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Abstract. The current study deals with the influence of a uniform electric field on a cylindrical streaming sheet. This
paper investigates a few representatives of porous media. These media are considered to be uniform, homogeneous
and isotropic. The analysis is based on viscous potential theory, which assumes that the viscous forces affect only the
interface between the fluids. The mathematical treatment is based on the normal modes analysis. For convenience,
cylindrical coordinates are used. The boundary-value problem yields coupled second-order and damped differential
equations with complex coefficients. These equations are combined with a single equation under the concepts of
the symmetric and antisymmetric deformations. The Routh–Hurwitz criterion is adopted to govern the stability of
the system. Several special cases are recovered upon appropriate data choices. The effects of various parameters on
the interfacial stability are theoretically presented and illustrated graphically through some sets of figures. These
parameters are the Darcy’s coefficients, basic velocities, dielectric constants, viscosity and thickness of the inner
cylinder. We have found that the thickness of the inner cylinder plays a dual role on the stability picture. Also, the
Darcy’s coefficient and dielectric constants have stabilising influence and the dynamic viscosity has a destabilising
effect.
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1. Introduction

The instability of liquid jets is important due to their
wide range of applications, which involve liquid fuel
injection, coating, drug delivery, food preparation and
ink-jet printing. Eggers and Villermaux [1] introduced
a good review to provide a unified description of the
fundamental and technological aspects of these topics.
Amini et al [2] studied the temporal linear stability of
elliptic liquid jets. Their analysis was both theoretical
and experimental. In comparison with the circular jet,
they showed that the elliptic jet increases the growth
rate over a large range of wave numbers. Chandrasekhar
[3] proved that the jet is unstable for all axisym-
metric perturbations having wave numbers less than
unity. Meanwhile, for non-axisymmetric perturbations,
it is permanently stable. In addition, Chandrasekhar [3]
found that if the fluid is bounded by two cylindrical
interfaces with radii a and b (a < b), the fluid is stable

if both ka and kb (k is the wave number) are greater than
unity. Seadawy and El-Rashidy [4] have investigated the
nonlinear Rayleigh–Taylor instability of a cylindrical
flow with mass and heat transfer. Their analysis resulted
in Ginzburg–Landau equation. Also, they obtained an
exact solution for this equation using the F-expansion
method.

The electrohydrodynamic (EHD) stability flows have
wide applications ranging from electrokinetic assays to
electrospray ionisation. Chen [5] has introduced a few
basic concepts of EHD instability. In the notes of his
lectures, Chen used two model problems: electrokinetic
mixing flow and EHD cone jet. Theoretical predictions
of the non-axisymmetric instability growth rate of an
EHD jet are studied by Korkut et al [6]. Elsayed et al [7]
investigated the axisymmetric and asymmetric instabili-
ties of a non-Newtonian liquid jet through porous media.
They showed that the instability behaviour of the jet is
influenced by the interaction of liquid viscosity, porous
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medium parameters and elasticity. Also, they plotted
sets of diagrams for the stability/instability of various
physical parameters of the systems. Moatimid [8] inves-
tigated the instability of a nonlinear surface wave in an
electrified liquid jet. His boundary-value problem leads
to a non-linear characteristic second-order differential
equation. Stability criteria are theoretically expressed
in terms of various parameters of the system.

Flow through porous media has been of considerable
interest in recent decades in many branches, particularly,
among geophysical fluid dynamics, chemical engineer-
ing and petroleum industry. A good review in this area is
given by Vafai [9]. The instability of a cylindrical inter-
face between two uniform streaming porous media has
been recently investigated by El-Sayed et al [7,10]. They
found that various parameters of the porous media play
a main role in the stability picture. The nonlinear insta-
bility of finitely conducting cylindrical flows through
porous media is studied by Elcoot and Moatimid [11].
They showed that if the influence of Darcy’s coefficient
ratio between the two fluids satisfy certain conditions,
the Darcian formulation allows an instability. Moatimid
[12] investigated the instability of a cylindrical inter-
face between two uniform fluids through porous media.
He found that the porous parameters have destabilising
influence. In addition, this influence is enhanced when
the Darcy’s coefficients are different. El-Sayed et al [7]
investigated the axisymmetric and asymmetric instabil-
ity of a non-Newtonian liquid jet through porous media.
They found that the porosity of porous medium and the
medium permeability have stabilising influences. More-
over, they showed that the system is more unstable in
the presence of porous medium than in its absence.

Viscous potential flow (VPF) represents a good
approximation to viscous theory in which it neglects
the vorticity and friction over all the bluck of the fluid.
In accordance, the viscous effects occur only at the
interface between the two fluids. In other words, for
the potential flow v

¯
= −∇ϕ gives a solution of the

Navier–Stokes equations in viscous incompressible flu-
ids at which the vorticity is identically zero. Also, the
viscous term μ∇2ϕ vanishes. Joseph [13] has intro-
duced historical notes for the potential flow theory. In
this review, he attempted to introduce main events in the
irrotational flow of viscous fluids. Also, he demonstrated
that every theorem of potential flow, with conservative
body forces, applies equally to viscous fluids for regions
of an irrotational flow. The instability of an EHD vis-
cous liquid jets through porous media is investigated by
Moatimid and Hassan [14]. They found that the increase
in both the temperature and concentration at the axial
microcylinder has a destabilising effect on the inter-
face. Also, the existence of the porous structure restricts
the flow and has a stabilising influence. Moatimid et al

[15] studied the nonlinear EHD Kelvin–Helmholtz
instability of an interface between two porous lay-
ers. They obtained a general dispersion relation in the
view of the linear stability approach. Meanwhile, they
deduced a Ginzburg–Landau equation in accordance
with the nonlinear theory. Moatimid and Hassan [16]
discussed the VPF in their work. Awasthi [17] has done
a nonlinear analysis of the instability of a cylindrical
interface with mass and heat transfer. They considered
the theory of VPF in porous media. They observed that
the heat and mass transfer and porous media both sta-
bilise the interface. In contrast, the porosity supports a
growth in wave disturbance. Li et al [18] studied the sta-
bility of an interface between two superposed viscous
fluids in a channel subjected to a normal electric field.
The effect of various parameters on the stability of their
model is presented and illustrated using some sets of
figures.

