

J. ICT Res. Appl., Vol. 12, No. 2, 2018, 103-122 103

Received December 12
th
, 2017, Revised April 30

th
, 2018, Accepted for publication August 8

th
, 2018.

Copyright © 2018 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2018.12.2.1

A Combination of Inverted LSB, RSA, and Arnold

Transformation to get Secure and Imperceptible Image

Steganography

Edi Jaya Kusuma*, Christy Atika Sari, Eko Hari Rachmawanto &

De Rosal Ignatius Moses Setiadi

Faculty of Computer Science, Dian Nuswantoro University Jalan Imam Bonjol 207,
50131 Semarang, Indonesia

*E-mail: edi.jaya.kusuma@gmail.com

Abstract. Securing images can be achieved using cryptography and

steganography. Combining both techniques can improve the security of images.

Usually, Arnold’s transformation (ACM) is used to encrypt an image by

randomizing the image pixels. However, applying only a transformation

algorithm is not secure enough to protect the image. In this study, ACM was

combined with RSA, another encryption technique, which has an exponential

process that uses large numbers. This can confuse attackers when they try to

decrypt the cipher images. Furthermore, this paper also proposes combing ACM
with RSA and subsequently embedding the result in a cover image with inverted

two-bit LSB steganography, which replaces two bits in the bit plane of the cover

image with message bits. This modified steganography technique can provide

twice the capacity of the previous method. The experimental result was

evaluated using PSNR and entropy as the parameters to obtain the quality of the

stego images and the cipher images. The proposed method produced a highest

PSNR of 57.8493 dB and entropy equal to 7.9948.

Keywords: Arnold’s transformation; cryptography; inverted 2-bit LSB; RSA;

steganography.

1 Introduction

Various forms of information, such as text, images, sound, or video, can be

transmitted or received via the Internet. One type of data that is widely shared

over the Internet are digital images [1]. Sometimes, Internet users send pictures
via the Internet only to specific people, which are thus private images.

However, sending private images via the Internet is not secure if the data are not

protected, so they could be seen by unauthorized parties. This can be prevented
by applying security techniques to digital images. In this context, cryptography

and steganography are security techniques that can be implemented to protect

data [2].

104 Edi Jaya Kusuma, et al.

Cryptography is the science of securing data by producing random numbers that

cannot be understood by others. Linguistically, cryptography is derived from

the Greek word kryptos, which means ‘hidden’ or ‘secret’, and graphein, which

means ‘writing’ [3]. According to Ref. [4], a good cryptographic method meets
the requirements of data confidentiality, data integrity, authentication, and non-

repudiation. Meanwhile, steganography is the art of concealment of information

under a certain cover file, such as a text, image, audio or video file, so that
unauthorized parties are not aware of the existence of the information.

Steganography comes from the Greek steganos, which means ‘closed’ or

‘covered’. A good steganographic method has good capacity, good

imperceptibility as well as high robustness [5].

In cryptography, two types of keys are usually used, i.e. symmetric keys and

asymmetric keys (public-key encryption). The advantage of an asymmetric key

is that its process makes it difficult for attackers to decrypt the message. RSA is
considered a strong asymmetric cryptographic key technique. The RSA

algorithm is strong because it uses an exponential process with large numbers

[6]. Taki El Deen, et al. [3] have compared RSA, DES, and Blowfish in the
process of image encryption. From this experiment they concluded that the

mathematical implementation time of RSA is shorter than that of DES and

Blowfish. However, its execution time depends on the parameters used, p and q.

If the values of p and q are large, then the implementation time will increase.
Actually, RSA is unsuitable for image encryption [7] because the result is

constant, where each value will produce the same pattern, even after encryption

using RSA. Therefore Irfan, et al. [1] combined RSA with a chaotic system,
where the RSA result is operated using XOR with a key that is obtained using

the chaotic system. This process is to prevent the possibility of having the same

pattern in the final cipher result. Several researches have proposed encryption

models based on chaos systems, including for gray-scale images [8,9] and color
images [7,10]. However, the use of a chaos system in the encryption process is

still insufficient because it only scrambles the position of the image pixels.

Therefore, several studies have improved or combined a chaos system with
cryptographic algorithms to increase image encryption quality. Saha, et al. in

[11] developed an encryption scheme using Arnold’s transformation and RSA.

