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Abstract: Approximation computation is a significant issue when the rough set model is applied. However, few authors focus on
how to calculate approximations of multigranulation rough set (MGRS). Herein, the authors clarify a fact that only a part of
elements in the universe need to be judged whether they belong to approximations of MGRS. If X is a target concept which is
approximated by approximations in MGRS, then the element whose equivalence class does not intersect with X is of no need to
be judged. Based on the fact, the authors clarify that they proposed a vector-based algorithm to compute approximations in
MGRS. Time complexity of the proposed algorithm is O( | X | |U | ).

1 Introduction
Pawlak originally proposed a Rough set theory in 1980s and it is a
powerful mathematical tool for characterising the uncertainty by
the difference between lower and upper approximations. The rough
set theory has been widely used in image processing [1, 2],
machine learning [3–10], pattern recognition [11–18], data mining,
and other relevant areas. However, multiple different types of
attribute values appear in information systems in many real-world
situations, e.g. missing ones, numerical ones, set-valued ones, and
interval-valued ones. Classical rough set theory cannot be applied
in analysing these data, means that classical rough set theory has
some theoretical limitations. To overcome these limitations, a lot of
extensions have been proposed such as covering-based rough set
[19], which generalisze rough set from the equivalence relation to
the general binary relation, fuzzy rough set [20], which generalise
rough set from the equivalence relation to fuzzy relation, and
multigranulation rough set (MGRS) [21].

As we all know, Pawlak's rough set is constructed by a single
equivalence relation and that is too restrictive in many real-life
applications. Multiple viewpoint has been used for many real
application areas. In order to extend the application areas of rough
set theory, Qian et al. [21] improved the theory and proposed a
theory of MGRS, which includes optimistic and pessimistic lower
and upper approximations. MGRSs are constructed by a family of
attribute sets, which characterise different viewpoints.
Approximation computation plays a significant role in applications
of MGRS. However, since MGRS have been proposed, few author
focus on designing a fast algorithm to compute approximations of
MGRS. Hu et al. [22] proposed a matrix-based algorithm for
computing approximation of MGRS that is much more efficient
than naive algorithm. However, there is a defect in their algorithm
which slows down the speed of the algorithm: all the elements in
the universe must participate in the computation process.

In this paper, we clarify a fact that in MGRS, only a part of
elements need to be judged whether they belong to approximations.
The other part whose equivalence class doee not intersect with
approximate target concept X(∀X ⊆ U) are of no need to be
judged. Inspired by this fact, we proposed a vector representation
of approximations in MGRS, and devised a vector-based fast
algorithm for computing approximations in MGRS. The time
complexity of the algorithm is O( | X | |U | ). Since the complexity of
the matrix-based algorithm is O( |U |2 ), the time complexity of the
algorithm we proposed is theoretically less than Hu's. Experimental
evaluation showed that the computation time of our algorithm is

less than Hu's algorithm not only when the size of X was increasing
gradually but also when the size of the universe was increasing
gradually.

The rest of this paper is organised as follows. In Section 2, we
review several concepts in MGRS. In Section 3, we prove that only
the part of elements that related to target concept X need to be
judged and propose another fast algorithm for computing
approximation in MGRS. The time complexity of our algorithm is
less than Hu's. Experimental evaluation verified the efficiency of
both algorithms, which was conducted in Section 4. The paper ends
with conclusions and outlooks for further research in Section 5.

2 Preliminaries
In this section, we review mainly the concepts in MGRSs.

2.1 Multigranulation rough sets

In the past decade, many extensions of MGRS have been proposed
and since MGRS is our another basic model, we review its main
results in this section.
 

Definition 1: Let IS = U, AT, VAT, f  be an information
system, where U = x1, x2, ⋯, xn  is a non-empty finite set of the
objects, called the universe [1]. A = a1, a2, ⋯, ar  is a non-empty
finite set of attributes. the element A ∈ AT is called an attribute
set. VAT = ⋃A ∈ AT VA is a domain of attribute values, where VA is
the domain of attribute set A. f :U × AT → V  is a decision function
such that f : x, A ∈ VA, ∀A ∈ AT, x ∈ U.
 