In this work, the stability of two cylindrical interfaces
separating three dielectric fluids, which are affected
by a tangential uniform electric field, is studied. The
problem at hand considers the VPF together with the
influence of porous media. This problem meets its great
practical interest from a geophysical standpoint. There-
fore, we have considered a simplified mathematical
formulation of the problem of interfacial two cylindri-
cal interfaces. This study examines a few representative
porous media configurations. The influence of tangen-
tial periodic electric fields shall appear in a subsequent
paper. To clarify the model, the paper is organised as fol-
lows: in §2, we describe the formulation of the problem
including basic equations of motion and the perturba-
tion analysis from the point of view of a linear stability
theory. Section 3 is devoted to the introduction of linear
boundary conditions of the problem. The linear stability
analysis is given in §4. Three special cases are consid-
ered in §5. The first case is related to the stability analysis
in the case of non-streaming, pure inviscid fluid in the
absence of porous media; the second one considers a
non-streaming, viscous fluid in the absence of porous
media and the third case considers a non-streaming, vis-
cous fluid in the porous media. Section 6 is devoted
to studying the stability analysis on the general case.
In this section, the transition curves are derived and
the stability diagrams are plotted in accordance with
numerical estimations. Finally, in §7, we give conclud-
ing remarks which are based on the obtained results of
the stability analysis.

2. Mathematical formulation

Consider a system consisting of infinitely long liquid
circular cylinders. The inner cylinder represents a rigid
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Figure 1. Sketch of an undisturbed system.

cylinder whose cross-section is of radius a, and the outer
one is also rigid and of radius b. Three viscous dielec-
tric fluids are separated by the hypothesised cylindrical
interfaces r = R1 and r = R2. It is assumed that there
are no volume charges in the three layers. Also, sur-
face charges are absent at the interfaces. The fluids have
been acted upon by an axial uniform electric field E0.
The inner, medium and outer liquids are incompressible
and have uniform densities ρ1, ρ2 and ρ3, respectively,
from the inner to the outer direction. All the three liquids
are fully saturated, uniform, homogeneous and isotropic
porous media with Darcy’s coefficients ν1, ν2 and ν3
and porosity coefficients ξ1, ξ2 and ξ3, respectively. The
dynamic viscosity coefficients are μ1, μ2 and μ3. The
dielectric constants are ε1, ε2 and ε3. Generally, the sub-
suffix (i) stands for the inner fluid, (ii) for the middle and
(iii) for the outer one. The liquids are basically streaming
with uniform velocities V1, V2 and V3. The cylindrical
polar coordinates (r, θ, z) are considered, so that in the
equilibrium state, the z-axis could represent the axis of
symmetry of the system. A schematic diagram of the
configuration in the steady state is given in figure 1.

In the light of a normal modes analysis [3], the surface
deflections η j (θ, z; t) is given by a sinusoidal wave of
finite amplitude as
η j (θ, z; t) = γ j (t) ei(kz+mθ) + c.c., j = 1, 2, (2.1)

where γ1(t) and γ2(t) are the arbitrary functions of
time which determine the behaviour of the amplitude of
disturbance on the interfaces. In addition, k is an axial
wave number which is assumed to be real and positive,
m is the azimuthal wave number, which is assumed to
be positive and integer, and c.c. represents the complex
conjugate of the proceeding term.

As shown from several foregoing works, e.g. of Chan-
drasekhar [3], the liquid jet is stable for all asymmetric
modes, but it is unstable for axisymmetric modes. As a
result, the most interesting mode of disturbance is the
axisymmetric mode. In spite of this fact, the present
study will consider a general case in the asymmetric
modes.

The equations that give the motion of the problem at
hand may be listed as follows.

The balance of the linear momentum of the viscous
fluids through porous media according to Brinkman–
Darcy equation is given by

ρ j

ξ j

(
∂v j

∂t
+ 1

ξ j
(v j .∇)v j

)

= −∇Pj + μ j∇2v j − ν jv j − ρ j ge
¯z

, j = 1, 2, 3,

(2.2)

where v j = v j(r, z; t) is the fluid velocity and Pj is the
pressure.

The static solution of eq. (2.2) yields

P0 j = −(ρ j g + ν j V j )z + λ j , (2.3)

where λ j is an arbitrary time-dependent function.
In accordance with the incompressibility condition,

we have
∂v j

∂x j
= 0. (2.4)

In EHD problems, the quasistatic approximation is
usually considered [19]. In this case, the Maxwell’s
equations become

∇ ∧ E
¯ j = 0 (2.5)

and

∇.εjE
¯ j = 0. (2.6)

As the electric field is conservative, we may assume an
electric potential ψ j = ψ j (r, θ, z; t) such that

E
¯ j = E0e

¯z
− ∇ψ j , (2.7)

where e
¯z

is a unit vector along the axis of the co-axial
cylinders.

The combination of eqs (2.6) and (2.7) yields

∇2ψ j = 0. (2.8)

In analogy with the normal modes technique, we may
assume that

ψ j (r, θ, z; t) = ψ̂ j (r, t) ei(kz+mθ) + c.c. (2.9)

In accordance with eq. (2.8), the unknown function
ψ̂ j (r, t) satisfies the Bessel differential equation. There-
fore, one gets

ψ̂ j (r, t) = (C j (t)Im(kr) + Dj (t)Km(kr)), (2.10)
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where C j (t) and Dj (t) are the arbitrary time-dependent
functions to be evaluated by using appropriate bound-
ary conditions. In addition, Im(kr) and Km(kr) are the
modified Bessel functions of the first and second kinds,
respectively.