First, the images are encrypted using ACM, after which RSA is applied, which
can double the length of the images. The different size between the original

image and the cipher image can prevent correlation analysis. Therefore, the

authors tried to improve RSA by combining it with Arnold Cat Map,

specifically by applying ACM at bit level [12] to increase the randomness of the
encrypted image.

The implementation of cryptographic techniques can also be combined with

steganographic techniques to improve data security, which has been done in

 Secure and Imperceptible Image Steganography 105

previous researches [13-15]. Using a steganography technique, the cipher image

(the result of the encryption process) can be hidden inside a cover file in order

to deceive parties who are not authorized to receive it. In steganography there

are several methods that can be generally distinguished based on the domain
used, namely the spatial domain or the frequency domain. Compared to the

frequency domain, the spatial domain has the advantage of being easier and

simpler in the implementation process. One of the spatial domain methods is
Least Significant Bit (LSB), which conceals the message bit in each pixel of the

bit plane. However, because it is simple and easy to implement this algorithm is

vulnerable to attacks. Several attempts have been done to improve the security

of this algorithm [16-18]. One improvement of the LSB algorithm is Inverted
Bit LSB, which has a high imperceptibility value. The advantage of the inverted

bit algorithm is that it produces a stego image of good quality that has a high

similarity with the cover image [19]. For example, Bhardwaj, et al. in [5]
implemented inverted bits on messages that were embedded in a digital image.

The cryptographic scheme used in this work is a combination of RSA and ACM

with inverted 2-bit LSB. An inverted 2-bit LSB obtains four different bit
combinations, which confuses attackers when they try to extract the secret

message. In addition, conventional inverted LSB only embeds a 1-bit message

in each pixel of the cover image. However, the method proposed here embeds a

2-bit message in each pixel, increasing its capacity.

2 Literature Review

2.1 Arnold’s Cat Map (ACM)

Arnold’s Cat Map (ACM), also called Arnold’s transformation, was invented by

Vladimir Arnold in 1960 [1]. This chaos system is a two-dimensional map that

obtains the values of new random coordinates (x’, y’) from real coordinates (x,
y) in an image sized M × M. To generate the new coordinates, this

transformation requires a and b (positive integers) and i for several iterations as

input values.

 �x'

y'� = �1 a

b ab+1
� �x

y� mod M (1)

In Eq. (1), the determinant value of the metrics that contain a and b should be 1

in order to generate a new coordinate that stays inside the image. This equation
is repeated i times. Sometimes there is an iteration value that returns the image

to the original image. This iteration value is called Arnold’s period [9].

106 Edi Jaya Kusuma, et al.

 �x

y� = �1 a

b ab+1
�-1 �x'

y'� mod M (2)

Eq. (2) shows the enciphering formula that generates the original coordinates (x,
y). The result of the inverse matrices of the metric containing a and b operates

with the randomized coordinates of the cipher image.

2.2 Rivers Shamir Adleman (RSA)

RSA is a public-key cryptosystem thas was first proposed by and named after

R. Rivest, A. Shamir, and L. Adleman. The RSA algorithm is used in banking,

e-mail security, and e-commerce on the Internet [3]. RSA requires p and q,
which are primes numbers, to obtain a public key and a private key (p ≠ q). The

public key is publicly known, while the private key is only known to the owner.

Usually, the public key is used in the encryption process, while the private key
is used in the decryption process.

To generate a public key and a private key, the following steps are used:

1. Input prime numbers for p and q, where p ≠ q. Then calculate the value of
n = p × q.

2. Choose e, which is co-prime with (p–1) (q–1), where 1 < e < (p – 1) (q –

 1).

3. Use e to obtain d, where d is an integer within 1 < d < (p – 1) (q – 1) from
e × d = 1 mod (p – 1) (q – 1).

The pair (e, n) is the public key, used in the encryption process. Meanwhile, the

pair (d, n) is the private key, used in the decryption process.

To perform encryption, pair (e, n) is used in the equation below:

 C = M
 e

 mod n (3)

where C is the cipher message, M is the secret message, e is the public key, and

n is the public modulus.

Eq. (3) shows the exponential of M with e that is operated with n using the

modulus function to obtain the cipher message.

Meanwhile, to decrypt the cipher message, pair (d, n) is used in the equation
below:

 M = C
 d

 mod n (4)

 Secure and Imperceptible Image Steganography 107

Plain message M will be produced from the exponential of C with d, where d is

taken from the private key as shown in Eq. (4).

