δxi , which is Id on
x1 and −Id on other fibers. Thus the representation of Z2 on Ex1 is given by ρx1 or −ρx1

and on the other fibers it is either ρxi or −ρxi , i �= 1 and these two are equivalent. If the
�-structure f induces the representation ρx1 at xi , then the �-structure − f induces the
representation −ρx1 at x1. Thus on E , there exists a unique �-structure of type τ . �

Remark 2.5. Note that the fact par deg(p�
∗ (E)) = � deg(E) = 1

ord �
deg E (see [8, page

18]) implies that the �-degree of two different �-structures on E coming from f and − f
are the same and hence the parabolic degree of the associated parabolic bundles are also
the same, but the parabolic weights are different, namely (0, 1

2 ) at xi , i �= 1 and (0, 0) at
x1 and (0, 1

2 ) at xi , i �= 1 and ( 1
2 , 1

2 ) at x1 respectively.

Let M�(τ) denote the moduli space of �-stable bundles of rank 2 of fixed local type τ

and fixed determinant δ . Then we have the following proposition:



57 Page 6 of 9 Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:57

PROPOSITION 2.6

M�(τ) � M� .

Proof. We observe that if a bundle E is �-stable, then the underlying bundle is semistable.
But since we assume that the degree and rank are coprime, the underlying bundle is
stable. Therefore, we have a natural forgetful morphism g : M�(τ) → M and clearly
Im(g) ⊆ M� .

On the other hand, by Lemma 2.4, on each E ∈ M� , there exists a unique �-structure
of type τ . So the forgetful morphism g : M�(τ) → M� is an isomorphism. �

Since the moduli space of �-bundles of a given type is irreducible ([8], Theorem 5), we
have the obvious following corollary.

COROLLARY 2.7

M� is irreducible.

Let MP denote the moduli space of parabolic bundles of rank 2 and fixed determinant
p�∗ δ with parabolic divisor D with trivial weight (0, 0) at x1 and (0, 1

2 ) at all other points
of D. Then by Proposition 2.6, we have the following obvious corollary.

COROLLARY 2.8

MP � M� .

3. Construction of 2-1 cover

In this section, for a given hyperelliptic curve X , we will construct another hyperelliptic
curve as a 2-sheeted cover of X . To get a 2-sheeted cover of X , we use the general method,
namely, given a line bundle L and a section s of L2 such that zero locus of s is reduced,
consider the natural projection p : P(O ⊕ L) −→ X and O(1) the relatively ample line
bundle.

Then p∗(O(1)) � O ⊕ L∗ which has a canonical section namely the constant section 1
of O. This gives a section of O(1) over P(O ⊕ L) (as H0(O(1)) = H0(p∗(O(1))))

which we will denote by y. On the other hand p∗(p∗L ⊗ O(1)) is by projection formula
isomorphic to L ⊗ p∗(O(1)) � L ⊗ (O ⊕ L∗) � L ⊕ O. Hence it also has a canonical
section and we denote the corresponding section of p∗L ⊗ O(1) by x .

Now consider the section x2 + p∗sy2 of p∗L2 ⊗ O(2).

Let Xs denote its zero scheme. It is then clear that the restriction π of p to Xs is finite
and that at any point v of X the fiber over v is the subscheme of P

1 given by x2 +ay2 = 0,
where (x, y) is a homogeneous co-ordinate system and a is the value of s identifying the
fiber of L at P(O ⊕ L) with the residue field at v.

The genus of Xs is 2g+ 1, by the Riemann–Hurwitz formula. The curve Xs , in general,
is not hyperelliptic. However, if we choose L to be the natural hyperelliptic line bundle h
on X which is π∗O(1), where π : X −→ P

1 is the natural projection map, then one can
show that Xs is again hyperelliptic.
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To see this, consider the hyperelliptic line bundle h on X . Then p∗h is a line bundle
of degree 4 on Xs and by projection formula p∗(p∗h) � h ⊕ O, which has exactly 3
sections. But by Clifford’s theorem, a line bundle of degree 4 admits at most 3 sections
and if it admits exactly 3 sections, then the underlying curve is hyperelliptic. Thus Xs is a
hyperelliptic curve of genus 2g + 1 and p∗h is a multiple of the hyperelliptic line bundle.