Definition 2: Let IS = U, AT, VAT, f  be an information
system, where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U
[21]. The optimistic multigranulation lower and upper
approximation of X are denoted by ∑k = 1

m Ak
O X  and ∑k = 1

m Ak
O X ,

respectively

∑
k = 1

m
Ak

O X = x ∈ U | [x]A1 ⊆ X ∨ ⋯ ∨ [x]Am ⊆ X (1)

∑
k = 1

m
Ak

O X = ∼ ∑
k = 1

m
Ak

O ∼ X (2)
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where [x]Ak is the equivalence class of x in terms of the attribute set
Ak, ∼ X is the complement of the set X.
 

Theorem 1: Let IS = U, AT, VAT, f  be an information system,
where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U. Since
[x]Ak ⊆ X ⇒ x ∈ X, we have that

∑
k = 1

m
Ak

O X = x ∈ X | [x]A1 ⊆ X ∨ ⋯ ∨ [x]Am ⊆ X , (3)

where [x]Ak is the equivalence class of x in terms of the attribute set
Ak.

Proof. ⇒: ∀x ∈ ∑k = 1
m Ak

O X ⇔ [x]A ∈ X A ∈ AT , we have
that ∀y ∈ [x]A ⇒ y ∈ X, thus we have

∑
k = 1

m
Ak

O ⊆ x ∈ X | [x]A1 ⊆ X ∧ ⋯ ∧ [x]Am ⊆ X ;

⇐: ∀x ∈ x ∈ X | [x]A1 ⊆ X ∧ ⋯ ∧ [x]Am ⊆ X ⇒ x ∈ U, since
[x]A ⊆ X,we have that x ∈ ∑k = 1

m Ak
O X , thus we have

x ∈ X | [x]A1 ⊆ X ∧ ⋯ ∧ [x]Am ⊆ X ⊆ ∑
k = 1

m
Ak

O X ,

this completes the proof. □
 

Theorem 2: Let IS = U, AT, VAT, f  be an information system,
where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U [21]. For the
optimistic multigranulation upper approximation of X, we have

∑
k = 1

m
Ak

O X

= x ∈ U | [x]A1 ∩ X ≠ ∅ ∧ ⋯ ∧ x ∈ U | [x]Am ∩ X ≠ ∅ .
(4)

 
Theorem 3: Let IS = U, AT, VAT, f  be an information system,

where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U. For the
optimistic multigranulation upper approximation of X, we have

∑
k = 1

m
Ak

O X = ∩ ∩k = 1
m [x]Ak | x ∈ X . (5)

Proof.

∀x ∈ ∑k = 1

m Ak
O(X) ⇔ ∀k ≤ m,

[x]Ak ∩ X ≠ ∅ ⇔ ∀y ∈ ∩k = 1
m [x]Ak, ∀k ≤ m,

[y]Ak ∩ X ≠ ∅ ⇔ ∃z ∈ X ∩ ∩k = 1
m [x]Ak ,

s.t. ∀k ≤ m

[z]Ak ∩ X ≠ ∅ ⇔ ∑
k = 1

m
Ak

O X = ∩ ∩k = 1
m [x]Ak | x ∈ X .

 
Definition 3: Let IS = U, AT, V , f  be an information system,

where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U [21]. The
pessimistic multigranulation lower and upper approximation of X
are denoted by ∑k = 1

m Ak
P X  and ∑k = 1

m Ak
P X , respectively,

∑
k = 1

m
Ak

P X = x ∈ U | [x]A1 ⊆ X ∧ ⋯ ∧ [x]Am ⊆ X (6)

∑
k = 1

m
Ak

P X = ∼ ∑
k = 1

m
Ak

P ∼ X . (7)

where [x]Ak is the equivalence class of x in terms of the attribute set
Ak, ∼ X is the complement of the set X.
 