The function S j (r, θ, z; t) = r−R j−η j ( j = 1, 2) as
a geometrical surface function, where S j (r, θ, z; t) = 0
describes the wave-like profile of the disturbed interface.
Therefore, the disturbed interface is located at r = R j +
η j (θ, z; t) and the unit outward normal to the interface
is given by n j = ∇S j/|∇S j |
n
¯ j = e

¯r
− imη je

¯θ − ikη je
¯z

, (2.11)

where e
¯r

and e
¯θ are the unit vectors in the radial direction

and azimuthal directions, respectively.
To examine the interfacial stability of the problem

under consideration, three-dimensional disturbances are
taken into account in the equations of motion as well
as the boundary conditions. In accordance with the
VPF theory, the flow is irrotational and obeys the
Laplace equation. As a result of perturbation, the ini-
tial fluid velocity increases and permits to introduce a
scalar potential function ϕ j (r, θ, z; t) such that the total
velocity field may be written as

v
¯ j

= Vje
¯z

− ∇ϕ j . (2.12)

In view of eq. (2.1), we may write

ϕ j (r, θ, z; t) = ϕ̂ j (r, t) ei(kz+mθ) + c.c. (2.13)

Then incompressibility condition (2.13) yields the
Bessel differential equation. Therefore, one gets

ϕ̂ j (r, t) = (A j (t)Im(kr) + Bj (t)Km(kr)), (2.14)

where A j (t) and Bj (t) are arbitrary time-dependent
functions to be evaluated from the appropriate boundary
conditions.

Direct integrations of the equations of motion yields
the following pressure distribution:

Pj = ρ j

ξ j

(
∂ϕ j

∂t
+ Vj

ξ j

∂ϕ j

∂z

)
+ ν jϕ j . (2.15)

3. Boundary conditions

To complete the formulation of the problem at hand,
the general solutions of the potentials ψ and ϕ as
given in eqs (2.10) and (2.14) must be completely
determined. This requires evaluating the arbitrary time-
dependent functions that appear in these equations. For
this purpose, the appropriate boundary conditions may
be classified into two distinct categories as follows:

3.1 At the rigid boundaries

The normal velocities of the fluid must vanish, which
require the following conditions:

∂ϕ1

∂r
= 0 at r = a (3.1)

and

∂ϕ3

∂r
= 0 at r = b. (3.2)

The tangential components of the electric potential must
vanish in which

∂ψ1

∂z
= 0 at r = a (3.3)

and

∂ψ3

∂z
= 0 at r = b. (3.4)

3.2 At the fluid–fluid interfaces

The transition between the bulk materials occurs over
a finite but thin region. In a continuum description, we
approximate this as surface of discontinuity in material
properties. In this case, the appropriate boundary con-
ditions may be written as follows.

The conservation of mass across the interfaces yields

DS j

Dt
= 0 at r = R j + η j (θ, z; t) ( j = 1, 2), (3.5)

where D/Dt represents the material derivative operator.
The tangential components of the electric are contin-

uous at the interface yield

n
¯ j ∧ ‖E

¯ j‖ = 0
¯
,

r = R j + η j (θ, z; t) ( j = 1, 2), (3.6)

where ‖ ‖ represents the difference (jump) in a quantity
as we cross the interface, i.e. ‖ f ‖ = f2 − f1, where the
subscripts refer to two different media.

It should be noted that condition (3.6) will be applied
twice at r = R j + η j (θ, z; t) ( j = 1, 2).

Under the assumption that there is no surface currents
at the interfaces, it follows that the normal components
of the electric displacement (D

¯
= εE

¯
) are continuous at

the interfaces. This yields

n
¯ j · (ε jE

¯ j − ε j+1E
¯ j+1) = 0

at r = R j + η j (θ, z; t). (3.7)

At this stage, the considered boundary-value problem
is completed. By direct substitution from eq. (2.3) into
eqs (3.1), (3.2) and (3.5), the calculations are lengthy
but straightforward, one gets
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ϕ1(r, θ, z; t) = − 2Q(r, a)

k(M(R1)L(a) − M(a)L(R1))

× (ikV1γ1(t) + γ ′
1(t)) ei(kz+mθ) + c.c.,

(3.8)

ϕ2(r, θ, z; t) = 2

k(M(R2)L(R1) − M(R1)L(R2))

× (Q(r, R2)(ikV2γ1(t) + γ ′
1(t))

− Q(r, R1)(ikV2γ2(t)

+ γ ′
2(t))) ei(kz+mθ) + c.c. (3.9)

and

ϕ3(r, θ, z; t) = − 2Q(r, b)

k(M(R2)L(b) − M(b)L(R2))

× (ikV3γ2(t) + γ ′
2(t)) ei(kz+mθ) + c.c.

(3.10)

The constants L(A1), M(A1) and Q(A1, A2) are given
in Appendix A, A1 and A2 = a, b, R1, R2 and r .

Again, from eq. (2.12) into eqs (3.3), (3.4), (3.6) and
(3.7), one finds

ψ1(r, θ, z; t) = iE2
0 P(a, r)(L1γ1(t)

+ L2γ2(t)) ei(kz+mθ) + c.c., (3.11)

ψ2(r, θ, z; t) = iE2
0((P(r, R1)L3 + Q(r, R1)L4)γ1(t)

+(P(r, R1)L5

+Q(r, R1)L6)γ2(t)) ei(kz+mθ)

+c.c. (3.12)

and

ψ3(r, θ, z; t) = iE2
0 P(b, r)(L7γ1(t)

+L8γ2(t)) ei(kz+mθ) + c.c. (3.13)

Again, the constants L1–L8 are given in Appendix A.
In accordance with the VPF, the viscous term enters

only through the normal stress balance. As stated before,
it is ignored throughout the linear momentum equation.
Therefore, the various vorticities and circulation the-
orem of the inviscid potential flow are valid in VPF.
The influences of electric field and viscosity are consid-
ered, only through the normal stress tensor balance at
the interface and the viscosity is neglected elsewhere.

In order to complete the linear stability analysis, the
remaining boundary condition arises from the normal
component of the total stress tensor. This component
is discontinuous at the interface by an amount of the
surface tension.

The remaining condition may be formulated as
follows.