2.3 Classic Inverted Bit LSB Steganography

The previous research by Akhtar, et al. [19] proposed an LSB inversion to

improve the quality of the stego image. In this algorithm, the insertion process

is almost the same as in the conventional LSB technique. The difference is that

this algorithm uses a combination of the 2
nd

 and 3
rd

 bits of the LSB in the bit
plane (00, 01, 10, 11) as quantifier to calculate the LSB number, which is

changed in each combination [5]. If for one combination, for instance 01, the

changed LSB number is greater than the unchanged LSB, then all LSBs with
the 01 combination will be inverted. For example, we have a message bit

01101010 and also 8 pixels from a cover image that consist of:

10001111 11001110 00110101 11110000

11010100 00000111 10000110 00110110

In the 8 pixels of the cover image above, replace the LSB of each pixel in the bit

plane with a message bit. The result will be:

10001110 11001111 00110101 11110000

11010101 00000110 10000111 00110110

there are 5 pixels that have changed. Depending on the combination of the 2
nd

and 3
rd

 bit LSB of each pixel in the bit plane, calculate the number of bits that
have changed.

Table 1 Number of changed bits and unchanged bits.

Combination Changed Unchanged Invert?

00 0 1 No
01 0 0 No
10 1 1 No
11 4 1 Yes

Based on Table 1, only 11 combinations will be inverted because the number of
changed bits is larger than the number of unchanged bits. The stego image after

the inversion process is:

10001111 11001110 00110101 11110000

11010101 00000111 10000110 00110111

In the final stego image of the inverted LSB only 2 pixels have changed. This

causes the peak signal to noise ratio (PSNR) to improve. A higher value of

PSNR indicates a more imperceptible stego image [16].

108 Edi Jaya Kusuma, et al.

3 Proposed Method

In a previous study [11], before the images were encrypted with the RSA

algorithm, the image pixels were randomized using Arnold’s transformation.
However, in the present study, first an image with size M × M is encrypted

using the RSA algorithm to generate a 16-bit pixel cipher. After that, the result

is rearranged to become a binary image with size M × 16M and Arnold’s

transformation is applied to it. The encryption result is an M × 2M cipher image
because each 16-bit pixel cipher value is divided into 2 new pixels, where each

new pixel contains 8 pixel cipher bits. The new cipher pixel is embedded in a

cover image using inverted 2-bit LSB steganography, which changes the 2-bit
LSB of the pixels in the bit plane into a 2-bit message. In the conventional

inverted bit algorithm, usually the 2
nd

 and 3
rd

 bits of the LSB is used as

quantifiers but in this study the 3
rd

 and 4
th

 bits of the LSB were used as
quantifiers to determine which pixels have to be inverted. For a more detailed

explanation, the proposed scheme is separated into 2 parts, consisting of the

embedding scheme (Figure 1) and the extracting scheme (Figure 2).

3.1 Embedding Scheme

The process of embedding produces a stego image and a file called key.txt. The

process is as follows:

1. Input values for p and q (prime numbers). Also input secret image (M ×

M) and cover image (N × N).

2. From p and q, generate a key for encryption and decryption. Because

only a maximum of 16 bits can be accommodated, the range value of n
is 255 < n < 65536. Save and secure the decryption key.

3. Encrypt each pixel of the image using Eq. (3) with the pair of the key

that has been generated.
4. Rearrange the RSA encryption result into a binary image with size M ×

(16 × M).

5. Input values for a, b and i to apply Arnold’s transformation.
6. Divide the bit result after applying Arnold’s transformation into 8 bits

per pixel.

7. Insert the result of the previous step into the cover image (N × N). Each

2 bits of the encryption result is embedded in the 2-bit LSB of each
pixel in the bit plane.

8. Use the combination of the 3
rd

 and 4
th
 bits of the LSB as quantifier to

determine which pixels have to be inverted. Give a sign (Table 2) for
each change.

 Secure and Imperceptible Image Steganography 109

Table 2 Sign patterns for each changed bit.

2-bit LSB before

Embedding

2-bit LSB after

Embedding
Sign

00 00 00
00 01 01
00 10 10

00 11 11
01 00 01
01 01 00
01 10 11
01 11 10
10 00 10
10 01 11
10 10 00

10 11 01
11 00 11
11 01 10
11 10 01
11 11 00

In Table 2, the patterns are shown that are used to mark the change of

each 2-bit. If the 1
st
 bit is changed, then the sign will be 1 in the 1

st
 bit

of the sign, which also applies to the 2
nd

 bit of the LSB. If there is no
change, the mark will be 0.