Theorem 4: Let IS = U, AT, VAT, f  be an information system,
where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U. Since
[x]Ak ⊆ X ⇒ x ∈ X, we have that

∑
k = 1

m
Ak

O X = x ∈ X | [x]A1 ⊆ X ∧ ⋯ ∧ [x]Am ⊆ X . (8)

where [x]Ak is the equivalence class of x in terms of the attribute set
Ak.

Proof. The proof is similar to that of Theorem 1. □
 

Theorem 5: Let IS = U, AT, VAT, f  be an information system,
where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U [21]. For the
optimistic multigranulation upper approximation of X, we have

∑
k = 1

m
Ak

P X

= x ∈ U | [x]A1 ∩ X ≠ ∅ ∨ ⋯ ∨ x ∈ U ∨ [x]Am ∩ X ≠ ∅ .
(9)

 
Theorem 6: Let IS = U, AT, VAT, f  be an information system,

where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U. For the
pessimistic multigranulation upper approximation of X, we have

∑
k = 1

m
Ak

P X = ∪ [x]Ak | x ∈ X .

Proof. ∀x ∈ ∑k = 1
m Ak

P X ⇔ ∃k ≤ m, s.t.
[x]Ak ∩ X ≠ ∅ ⇔ ∃y ∈ [x]Ak ∩ X, s.t.

[y]Ak ∩ X ≠ ∅ ⇔ ∑k = 1
m Ak

P X = ∪ [x]Ak | x ∈ X . □

3 Vector-based algorithm for computing
approximations in MGRS
According to Hu's approach, all samples must participate in the
computation process. However, Theorems 3 and 6 demonstrate that
only part of the elements in the universe needs to be determined
whether they belong to approximations or not. This inspired us to
improve the algorithm to be more efficient.

The essential step of computing the approximations of MGRS is
to judge an equivalence class, [x]Ak, for example, is contained in
the target concept X or not. In addition, to set operation, there is a
more efficient way which is introduced in [23].
 

Definition 4: [24] Let IS = U, AT, VAT, f  be an information
system, where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U, the
vector represent X is denoted as V X = [v1(X), …, vn(X)]T,(‘T’
denotes the transpose operation, the same to ‘′‘), where

vi(X) =
1, xi ∈ X
0, xi ∉ X

i ∈ 1, 2, …, n

 
Lemma 1: [23] Let IS = U, AT, VAT, f  be an information

system, where Ak ∈ AT for any k ∈ 1, 2, …, m .
U = x1, x2, …, xn ∀X, Y ⊆ U, if Y⧸⊆ X, then

∼ VT(Y) ⋅ ( ∼ V(X)) = 0.
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Corollary 1: Let IS = U, AT, VAT, f  be an information
system, where Ak ∈ AT for any k ∈ 1, 2, …, m .
U = x1, x2, …, xn . ∀X, Y ⊆ U, if Y ⊆ X, then

VT( ∼ X) ⋅ V(Y) = 0.

Proof. This corollary can be easily obtained from Lemma 1. □
 

Example 1: Let IS = U, AT, VAT, f  be an information system,
as shown in Table 1, where U = x1, x2, x3, x4, x5, x6 , B = A ∪ d, and
A = a1, a2, a3 . Let X = x2, x3, x4 . According to Definition 4, we
have V X = 0, 1, 1, 1, 0, 0 T. Suppose Y = x2, x3 , then
V(Y) = [0, 1, 1, 0, 0, 0], obviously, Y ⊆ X.
V( ∼ X) = [1, 0, 0, 0, 1, 1],
V(Y) ⋅ VT( ∼ X) = [0, 1, 1, 0, 0, 0] ⋅ [1, 0, 0, 0, 1, 1]T = 0. 
 