The stress tensor of the viscous fluid [3] may be
written as

σ vis
i j = −Pδi j + μ

(
∂vi

∂x j
+ ∂v j

∂xi

)
, (3.14)

where δi j is the Kronecker delta.
The stress tensor of the combined free charge and

polarisation force densities [19] may be written as

σ elec
i j = εEi E j − 1

2
εE2δi j . (3.15)

Therefore, the total stress tensor is given by

σ tot
i j = σ vis

i j + σ elec
i j . (3.16)

The discontinuity of the normal stress tensor may be
illustrated as

n
¯
· ‖F

¯
‖ = T

(
1

R1
+ 1

R2

)
(3.17)

at the interface, where F
¯

is the total force acting on the
interface, which is defined by

F
¯

=
⎡
⎣σrr σrθ σr z

σθr σθθ σθ z
σzr σzθ σzz

⎤
⎦

⎡
⎣nr
nθ

nz

⎤
⎦, (3.18)

where T is the amount of surface tension, R1 and R2
are the two principal radii of curvature, and nr , nθ

and nz are the components of the outward unit normal
vector n

¯
.

At the fluid interfaces, the following conditions must
be held:

n
¯ j · ‖F

¯ j‖ = Tj( j+1)∇2S j ,

r = R j + η j (θ, z; t), j = 1, 2. (3.19)

By substituting the electric potential, velocity potential
and pressure into the normal stress tension condition
(3.19), one gets the zero-order of normal stress tensor

λ1 − λ2 = (ρ1 − ρ2)gz

+ (ν1V1 − ν2V2)z − T12

R1
(3.20)

and

λ2 − λ3 = (ρ2 − ρ3)gz

+ (ν2V2 − ν3V3)z − T23

R2
. (3.21)

The first order of normal stress tensor yields

P2 − P1 + E0

(
ε1

∂ψ1

∂z
− ε2

∂ψ2

∂z

)

−2

(
μ1

∂2ϕ1

∂r2 − μ2
∂2ϕ2

∂r2

)

−T12

R2
1

(k2R2
1 − 1)η1 = 0 at r = R1

+ η1(θ, z; t) (3.22)

and
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P3 − P2 + E0

(
ε2

∂ψ2

∂z
− ε3

∂ψ3

∂z

)

−2

(
μ2

∂2ϕ2

∂r2 − μ3
∂2ϕ3

∂r2

)

−T23

R2
2

(k2R2
2 − 1)η2 = 0

at r = R2 + η2(θ, z; t). (3.23)

Again, the substitution of eqs (2.15), (3.8)–(3.13), (3.22)
and (3.23), after lengthy but straightforward calcula-
tions, yields

k11γ̈1(t) + q22γ̈2(t)

+( f11 + il11)γ̇1(t) + (s11 + ih11)γ1(t)

+( f22 + il22)γ̇2(t) + (s22 + ih22)γ2(t) = 0

(3.24)

and

q21γ̈1(t) + k12γ̈2(t) + ( f12 + il12)γ̇2(t)

+(s12 + ih12)γ2(t)

+( f21 + il21)γ̇1(t) + (s21 + ih21)γ1(t) = 0.

(3.25)

k1 j , f1 j , l1 j , s1 j , h1 j , q2 j , f2 j , l2 j , s2 j and h2 j are
given in Appendix B.

Equations (3.24) and (3.25) are coupled linear second-
order differential equations with damped and complex
coefficients. These equations may be used to judge the
linear stability of the infinite cylindrical sheet.

Similar equations for (3.24) and (3.25), were earlier
obtained by El-Dabe et al [20].

4. Stability analysis

Let us first define the concept of symmetric and anti-
symmetric wave functions.

Construct wave function of a system of identical parti-
cles such that it reflects the requirement that the particle
is indistinguishable from each other. Mathematically,
this means that interchanging the particle occupying any
pair of states should not change the probability density
|χ |2 of the system.

Therefore, the probability density of the wave func-
tion χ(r1, r2) must be identical to that of the wave
function χ(r1, r2), where the particle has been inter-
changed

|χ(r1, r2)|2 = |χ(r2, r1)|2. (4.1)

This may be achieved in two ways as follows:

(i) Symmetric case χ(r1, r2) = χ(r2, r1).
(ii) Antisymmetric case χ(r1, r2) = −χ(r2, r1).

Now, to relax the complexity of the coupled equations
(3.24) and (3.25), we use the concept of symmetric and
antisymmetric metric deflections of the surface waves
η1 and η2.

Therefore, let

η2 = Jη1 = η, (4.2)

where J = 1 represents the symmetric case and J = −1
represents the antisymmetric one.

Consider a simplified form as given in eq. (4.2) in the
coupled eqs (3.24) and (3.25). Therefore, these charac-
teristic equations are reduced to the following equations:

γ̈ (t) + (F1 + iG1)γ̇ (t) + (S1 + iH1)γ (t) = 0, (4.3)

γ̈ (t) + (F2 + iG2)γ̇ (t) + (S2 + iH2)γ (t) = 0, (4.4)

where

F1 = f22 + J f11

q22 + Jk11
, G1 = l22 + Jl11

q22 + Jk11
,

S1 = s22 + Js11

q22 + Jk11
, H1 = h22 + Jh11

q22 + Jk11
,

F2 = f12 + J f21

k12 + Jq21
, G2 = l12 + Jl21

k12 + Jq21
,

S2 = s12 + Js21

k12 + Jq21
and H2 = h12 + Jh21

k12 + Jq21
.

The coupled differential equations (4.3) and (4.4) are
combined by adding them to give one equation as fol-
lows:

γ̈ (t) + (F3 + iG3)γ̇ (t) + (S3 + iH3)γ (t) = 0, (4.5)

where F3 = 1
2 (F1 + F2),G3 = 1

2 (G1 + G2), S3 =
1
2 (S1 + S2) and H3 = 1

2 (H1 + H2).
Equation (4.5) is a linear homogeneous differen-

tial equation with complex coefficients. Therefore, the
exponential solution is valid.

Hence, the solution of eq. (4.5) is written as

γ (t) = δe−iωt , (4.6)

where δ is a real constant and ω is of a complex nature
in general.