9. Calculate the sum of each combination. Then, calculate the number of

bits that have changed for each combination. After that, calculate the

percentages of changed bits for each quantifier by dividing the number
of changed bits with the total number for each combination.

10. If the percentage > 74.5%, then invert the combination and give a mark.

The reason why we choose 74.5% is that the percentages of changed
bits are in the range of 74 to 75 percent (74 < percentages < 75).

Table 3 shows the tag of each changed bit. Sign 00 does not have a tag because
sign 00 means that there is no change. The tags are divided into 2, i.e. odd

iterations and even iterations. Then, save each take in the key.txt file.

Table 3 Tags for each change sign.

Change

Sign

Tag

Odd

Iteration

Even

Iteration

00 - -
01 A D
10 B E
11 C F

110 Edi Jaya Kusuma, et al.

Figure 1 Embedding scheme flowchart.

Figure 1 shows the flow of the embedding process that produces the stego

image and the key.txt file.

p q

Arnold’s Transformation

RSA Encryption

a

i

b

Change into image with size

M×(16×M)

Inverted 2-bits LSB Steganography

Cover Image

Stego Image

Key.txt

 Secure and Imperceptible Image Steganography 111

3.2 Extracting Scheme

Figure 2 Extracting scheme flowchart.

A flowchart of the extracting scheme is shown in Figure 2. This scheme will

produce the original image.

n d

Arnold’s Transformation

RSA Decryption

a

i

b

Change into image with size

M× (16×M)

Extract 2-bits LSB of Cover

Image Based on Key

Stego Image

Key.txt

Original

Image

112 Edi Jaya Kusuma, et al.

The detailed steps for extracting the secret image are:

1. Input the stego image and key.txt. Based on key.txt, which contains the

tags from Table 3, extract the message bits.

2. Reconstruct the message bits into an image with size M × (16 × M).
3. Input values for a, b, and i as parameters to perform the decryption

process of Arnold’s transformation using Equation 2.

4. Divide the result from the previous step into 16 bits per pixel, then
convert into a decimal value.

5. Input the private key for the decryption process.

6. Do RSA decryption for each pixel using the key that has been inputted.

7. Rearrange the decryption result into an M × M image, i.e. the original
image.

4 Result and Testing

Four different images (two color images with size 64 × 64 and two grayscale

images with size 128 × 128) were used as secret messages. They were

encrypted and embedded using the proposed scheme. Actually, the size of the

image can also be a different size, as long as each side has a size of 2
n
 pixels

and the length of the image is greater than or equal to the width of the image.

The reason why this study used square images is that the comparison method

[11] can only be implemented with square images. After the encryption process,
the encryption result is embedded in a cover image with size 512 × 512.

Figure 3 Secret images: two-color images (a, c) and two-grayscale images (b,

d).

Figure 3 shows the secret images that were encrypted using the proposed

scheme. The RSA parameters used were p = 1213, and q = 53. Based on these

parameters, the pair of keys can be obtained, i.e. the encryption key (e, n) =
(503, 64289) and the decryption key (d, n) = (3383, 64289).

(a) baboon.tiff

(b) boat.tiff

(c) lena.tiff

(d) f16.tiff

 Secure and Imperceptible Image Steganography 113

Figure 4 Lena.tiff after encryption using RSA.

Figure 4 is lena.tiff, which was encrypted using the key from RSA. After RSA

encryption, this cipher image was expanded into binary form. The expansion

process converts each pixel in each layer into 8-bit binary and then reconstructs
this binary form into an image with size 64 × 1024.

Red Layer

Green Layer

Blue Layer

Figure 5 Binary image in each layer.

These three binary (2-bit) images, shown in Figure 5, were merged into one

image. The result of the merging process is a color image because each binary

image represents a color layer.

Figure 6 Result of the merging process.

Next, the image in Figure 6 was randomized using ACM. The parameters used

in ACM were a = 13, b = 31, and i = 7. Because ACM can only be implemented

on square images, each 64 × 64 block of the binary image was scrambled, so it
was processed in 16 iterations.

Figure 7 Image result after ACM encryption.