Theorem 7: Let IS = U, AT, VAT, f  be an information system,
where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U. For the
optimistic multigranulation upper approximation of X, we have

∑
k = 1

m
Ak

O X = ∩k = 1
m ∪ [x]Ak | x ∈ X (10)

Proof. From Theorem 3

∑
k = 1

m
Ak

O X = ∩ ∪k = 1
m [x]Ak | x ∈ X ,

and then ∀x, y ∈ X

([x]A1 ∪ [x]A2 ∪ ⋯ ∪ [x]Am) ∩ ([y]A1 ∪ [y]A2 ∪ ⋯ ∪ [y]Am)
= ([x]A1 ∪ [y]A1) ∩ ([x]A2 ∪ [y]A2) ∩ ⋯ ∩ ([x]Am ∪ [y]Am)

= ∩k = 1
m ([x]Ak ∪ [y]Ak),

for the way we choose x and y, we can easily infer that
∑k = 1

m Ak
O X = ∩k = 1

m ∪ [x]Ak | x ∈ X . □
 

Lemma 2: Let IS = U, AT, VAT, f  be an information system,
where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U. For the
optimistic multigranulation upper approximation of X, we have

∑
k = 1

m
Ak

P X = ∪k = 1
m ∪ [x]Ak | x ∈ X

Proof. This lemma can be easily obtained from Theorem 6 □
By Theorem 7 and Lemma 2, we can propose a new approach

to compute upper approximations of PMGRS and OMGRS:
 

Defintion 5: Let IS = U, AT, VAT, f  be an information system,
where Ak ∈ AT for any k ∈ 1, 2, …, m , and ∀X ⊆ U. The upper
approximation character set of X can be calculated as

IAk
U (X) = ∪ [x]Ak | x ∈ X , ∀k = 1, 2, ⋯, m (11)

 

Corollary 2: Let IS = U, AT, VAT, f  be an information
system, where Ak ∈ AT for any k ∈ 1, 2, ⋯, m , and ∀X ⊆ U. The
optimistic and pessimistic upper approximations can be calculated
by

∑
k = 1

m
Ak

P X = ∪k = 1
m IAk

U (X),

∑
k = 1

m
Ak

O X = ∩k = 1
m IAk

U (X) .

Proof. This corollary can be easily obtained by Theorem 7 and
Lemma 2 □
 

Example 2: Continuation of Example 1. From Table 1, we have
that

V([x1]A1) = V([x2]A1) = V([x5]A1)
= [1, 1, 0, 0, 1, 0],

V([x3]A1) = V([x4]A1) = V([x6]A1)
= [0, 0, 1, 1, 0, 1];

V([x1]A2) = V([x5]A2) = [1, 0, 0, 0, 1, 0],
V([x2]A2) = [0, 1, 0, 0, 0, 0],
V([x3]A2) = V([x4]A2) = V([x6]A2)

= [0, 0, 1, 1, 0, 1],
V([x1]A3) = V([x2]A3) = V([x5]A3)

= [1, 1, 0, 0, 1, 0];
V([x3]A3) = V([x4]A3)

= [0, 0, 1, 1, 0, 0],
V([x6]A3) = [0, 0, 0, 0, 0, 1] .

By Definition 5

V(IA1
U (X)) = V([x2]A1) ∨ V([x3]A1)

∨ V([x4]A1)
= V([x2]A1) ∨ V([x3]A1)
= [1, 1, 1, 1, 1, 1],

V(IA2
U (X)) = V([x2]A2) ∨ V([x3]A2)

∨ V([x4]A2)
= V([x2]A2) ∨ V([x3]A2)
= [0, 1, 1, 1, 0, 1],

V(IA3
U (X)) = V([x2]A3) ∨ V([x3]A3)

∨ V([x4]A3)
= V([x2]A3) ∨ V([x3]A3)
= [1, 1, 1, 1, 1, 0],

By Corollary 2

∑
k = 1

m
Ak

P X = ∪k = 1
m IAk

U (X)

V( ∪k = 1
m IAk

U (X)) = V(IA1
U (X)) ∨ V(IA2

U (X))

∨ V(IA3
U (X))

= [1, 1, 1, 1, 1, 1] ∨ [0, 1, 1, 1, 0, 1]
∨ [1, 1, 1, 1, 1, 0]

= [1, 1, 1, 1, 1, 1] .