From eqs (4.5) and (4.6), one gets

ω2 + �1ω + �2 = 0, (4.7)

where �1 = −G3 + iF3 and �2 = −S3 − iH3.
It should be noted that (4.7) represents a linear dis-

persion relation for the surface waves that propagate
through the electrified streaming cylindrical sheet in the
porous media. This dispersion relation is satisfied by the
values of ω and k. Therefore, if the imaginary part of
ω is positive, the disturbance will temporally grow with
time and the flow will be unstable. On the other hand,
if the imaginary part of ω is negative, the disturbances
will decay with time and the flow becomes stable.
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Before dealing with general case, it is convenient to
consider the special case when the fluids are inviscid
(μ j = 0) and also, for non-porous media where (ν j = 0
and ξ j = 1) ( j = 1, 2, 3). In this case, we obtain the pre-
vious characteristic equations that are given by El-Dabe
et al [20] but in the case of uniform tangential electric
field. It should be taken into account that the cases will
be graphed, for simplicity, in the axisymmetric case.

5. Special cases

It is more convenient to discuss the stability analysis of
some special cases in detail. These cases may be formu-
lated as follows:

5.1 For an inviscid, non-porous and non-streaming
flow

If we ignore each of the dynamic viscosities, streaming,
Darcy’s coefficients and considering the porosity of all
media are unity, the dispersion relation (4.7) will be
simplified in the form

ω2 − S4 = 0, (5.1)

where S4 = S3 at μ j = 0, ν j = 0, ξ j = 1 and Vj = 0
( j = 1, 2, 3).

Therefore, the interfaces between the fluids are stable
or unstable depending on whether ω is real or complex.
As our aim is to study the amplitude modulation of the
progressive waves, we assume that ω2 > 0.

Therefore, the system is linearly stable if

α1E
2
0 + β1 > 0. (5.2)

α1 and β1 are given in Appendix C.
Before dealing with numerical estimations, it is con-

venient to write the above stability condition in an
appropriate dimensionless form. This can be done in
a number of ways depending primarily on the choice of
the characteristic length, time and mass. Consider the
following dimensionless forms: the characteristic length
= b, the characteristic time = √

b/g and the character-
istic mass = ρ2b3. The other dimensionless quantities
are given by

k = k∗

b
, a = a∗b, R1 = R∗

1b, R2 = R∗
2b,

ρ1 = ρ∗
1ρ2, ρ3 = ρ∗

3ρ2, E2
0 = (E2

0)∗ρ2gb,

T12 = T ∗
12ρ2gb

2 and T23 = T ∗
23ρ2gb

2. (5.3)

For simplicity, the ‘∗’ mark may be ignored in the fol-
lowing analysis.

The influence of electric field on stability depends
mainly on the sign of the parameter α1.
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Figure 2. ρ1 = 0.3, ρ3 = 1.9, ε1 = 2, ε2 = 0.9, ε3 = 5,
R1 = 10, R2 = 20, T12 = 19 and T23 = 25.

Generally, our interest is focussed on the relation
between the electric field intensity log(E2

0) and the wave
number of the surface waves k. Therefore, the stability
diagram is plotted for log(E2

0) vs. the wave number k. In
the following figures, the stable region is characterised
by the letter S. Meanwhile, the letter U stands for the
unstable region.

In what follows, a numerical calculation is performed
for the given special case.

Figure 2 considers the symmetric case. In this figure,
log(E2

0) is plotted vs. the wave number k for various val-
ues of a, the radius of cross-section of the inner cylinder.
The numerical calculation shows that the parameter α1
is positive over all the given domains which illustrates
again the stabilising influence of the tangential electric
field. This figure depicts that the parameter a has a sta-
bilising influence, especially at large values of the wave
number k.

5.2 For viscous, non-porous and non-streaming flow

When neglecting the streaming, Darcy’s coefficients and
considering the porosity of all media to be unity, the
dispersion relation (4.5) is written as follows:

γ̈ (t) + F4γ̇ (t) + S4γ (t) = 0, (5.4)

where F4 = F3 and S4 = S3 at ν j = 0, ξ j = 1 and
Vj = 0 ( j = 1, 2, 3).

Let γ (t) = τ1(t) e−(1/2)F4t , eq. (5.4) is converted to

τ̈1(t) +
(
S4 − F2

4

4

)
τ1(t) = 0. (5.5)

Let τ1(t) = τ01e−iωt , where τ01 is an arbitrary real con-
stant. This yields

ω2 −
(
S4 − F2

4

4

)
= 0. (5.6)
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Figure 3. ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ε1 = 2, ε2 = 0.9,
ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25, μ1 = 1000
and μ3 = 500.

The system is linearly stable if ω2 is positive, S4 −
(F2

4 /4) can be written in the form

4α1E
2
0 + β2 > 0, (5.7)

where

β2 = −F2
4 + 4β1,

under the restriction that F4 must be positive.
Before dealing with numerical calculations, it is con-

venient to write the stability condition in an appropriate
dimensionless form. Similar arguments will be used as
in the previous case. It should be noted that the charac-
teristics considered here are length= b, time= √

b/g
and mass= μ2b

√
b/g.

In what follows, a numerical calculation, for the sym-
metric case, is performed for the given special case.

As before, the present calculation shows that param-
eter α1 is always positive. In contrast with figure 2, the
parameter a has a destabilising influence in figure 3.
Figure 4 is depicted to indicate the influence of dynamic
viscosity μ1 on the stability behaviour. The figure shows
the destabilising influence of this parameter, especially,
at large values of the wave number k.

5.3 For viscous, non-streaming flow in porous media

In the absence of streaming fluids, the dispersion relation
(4.5) is written as follows:

γ̈ (t) + F3γ̇ (t) + S4γ (t) = 0. (5.8)

Equation (5.8) in a normal form is transformed to the
following form:

τ̈2(t) +
(
S4 − F2

3

4

)
τ2(t) = 0, (5.9)

under the transformation

γ (t) = τ2(t) e−(1/2)F3t . (5.10)
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Figure 4. a = 3, ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ε1 = 2,
ε2 = 0.9, ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25
and μ3 = 500.

Let τ2(t) = τ02e−iωt , where τ02 is the arbitrary real
constant. Equation (5.9) then becomes

ω2 −
(
S4 − F2

3

4

)
= 0. (5.11)

The system is linearly stable if ω2 is positive, and

4α1E
2
0 + β3 > 0, (5.12)

where β3 = −F2
3 + 4β1. We shall consider the same

dimensionless quantities as given in the case presented
in §5.2.