114 Edi Jaya Kusuma, et al.

The result of ACM encryption is shown in Figure 7. After this process, the

result is constructed into an 8-bit image.

Figure 8 Final cipher image of lena.tiff.

The result of the proposed encryption is an M × 2M cipher image, as shown in

Figure 8, where M is the actual size of the secret image. Doubling the image
size can prevent this encrypted image from statistical method attacks and

correlation analysis. The results of the proposed encryption process applied to

the four secret images are displayed in Figure 9.

As shown in Figure 10, the histograms of each layer of one of the encrypted
images (baboon.bmp) are significantly different compared to that of the original

image. The histogram result of the proposed encryption scheme has a flat

pattern, which decreases the possibility of being attacked using a statistical
method. Compared to the method from [11], the entropy value of the proposed

method is higher.

Baboon.bmp

Boat.bmp

Lena.bmp

F16.bmp

Figure 9 Results of the encryption process using the proposed scheme.

 Secure and Imperceptible Image Steganography 115

Red Layer

Red Layer

Green Layer

Green Layer

Blue Layer

Blue Layer

Figure 10 Histogram of the original secret image (left) and histogram of the

encrypted image (right).

Entropy is a parameter that shows the variation of the gray level values of an
image. The higher the entropy value, the more variation in the gray level of the

image.

 ���	
�� = ∑ �� �
�� �� � (5)

From Eq. (5) we can calculate the entropy of each of the four cipher images. Pi

is the probability of two different adjacent pixels. Below are the results of the

entropy calculation for the images:

Table 4 Execution time comparison.

Image

Name
Size

Saha et al. [11]

(seconds)

Proposed Scheme

(seconds)

baboon.tiff 64 × 64 1.4323 4.0665
lena.tiff 64 × 64 1.3981 4.1995
boat.tiff 128 × 128 2.5874 8.1846
F16.tiff 128 × 128 2.7856 8.6370

116 Edi Jaya Kusuma, et al.

From Table 4 it can be seen that our method needs more time to be executed.

This is because in our method, the ACM process takes 16 iterations to process

each block of the binary image.

Table 5 Comparison table of entropy value.

Image Name Size ACM
Double-size

RSA
Saha, et al. [11]

Proposed

Scheme

Baboon.tiff 64 × 64 7.5703 7.4034 7.4034 7.9948
Lena.tiff 64 × 64 7.6990 7.4210 7.4210 7.9936
Boat.tiff 128 × 128 7.1336 7.1313 7.1313 7.9899
f16.tiff 128 × 128 6.9761 7.0829 7.0829 7.9948

A comparison of the entropy values of the proposed method and other methods
is shown in Table 5. Double-size RSA and the method proposed by Saha et al.

have the same entropy value, even though the latter combines double RSA and

ACM. This is because the implementation of ACM only scrambles the image
pixels and does not change the pixel values of the image. Thus, the entropy

value does not change. The result shows that our method has a better entropy

value compared to the other techniques, where the result is equal to 7.9948 for
baboon.tiff. The reason why our method generates a high entropy value even

though it incorporates ACM is because we implement ACM on the binary form

(Figures 6 and 7). Applying ACM in binary form affects the values of the

pixels, therefore the entropy value changes. After the encryption process, the
result is embedded into a cover image, as shown below. Here, we used two

images as cover image.

peppers.tiff

elaine.tiff

Figure 11 Cover images (color image (peppers.tiff) and grayscale image

(elaine.tiff).

The encrypted images shown in Figure 9 were embedded in the cover images in

Figure 11. These cover images have the same size, i.e. 512 × 512. In the colored
cover image, we inserted the secret image into the blue layer, because human

vision is less sensitive to the color blue.

Actually, with a size of cover images equal to 512 × 512, the maximum payload
that can be inserted using conventional LSB and the methods from [19] and [5]

is only 262,144 bits. Meanwhile, the proposed method can provide twice the

 Secure and Imperceptible Image Steganography 117

capacity compared to the previous methods. This is because each pixel in our

method can accommodate two message bits while each pixel in the previous

methods can only contain one message bit. Therefore, our method provides

twice the payload of the previous methods.

Table 6 Payload of cipher images.