By Definition 4

Table 1 Decision information system
U a1 a2 a3 d
x1 2 2 1 1
x2 2 3 1 1
x3 1 1 2 2
x4 1 1 2 2
x5 2 2 1 1
x6 1 1 0 3
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∑
k = 1

m
Ak

P X = x1, x2, x3, x4, x5 .

∑
k = 1

m
Ak

O X = ∩k = 1
m IAk

U (X) .

V( ∩k = 1
m IAk

U (X)) = V(IA1
U (X)) ∧ V(IA2

U (X))

∧ V(IA3
U (X))

= [1, 1, 1, 1, 1, 1] ∧ [0, 1, 1, 1, 0, 1]
∧ [1, 1, 1, 1, 1, 0]

= [0, 1, 1, 1, 0, 0] .

By Definition 4

∑
k = 1

m
Ak

O X = x2, x3, x4 .

 
Lemma 3: Let IS = U, AT, VAT, f  be an information system,

where Ak ∈ AT for any k ∈ 1, 2, ⋯, m . ∀X ⊆ U, we have

∑
k = 1

m
Ak

O X = ∪k = 1
m ∪ [x]Ak ⊆ X | x ∈ X .

Proof. This lemma can be easily obtained by Theorem 1. □
 

Lemma 4: Let IS = U, AT, VAT, f  be an information system,
where Ak ∈ AT for any k ∈ 1, 2, ⋯, m . ∀X ⊆ U, we have

∑
k = 1

m
Ak

P X = ∩k = 1
m ∪ [x]Ak ⊆ X | x ∈ X .

Proof. This lemma can be easily obtained by Theorem 4 □
 

Definition 6: Let IS = U, AT, VAT, f  be an information
system, where Ak ∈ AT for any k ∈ 1, 2, ⋯, m , and ∀X ⊆ U. The
upper approximation character set of X can be calculated as

IAk
L (X) = ∪ [x]Ak | [x]Ak ⊆ X ∧ x ∈ X , ∀k = 1, 2, ⋯, m

 
Corollary 3: Let IS = U, AT, VAT, f  be an information

system, where Ak ∈ AT for any k ∈ 1, 2, ⋯, m , and ∀X ⊆ U. The
optimistic and pessimistic upper approximations can be calculated
by

∑
k = 1

m
Ak

P X = ∩k = 1
m IAk

U (X),

∑
k = 1

m
Ak

O X = ∪k = 1
m IAk

U (X) .

Proof. This corollary can be easily obtained by Lemma 3 and
Lemma 4 □
 

Example 3: (Continuation of Example 2): By Definition 6

For VT( ∼ X) ⋅ V([x1]A1) ≠ 0,

VT( ∼ X) ⋅ V([x3]A1) ≠ 0,

V(IA1
L (X)) = [0, 0, 0, 0, 0, 0];

For VT( ∼ X) ⋅ V([x1]A2) ≠ 0,

VT( ∼ X) ⋅ V([x2]A2) = 0,

VT( ∼ X) ⋅ V([x3]A2) ≠ 0,

V(IA2
L (X)) = [0, 1, 0, 0, 0, 0];

For VT( ∼ X) ⋅ V([x1]A3) ≠ 0,

VT( ∼ X) ⋅ V([x3]A3) = 0,

VT( ∼ X) ⋅ V([x6]A3) ≠ 0,

V(IA3
L (X)) = [0, 0, 1, 1, 0, 0] .

By Corollary 3

∑
k = 1

m
Ak

P X = ∩k = 1
m IAk

L (X)

V( ∩k = 1
m IAk

L (X)) = V(IA1
L (X)) ∧ V(IA2

L (X))

∧ V(IA3
L (X))

= [0, 0, 0, 0, 0, 0] ∧ [0, 1, 0, 0, 0, 0]
∧ [0, 0, 1, 1, 0, 0]

= [0, 0, 0, 0, 0, 0] .