It should be noted that F3 is independent of the electric
field intensity. In fact, the restriction on F3 must be taken
into account when considering the stability picture.

In what follows, a numerical calculation, for the sym-
metric case, is performed for the given special case.

As before, the present calculations show that parame-
ter α2 is always positive. In contrast with figures 2 and 3,
in figure 5, the parameter a has a dual role in the stabil-
ity picture. Figure 6 is depicted to indicate the influence
of Darcy’s coefficient ν2 on the stability behaviour. The
Darcy’s coefficient has a dual role in the stability figure.

6. The general case

Equation (4.7) is an algebraic quadratic equation with
complex coefficients. As stated above, the stability cri-
teria depend mainly on the nature of the frequency ω.
According to the Routh–Hurwitz criteria [21], the nec-
essary and sufficient stability conditions for (4.7) are

Re(�1) > 0 (6.1)

and

Re(�1)Re(�1�̄2) − (Im�2)
2 > 0. (6.2)
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Figure 5. ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ1 = 0.3,
ξ2 = 0.02, ξ3 = 0.6, ε1 = 2, ε2 = 0.9, ε3 = 5, R1 = 10,
R2 = 20, T12 = 19, T23 = 25, μ1 = 1000, μ3 = 500,
ν1 = 1000, ν2 = 500 and ν3 = 600.
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Figure 6. a = 3, ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ1 = 0.3,
ξ2 = 0.02, ξ3 = 0.6, ε1 = 2, ε2 = 0.9, ε3 = 5, R1 = 10,
R2 = 20, T12 = 19, T23 = 25, μ1 = 1000, μ3 = 500,
ν1 = 1000 and ν3 = 600.

With regard to the coefficients of the characteristic eq.
(4.7), Routh–Hurwitz criteria may be written as

G3 < 0 (6.3)

and

αE2
0 + β < 0, (6.4)

where α = α1G2
3 and β is given in Appendix C.

In what follows, we shall consider the same dimen-
sionless quantities as given in the case presented in §5.2.

The first condition (6.3) is independent of the electric
field intensity. In fact, this condition must be taken into
account while considering the stability picture.

In what follows, a numerical calculation, for symmet-
ric case (J = 1), is performed and for the axisymmetric
mode (m = 0) in the general case.

As stated before, the implication of condition (6.3)
must be considered. All the following figures are plotted
for a domain of the wave number such that condi-
tion (6.3) is automatically satisfied. In addition, all the
present calculations indicated that the parameter α is
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Figure 7. a = 3, ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ1 = 0.03,
ξ3 = 0.6, V1 = 0.3, V2 = 0.5, V3 = 30, ε1 = 2, ε2 = 0.9,
ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25, μ1 =1000,
μ3 = 500, ν1 = 1000, ν2 = 100 and ν3 = 600.
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Figure 8. a = 3, ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ1 = 0.03,
ξ2 = 0.02, ξ3 = 0.6, V1 = 0.3, V3 = 30, ε1 = 2, ε2 = 0.9,
ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25, μ1 =1000,
μ3 = 500, ν1 = 1000, ν2 = 100 and ν3 = 600.
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Figure 9. a = 3, ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ1 = 0.03,
ξ2 = 0.02, ξ3 = 0.6, V1 = 0.3, V2 = 0.5, V3 = 30, ε1 = 2,
ε2 = 0.9, ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25,
μ1 = 1000, μ3 = 500, ν2 = 100 and ν3 = 600.

always of negative sign. This shows, again, that the elec-
tric field intensity has a stabilising influence, which is a
fact proved by many research studies.

From figure 7, the influence of porosity of the mid-
dle fluid ξ2 is depicted. Therefore, log(E2

0) is plotted
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Figure 10. a = 3, ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ1 =0.03,
ξ2 = 0.02, ξ3 = 0.6, V1 = 0.3, V2 = 0.5, V3 = 30, ε1 = 2,
ε2 = 0.9, ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25,
μ1 = 1000, μ3 = 500, ν1 = 1000 and ν3 = 600.
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Figure 11. a = 3, ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ1 =0.03,
ξ2 = 0.02, ξ3 = 0.6, V1 = 0.3, V2 = 0.5, V3 = 30, ε1 = 2,
ε2 = 0.9, ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25,
μ1 = 1000, ν1 = 1000, ν2 = 100 and ν3 = 600.
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Figure 12. ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ1 = 0.03,
ξ2 = 0.02, ξ3 = 0.6, V1 = 0.3, V2 = 0.5, V3 = 30, ε1 = 2,
ε2 = 0.9, ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25,
μ1 = 1000, μ3 = 500, ν1 = 1000, ν2 = 100 and ν3 = 600.

vs. the wave number k according to different values of
ξ2 and porosity has a destabilising effect, especially, at
large values of k. Figure 8 depicts the influence of the
variation of streaming V2 in the stability figure. The fig-
ure in which V1 ≤ V2 < V3 is plotted. It is shown that
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Figure 13. a = 3, ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ2 = 0.2,
ξ3 = 0.6, V1 = 0.3, V2 = 0.5, V3 = 30, ε1 = 2, ε2 = 0.9,
ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25, μ1 =1000,
μ3 = 500, ν1 = 1000, ν2 = 100 and ν3 = 600.
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Figure 14. a = 3, ρ1 = 0.3, ρ2 = 0.5, ρ3 = 1.9, ξ1 =0.03,
ξ2 = 0.02, ξ3 = 0.6, V1 = 0.3, V2 = 0.5, V3 = 30, ε1 = 2,
ε2 = 0.9, ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25,
μ1 = 1000, μ3 = 500, ν1 = 1000 and ν2 = 100.
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Figure 15. a = 3, ρ1 = 0.3, ρ3 = 1.9, ξ1 = 0.03,
ξ2 = 0.02, ξ3 = 0.6, V1 = 0.3, V2 = 0.5, V3 = 30, ε1 = 2,
ε2 = 0.9, ε3 = 5, R1 = 10, R2 = 20, T12 = 19, T23 = 25,
μ1 = 1000, μ3 = 500, ν1 = 1000, ν2 = 100 and ν3 = 600.

the increase of V2 has a stabilising influence. This role
is enhanced for large values of k. The influence of the
Darcy’s coefficient ν1 is depicted in figure 9. It is shown
that this parameter has a stabilising influence, especially
at small values of k. In contrast with the previous figure,
the parameter ν2, as depicted in figure 10, has a
destabilising role. This role is enhanced at large values
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of k. In figure 11, the influence of dynamic viscosity μ3
is depicted and the dynamic viscosity has a destabilising
effect, especially at large values k. Figure 12 shows the
influence of the radius of the inner cylinder a has a dual
role in the stability figure.