Cipher

Image

Size Before

Encryption

Size After

Encryption

Cipher Size

in Bits

baboon.tiff 64 × 64 64 × 128 196608
lena.tiff 64 × 64 64 × 128 196608
boat.tiff 128 × 128 128 × 256 262144
f16.tiff 128 × 128 128 × 256 262144

Table 6 shows the payload of each cipher image. The size of the cipher images

is different after the encryption process. For example, the actual size of

baboon.tiff is 64×64 and becomes 64 × 128 after the encryption process. Then,
the cipher image will be inserted into the cover image.

(a)

(b)

Figure 12 Stego images (a. peppers.tiff and b. elaine.tiff).

As shown in Figure 12, after the insertion process, the stego images cannot be
distinguished from the cover image. This means our proposed scheme has a

stego image of good quality. The results of the embedding process were tested

using mean square error (MSE) and peak signal to noise ratio (PSNR) to prove
the quality of stego image.

 ��� = �
�×� ∑ ∑ ∑ ‖�� ��, �, � − ����, �, � ‖� ""#�

$
$#�%%#� (6)

where M × N is the size of the images, Ci is the cover image, Si is the stego
image, and x,y,z stand for the width, height, and layer of the image.

 ��&' = 10 �
��*
�+,�
�-. (7)

From Eqs. (6) and (7) above we can calculate the values of PSNR and MSE.
From [20], good-quality stego images will be achieved if the value of PSNR is

above 40 dB. The results of the calculation are as follows:

118 Edi Jaya Kusuma, et al.

Table 7 Comparison table of PSNR and MSE values.

Cover Images Cipher Images
Conventional LSB Proposed Method

PSNR MSE PSNR MSE

Elaine.tiff

Boat.tiff 51.1470 0.4993 Inf 0
F16.tiff 51.1325 0.5010 Inf 0

Baboon.tiff 52.3912 0.3749 Inf 0
Lena.tiff 52.3889 0.3751 Inf 0

Peppers.tiff

Boat.tiff 51.1417 0.4999 Inf 0
F16.tiff 51.1493 0.4991 Inf 0

Baboon.tiff 52.4207 0.3724 Inf 0

Lena.tiff 52.3936 0.3747 Inf 0

In the method from [19], to determine the inverted bit, a scheme is used

whereby if the number of changed bits is greater than the number of unchanged
bits, then the changed bits will be inverted. In other words, if the percentage of

changed bits is over 50% then these will be inverted. We tried to apply this

scheme to our method. The results were compared to conventional LSB, as
shown in Table 7. It can be seen that most of our experiments had infinity value

for PSNR, which means that our method did not change the cover image even

though messages were inserted. Then, our method was compared to the methods
from [19] and [5], as shown in Table 8.

Table 8 Comparison table of PSNR and MSE with previous methods.

Cover

Images

Cipher

Images

Method of

Akhtar, et al. [19]

Method of

Bhardwaj, et al.[5]
Proposed Method

PSNR MSE PSNR MSE PSNR MSE

Elaine.tiff Boat.tiff 51.1470 0.4993 Inf 0 Inf 0
 F16.tiff 57.2000 0.1239 52.4025 0.3740 Inf 0
 Baboon.tiff 55.2997 0.1919 55.5256 0.1822 Inf 0
 Lena.tiff 55.5270 0.1821 55.3089 0.1915 Inf 0

Peppers.tiff Boat.tiff 57.1690 0.1248 61.9576 0.0414 Inf 0

 F16.tiff 57.2132 0.1235 61.8370 0.0409 Inf 0
 Baboon.tiff 57.1919 0.1241 Inf 0 Inf 0
 Lena.tiff 60.1336 0.0631 60.2387 0.0615 Inf 0

Because the proposed method achieves infinity value for PSNR at a minimum

percentage of 50%, we tried to increase the range of percentages of the inverted
bits into 74.0-75.0%, of which the result is shown in Figure 15. At this

percentage range, the PSNR value of the previous methods decreased. Actually,

this happened because the number of changed bits of the previous methods

cannot fulfill the minimum percentages of the number of inverted bits, so the
previous methods, especially the one proposed by Akhtar, et al. [19], produced

similar PSNR values as conventional LSB, as shown in Tables 7 and 8. In the

proposed method, the percentages of changed bits denoting the inverted bits can
be set depending on need. The factor that affects the percentage is the size of the

 Secure and Imperceptible Image Steganography 119

secret message. If the secret message is large, then the number of bits that

change also increases. It also increases the minimum percentages of the number

of inverted bits.