By Definition 4

∑
k = 1

m
Ak

P X = ∅ .

∑
k = 1

m
Ak

O X = ∪k = 1
m IAk

U (X) .

V( ∪k = 1
m IAk

L (X)) = V(IA1
L (X)) ∨ V(IA2

L (X))

∨ V(IA3
L (X))

= [0, 0, 0, 0, 0, 0] ∨ [0, 1, 0, 0, 0, 0]
∨ [0, 0, 1, 1, 0, 0]

= [0, 1, 1, 1, 0, 0] .

By Definition 4

∑
k = 1

m
Ak

O X = x2, x3, x4 .

Algorithm 1 (see Fig. 1) is a vector-based algorithm for
computing the lower and upper approximations of optimistic and
pessimistic MGRS which is based on the discussion of Section 3.
The total time complexity of the algorithm is O( | X | |U | ). Steps 3–
6 are to calculate IAk

L  and IAk
U  (k ∈ 1, 2, ⋯, m ) whose time

complexity is O( | X | |U | ), steps 17–22 are to compute the
approximations of MGRS whose time complexity is O(U). Since
the time complexity of matrix-based algorithm is O(U2), and in
general, we have |X | ≪ |U|, Algorithm 1 (Fig. 1) is more efficient
than matrix-based algorithm. 

4 Experimental evaluations
In this section, several experiments have been conducted to verify
the validity of the proposed vector-based algorithms. We have
selected six data sets, which are described in Table 2. All the
experiments have been carried out on a personal computer with
Windows 10, Intel(R) Core(TM)I7-6700HQ @2.6 GHz and 8 GB
memory. The programming language is Matlab R2015b. 
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First, since time complexity of Algorithm 2 is O( | X | |U | ) and
time complexity of Algorithm 1 (Fig. 1) is O( |U |2 ), six group of
experiments have been conducted to compare Algorithm 1 (Fig. 1)
and matrix-based algorithm when the size of target concept X was
gradually increased by a 10% step in size of U, the strategy for
selecting elements of X is completely random.

Fig. 2 shows that the computation time of Algorithm 1 (Fig. 1)
is less than matrix-based algorithm even though the cardinal
number of target concept X is the same. When the size of X is
increasing gradually, the computation time of Algorithm 1 (Fig. 1)
has a positive growth while Hu's algorithm has almost no change at
all. In Fig. 2, Algorithm 1 (Fig. 1) is more efficient than matrix-

based algorithm on computing approximations of MGRS when the
cardinal number of target concept X is gradually increasing. 

Second, six group of experiments have been conducted to
compare Algorithm 1 (Fig. 1) and matrix-based algorithm when the
size of universe was gradually increased by a 10% step in size of
U, the strategy for selecting samples of U and X is completely
random. The size of X is 1/3 elements of the temporary universe.

Fig. 3 shows when the size of U is increasing gradually, both
the computation time of Algorithm 1 (Fig. 1) and matrix-based
algorithm have a positive growth. In Fig. 3, Algorithm 1 (Fig. 1) is
more efficient than matrix-based algorithm on computing
approximations of MGRS when the cardinal number of universe is
gradually increasing. 

Fig. 1  Algorithm 1: A improved matrix-based algorithm for computing approximations in multigranulation rough set
 

Table 2 Decision information system
No. Data sets Samples Attributes
1 balance 625 4
2 car evaluation 1728 6
3 contraceptive method choice 1473 9
4 dermatology 366 20
5 solar flare 1389 13
6 zoo 101 17
 

Fig. 2  Computation time of Algorithm 1 (Fig. 1) and Algorithm 2 when the size of X increasing gradually
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5 Conclusion
In this paper, a fact that only the part of elements need to be judged
whether they belong to approximations in MGRS has been clarified
and then a vector-based algorithm for computing approximations of
MGRS algorithm has been proposed. In the future, we will focus
on updating approximation of MGRS while adding or deleting a
granular structure, adding or deleting a sample by approaches
which we verified.
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