Finally, in asymmetric mode (m = 1), we show the
influence of porosity of ξ1 in figure 13. It is shown that
this parameter has a stabilising influence. The influence
of the Darcy’s coefficient ν3 is shown in figure 14. It is
shown that this parameter has a destabilising influence.
Figure 15 shows that the density of the middle fluid ρ2
has a destabilising influence.

7. Concluding remarks

The aim of this work is to make a mathematical simpli-
fication to the problem of EHD stability of a vertical
infinite cylindrical dielectric liquid sheet embedded
between two different cylindrical liquids. All the fluids
are saturated through porous media, where the poros-
ity parameters of the media are taken into account.
Because of various applications of the viscosity forces,
the present study considers these parameters. The VPF
theory is adopted to relax the mathematical manipu-
lation of the analysis. Therefore, the viscous effect is
demonstrated only through the normal stress conditions.
Meanwhile, the fluids are considered as inviscid else-
where. The normal mode technique is utilised to achieve
the linear stability analysis. The present boundary-value
problem leads to two coupled second-order ordinary
differential equations with damped and complex coef-
ficients. To simplify this analysis, the symmetric and
antisymmetric modes are taken into account. Therefore,
the coupled differential equations are combined into a
single equation. The Routh–Hurwitz criteria are consid-
ered to govern the theoretical stability conditions. Upon
appropriate data choices, the present study has recovered
several special cases. This study examines the influence
of uniform tangential electric field. The effect of tan-
gential periodic electric fields will be considered in a
subsequent paper. The numerical calculations are per-
formed in the case of axisymmetric modes (m = 0)

and also, the asymmetric mode (m 	= 0). In fact, in the
former case, the following conclusions are reported:

1. the porosity has a stabilising effect,
2. Darcy’s coefficients play a dual role on the stability

figure. This role differs from ν1 and ν2,
3. the dynamic viscosity has a destabilising effect,
4. the streaming has a stabilising effect,
5. the thickness of the inner cylinder has a dual

role. This role depends on the values of the wave
number k.

In contrast, in the case of asymmetric modes (m = 1),
we get the following conclusions:

1. the porosity has a stabilising effect,
2. Darcy’s coefficients have a destabilising effect,
3. the density of the fluid has a destabilising effect.

Appendix A

For simplicity, we used this substituting for writing the
coefficients,

M(A1) = I(m−1)(k A1) + I(m+1)(k A1),

L(A1) = K(m−1)(k A1) + K(m+1)(k A1),

P(A1, A2) = I(m)(k A1)K(m)(k A2)

−I(m)(k A2)K(m)(k A1),

N (A1, A2) = I(m)(k A1)L(A2) − K(m)(k A1)M(A2),

Q(A1, A2) = I(m)(k A1)L(A2) + K(m)(k A1)M(A2),

SI = I(m−2)(k A1) + 2I(m)(k A1)

+I(m+2)(k A1),

SK = K(m−2)(k A1) + 2K(m)(k A1)

+K(m+2)(k A1),

U (A1, A2) = L(A1)M(A2) − L(A2)L(A1),

where A1 and A2 are a, b, R1, R2 and r . The values
appearing in eqs (3.11)–(3.13) are listed as follows:

W = ε2N (R1, R1)P(a, R1)(ε2L(R2)P(R2, b)

+ε3Km(kR2)N (b, R2))

+ε1K(m)(ka)K(m)(kR1)M(R1)

×(ε2N (R1, R2)P(R2, b)

−ε3N (b, R2)P(R2, R1))

+L(R1)(ε1K(m)(ka)K(m)(kR1)

+ε2P(R1, a))(ε2N (R1, R2)P(R2, b)

−ε3N (b, R2)P(R2, R1)),

L1 = 2(ε1 − ε2)Im(kR1)

W
×(ε2N (R1, R2)P(R2, b)

−ε3N (b, R2)P(R2, R1)),

L2 = 2(ε2 − ε3)ε1Km(kR1)N (R1, R1)P(R2, b)

W
,

L3 = 2(ε1 − ε2)

N (R1, R1)ε2

×
(

− 1 +

⎡
⎣ ε1Km(kR1)Q(a, R1)(ε2N (R1, R2)

×P(R2, b) − ε3N (b, R2)

P(R2, R1))

⎤
⎦

W

)
,
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L4 =

[
(ε1 − ε2)Km(kR1)P(R1, a)(ε3N (R1, R2)

×P(R2, b) − ε2N (b, R2)P(R2, R1))

]

WN (R1, R1)
,

L5 = 2ε1(ε3 − ε2)Km(kR1)Q(a, R1)P(R2, b)

W
,

L6 = 2ε2(ε2 − ε3)Km(kR1)P(a, R1)P(R2, b)

W
,

L7 = 2(ε2 − ε1)

ε2N (R1, R1)P(R2, b)

×
(
P(R2, R1) + Km(kR1)

W
(ε1P(R2, R1)Q(a, R1)

−ε2P(a, R1)Q(R2, R1)) × (ε2N (R1, R2)P(R2, b)

−ε3N (b, R2)P(R2, R1))

)
,

L8 =

[
2(ε3 − ε2)Km(kR1)(ε1P(R2, R1)Q(a, R1)

+ε2P(R1, a)Q(R2, R1))

]

ε2N(R1, R1)P(R2, b)
.