Thus we have the following proposition.

PROPOSITION 3.1

Let X be a smooth projective hyperelliptic curve of genus gand hbe the hyperelliptic line
bundle. Let sbe a general section of h2. Then there exists a unique hyperelliptic curve Y
of genus 2g+ 1 which is a 2-sheeted cover of X ramified exactly along the zero locus of s.

Let us understand this picture geometrically. Let ω1, . . . , ω2g+2 be the Weierstrass points

of X . We denote the complex numbers p(ωi ) also by ωi . Let V = ∑2g+2
i=1 Cωi be a vector

space of dimension 2g + 2. Consider the projective space P(V ) = P
2g+1. Let q1 and q2

be two non-degenerate quadratic forms in V associated to the quadrics Q1 = ∑2g+2
i=1 X2

i

and Q2 = ∑2g+2
i=1 ωi X2

i and let P
1
� be the pencil consisting the quadratic forms {qλ}λ∈P1

of the form μ1q1 + μ2q2 for μ = (μ1, μ2) ∈ P
1.

The family of g planes fit together in the following way. Let

Gen(�) ⊂ P
1 × Gr,

where Gr = Gr(g + 1, V ) is the usual Grassmanian, and let it be defined by

Gen(�) = {(μ, E) : qμ |E= 0}.
It is obvious that the first projection Gen(�) −→ P

1 has as fiber over μ, the variety of g
planes isotropic to qλ, which has two irreducible components whenever qλ is smooth ([4],
p. 735). Then we have as follows.

Theorem 3.2. Gen(�) is nonsingular and the morphism p1 : Gen(�) −→ P
1 has the

Stein factorization

,

where X is nonsingular, q is a double covering ramified precisely in Sing(�), where
Sing(�)denotes the singular quadrics in the pencil, and p is smooth.

Proof. See [5, Theorem, 1.10].

By the above theorem, the underlying set of the curve X can be identified with

{(Qμ,�μ), μ ∈ P
1, � is an irreducible component ofg-planes in Qμ}.

Remark 3.3. Here the ramification points are those μ ∈ P
1 for which the corresponding

quadric Qμ in the pencil is singular.
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Let s be the section which vanishes at the points (Q1, �1), (Q1, �2), (Q2, �
′
1), (Q2, �

′
2).

Then the image of π of these points in P
1 are (1, 0) and (0, 1). Let π1 : P

1 −→ P
1 be

the two sheeted cover ramified exactly at (1, 0), (0, 1). Then the inverse image of ωi are√
ωi ,−√

ωi . Consider the vector space V ′ = ∑2g+2
i=1 C

√
ωi + ∑2g+2

i=1 C(−√
ωi ) and the

quadrics Q′
1 = ∑2g+2

i=1 X2
i +∑2g+2

i=1 Y 2
i and Q′

2 = ∑2g+2
i=1

√
ωi X2

i −∑2g+2
i=1

√
ωi Y 2

i . Then
the curve obtained using Q′

1, Q
′
2 as above can be identified with Y and the map Y −→ X is

just takes components of the system of 2g+1-plane of (μ1Q′
1 +μ2Q′

2) to the components
of the system g-planes of (μ2

1Q1 + μ2
2Q2).

4. Main theorem

Let X be a hyperelliptic curve of genus g with Weierstrass points ω1, ω2, . . . , ω2g+2 and
h denotes the hyperelliptic line bundle on X . Choose a general section s ∈ H0(X, h2).
Let p : Y −→ X be the 2-sheeted cover of X , ramified along the zero locus of s.
By Proposition 3.1, such a curve exists and it is also hyperelliptic. Let ω

(1)
i , ω

(2)
i be the

fiber over ωi . Then by the discussion in the previous section, the Weierstrass points of
Y are precisely ω

(1)
1 , ω

(2)
1 , . . . , ω

(1)
2g+2, ω

(2)
2g+2. There is a natural Z2 action on Y namely,

interchanging the sheets of p. Let D = x1 + x2 + x3 + x4 be the divisor of zeros of s and
δ be a Z2-line bundle of the form O(4gx1 + x2 + x3 + x4) of degree 4g + 3.