Appendix B

The coefficients appearing in eqs (3.24) and (3.25) are
listed as follows:

k11 = 2Q(R1, a)ρ1

kξ1U (R1, a)
− 2Q(R1, R2)ρ2

kξ2U (R2, R1)
,

q22 = −2Q(R1, R1)ρ2

kξ2U (R2, R1)
,

f11 =

[
2(Q(R1, a)ν1 + μ1(SI (R1)L(a)

+SK (R1)M(a)))

]

kU (R1, a)

+

[
2(Q(R1, R2)ν2 + μ2(SI (R1)L(R2)

+SK (R1)M(R2)))

]

kU (R1, R2)
,

l11 = 2V1ρ1(1 + ξ1)Q(R1, a)

ξ2
1U (R1, a)

−2V2ρ2(1 + ξ2)Q(R1, R2)

ξ2
2U (R2, R1)

,

s11 = kE2
0((P(R1, R1)(L3 + L5)

+Q(R1, R1)(L4 + L6))ε2 − ε1P(a, R1)L1)

−2kQ(R1, a)ρ1V 2
1

ξ2
1U (R1, a)

+2kQ(R1, R2)ρ2V 2
2

ξ2
2U (R2, R1)

− (k2R2
1 − 1)T12

R2
1

,

h11 =

[
2Q(R1, a)V1ν1 + V1μ1k2(M(a)SK (R1)

+L(a)SI (R1))

]

U (R1, a)

−

[
2Q(R1, R2)V2ν2 + V2μ2k2(M(R2)SK (R1)

+L(R2)SI (R1))

]

U (R2, R1)
,

f22 =

[
2Q(R1, R1)ν2 + 2μ2(SI (R1)L(R1)

+SK (R1)M(R1))

]

kU (R1, R2)
,

l22 = 2V2ρ2(1 + ξ2)Q(R1, R1)

ξ2
2U (R1, R2)

,

s22 = −k ε1E
2
0 P(a, R1)L2 + 2kQ(R1, R1)ρ2V 2

2

ξ2
2U (R2, R1)

,

h22 =

[
2Q(R1, R1)V2ν2 + 2V2μ2k2(M(R1)SK (R1)

+L(R1)SI (R1))

]

U (R1, R2)
,

q21 = 2Q(R2, R2)ρ2

kξ2U (R2, R1)
,

k12 = 2Q(R2, R1)ρ2

kξ2U (R2, R1)
− 2Q(R2, b)ρ3

kξ3U (R2, b)
,

f12 =

[
2(Q(R2, R1)ν2 + μ2(SI (R2)L(R1)

+SK (R2)M(R1)))

]

kU (R2, R1)

+2(Q(R2, b)ν3+μ3(SI (R2)L(b)+SK (R2)M(b)))

kU (b, R2)
,

l12 = 2V2ρ2(1 + ξ2)Q(R2, R1)

ξ2
2U (R2, R1))

+2V3ρ3(1 + ξ3)Q(R2, b)

ξ2
3U (b, R2)

,

s12 = k ε3E
2
0 P(b, R2)L8 + 2kQ(R2, R1)ρ2V 2

2

ξ2
2U (R1, R2)

−(k2R2
2 − 1)T23

R2
2

+ 2kQ(R2, b)ρ3V 2
3

ξ2
3U (R2, b)

,

h12 =

[
2Q(R2, R1)V2ν2 + V2μ2k2(M(R1)SK (R2)

+L(R1)SI (R2))

]

U (R2, R1)

+

[
2Q(R2, b)V3ν3 + V3μ3k2(M(b)SK (R2)

+L(b)SI (R2))

]

U (b, R2)
,

f21 =

[
2Q(R1, R1)ν2 + 2μ2(SI (R2)L(R2)

+SK (R2)M(R2))

]

kU (R2, R1)
,

l21 = 2V2ρ2(1 + ξ2)Q(R2, R2)

ξ2
2U (R2, R1)

,
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s21 = kE2
0((P(R2, R1)(L3 + L5)

+Q(R2, R1)(L4 + L6))ε2 − ε3P(b, R2)L7)

−2kQ(R2, R2)ρ2V 2
2

ξ2
2U (R2, R1)

,

h21 =

[
2Q(R2, R2)V2ν2+2V2μ2k2(M(R2)SK (R2)

+L(R2)SI (R2))

]

U (R2, R1)
.

Appendix C

The coefficients appearing in eqs (5.2) and (6.4) are
listed as follows:

k̃11 = 2Q(R1, a)ρ1

kU (R1, a)
− 2Q(R1, R2)ρ2

kU (R2, R1)
,

q̃22 = −2Q(R1, R1)ρ2

kU (R2, R1)
, q̃21 = 2Q(R2, R2)ρ2

kU (R2, R1)
,

k̃12 = 2Q(R2, R1)ρ2

kU (R2, R1)
− 2Q(R2, b)ρ3

kU (R2, b)
,

α1 =

⎡
⎣ (Jk((P(R1, R1)(L3 + L5)

+Q(R1, R1)(L4+L6))ε2−ε1P(a, R1)L1)

−kε1P(a, R1)L2)

⎤
⎦

2(q̃22 + J k̃11)

+

[
(kε3P(b, R2)L8) + Jk((P(R2, R1)(L3+L5)

+Q(R2, R1)(L4+L6))ε2−ε3P(b, R2)L7)

]

2(k̃12 + J q̃21)
,

β1 = − Jk2(R2
1 − 1)T12

2R2
1(q̃22 + J k̃11)

− (k2R2
2 − 1)T23

2R2
2(k̃12 + J q̃21)

,

β = H2
3

−G3F3H3 + G2
3

2(q22 + Jk11)

(
2kQ(R1, R1)ρ2V 2

2

ξ2
2U (R2, R1)

−J

(
2kQ(R1, a)ρ1V 2

1

ξ2
1U (R1, a)

− 2kQ(R1, R2)ρ2V 2
2

ξ2
2U (R2, R1)

+(k2R2
1 − 1)T12

R2
1

))

+ G2
3

2(k212 + Jq21)

(
2kQ(R2, R1)ρ2V 2

2

ξ2
2U (R1, R2)

−(k2R2
2 − 1)T23

R2
2

+2kQ(R2, b)ρ3V 2
3

ξ2
3U (R2, b)

− J

(
2kQ(R2, R2)ρ2V 2

2

ξ2
2U (R2, R1)

))
.
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