Consider the vector space V := ∑2g+2
1 δ

ω
(1)
i

+ ∑2g+2
1 δ

ω
(2)
i

. Let Q1 and Q2 denote the

following quadrics in P := P(V):

Q1 =
2g+2∑

i=1

X2
i +

2g+2∑

i=1

Y 2
i , Q2 =

2g+2∑

i=1

ω
(1)
i X2

i +
2g+2∑

i=1

ω2
i Y

(2)
i .

Then by Theorem 1 of [3], the moduli space Uδ of isomorphism classes of stable vector
bundles on Y of rank 2 and fixed determinant δ is isomorphic to the variety of 2g − 1
dimensional linear subspaces of the projective space P(V ), contained in the quadrics Q1
and Q2.

This isomorphism is compatible with the Z2 action ([3], Lemma 5.7). Here the action
of the non-trivial element of Z2 given by E → ι∗E ⊗β ⊗ δ, where β is a line bundle with
β2 ∼= h−(4g+3) and ι is the hyperelliptic involution.

Let α be the generator of Z2. Then since δ � α∗δ, Z2 acts naturally on Uδ , simply by
taking E to α∗E . One can choose β in such a way that ι∗E ⊗ β ⊗ δ ∼= α∗E . Thus the
isomorphism mentioned in the previous paragraph is compatible with the action of α. We
denote the Z2-fixed points of Uδ by UZ2

δ . Then by Proposition 2.6, the moduli space of
rank 2 stable Z2-bundles with determinant isomorphic to δ of type τ as in Lemma 2.4 is
isomorphic to UZ2

δ .

PROPOSITION 4.1

Let V1, V2 are the linear subspaces of P defined by Xi = Yi and X1 = −Yi respectively.
Then UZ2

δ is isomorphic to the variety of (2g − 1)-dimensional linear subspaces � of
the projective space P, contained in the quadrics Q1 and Q2 such that dim(V1 ∩ �) +
dim(V2 ∩ �) = 2g − 2.
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Proof. The natural action of Z2 on Y fixes the divisor
∑2g+2

1 ω
(1)
i + ∑2g+2

1 ω
(2)
i ,

which induces a natural action on V , namely, α · (X1, . . . , X2g+2,Y1, . . . ,Y2g+2) =
(Y1, . . . ,Y2g+2, X1, . . . , X2g+2). Now since Uδ of isomorphism classes of stable vector
bundles on Y of rank 2 and fixed determinant δ is isomorphic to the variety of 2g − 1
dimensional linear subspaces of the projective space P(V ), contained in the quadrics Q1

and Q2,UZ2
δ is just the invariant 2g−1 dimensional linear subspaces contained in Q1∩Q2

under this action. Since α is of order two, V is decomposed as the direct sum of 1 and
−1 eigenspaces. It is clear from the action of α on V , that V1 is 1-eigenspace and V2 is
−1-eigenspace. Now any invariant subspace will be decomposed in 1 and −1 eigenspaces
and therefore each summands of this decomposition will be contained either in V1 or in
V2. In other words, if � is a 2g − 1 dimensional invariant linear subspace,

dim(V1 ∩ �) + dim(V2 ∩ �) = 2g − 2,

which concludes the proposition. �

Let Pη denote the moduli of rank 2 parabolic bundles with fixed determinant η := pZ2∗ δ

and parabolic structure along the divisor D with weights (0, 1
2 ) at xi , i �= 1 and (0, 0) at

x1. Then by Corollary 2.8 and Proposition 4.1, we have the following theorem.

Theorem 4.2. Pη is isomorphic to the variety of (2g − 1)-dimensional linear subspaces
� of the projective space P, contained in the quadrics Q1 and Q2 such that dim(V1 ∩
�) + dim(V2 ∩ �) = 2g − 2.
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