Figure 13 Comparison graph of PSNR with elaine.tiff used as cover image.

Figure 14 Comparison graph of PSNR with peppers.tiff used as cover image.

Figure 15 PSNR (dB) value for each percentage in the range of 74.0-75.0%.

0

10

20

30

40

50

60

74 74.1 74.2 74.3 74.4 74.5 74.6 74.7 74.8 74.9 75

Boat.tiff F16.tiff

120 Edi Jaya Kusuma, et al.

5 Conclusion

In this paper, a combined encryption and concealment method is proposed. Its

encryption scheme, using a combination of Arnold’s transformation and RSA at
the bit level, produced encrypted images with better quality than previous

methods, with a best entropy value of 7.9948, and generated an unpredictable

histogram. Meanwhile, the concealment scheme, using inverted 2-bit LSB

modified from classic inverted LSB, produced stego images of good quality.
This was proved by most of the PSNR values for each stego image being higher

than 40 dB. Moreover, other than the previous methods, the proposed method

generated infinity value for PSNR. This means that the proposed method did not
change the cover image even though secret messages had been inserted. The

concealment scheme showed that the percentages where the PSNR value started

to change were in the range of 74.0 to 75.0%. In the middle of this range, i.e.
74.5%, the best PSNR value was generated (equal to 57.8493 dB) with an MSE

value equal to 0.1067. In a future work, inverted 2-bit LSB will be used to insert

messages into the edge area to improve the imperceptibility value. Furthermore,

more bits will be used as bit combination, for example 3 bits, which provides 8
different patterns. These patterns can improve the possibility of higher PSNR

values.

References

[1] Irfan, P., Prayudi, Y. & Riadi, I., Image Encryption Using Combination

of Chaotic System and Rivers Shamir Adleman (RSA), Int. J. Comput.

Appl., 123(6), pp. 11-16, 2015.
[2] Osman, B., Yasin, A. & Omar, M.N., An Analysis of Alphabet-based

Techniques in Text Steganography, J. Telecommun. Electron. Comput.

Eng., 8(10), pp. 109-115, 2016.
[3] El Deen, A.E.T., El-Badawy, E-S.A. & Gobran, S.N., Digital Image

Encryption Based on RSA Algorithm, IOSR J. Electron. Commun. Eng.,

9(1), pp. 69-73, 2014.
[4] Stallings, W., Cryptography and Network Security: Principles and

Practice, Sixth Edition, 6
th
 ed. 2014.

[5] Bhardwaj, R. & Sharma, V., Image Steganography Based on

Complemented Message and Inverted Bit LSB Substitution, Procedia
Comput. Sci., 93, September, pp. 832-838, 2016.

[6] Chandra, S., Paira, S., Alam, S.S. & Sanyal, G., A Comparative Survey of

Symmetric and Asymmetric Key Cryptography, in 2014 International
Conference on Electronics, Communication and Computational

Engineering (ICECCE), Tamilnadu, India, pp. 83-93, May 2015.

 Secure and Imperceptible Image Steganography 121

[7] Wang, X-Y., Zhang, Y-Q. & Bao, X-M., A Colour Image Encryption

Scheme Using Permutation-Substitution Based on Chaos, Entropy, 17(6),

pp. 3877-3897, 2015.

[8] Rehman, A.U., Liao, X., Kulsoom, A. & Abbas, S.A., Selective
Encryption for Gray Images Based on Chaos and DNA Complementary

Rules, Multimed. Tools Appl., 74(13), pp. 4655-4677, Jul. 2015.

[9] Abbas, N.A., Image Encryption Based on Independent Component
Analysis and Arnold’s Cat Map, Egypt. Informatics J., 17(1), pp. 139-

146, 2016.

[10] Hariyanto, E. & Rahim, R., Arnold’s Cat Map Algorithm in Digital

Image Encryption, Int. J. Sci. Res., 5(10), pp. 1363-1365, 2016.
[11] Saha, B.J., Pradhan, C., Kabi, K.K. & Bisoi, A.K., Robust Watermarking

Technique Using Arnold’s Transformation and RSA in Discrete Wavelets,

in International Conference on Information Systems and Computer
Networks (ISCON), Mathura, India, pp. 83-87, 2014.

[12] Xu, L., Li, Z., Li, J. & Hua, W., A Novel Bit-Level Image Encryption

Algorithm Based on Chaotic Maps, Opt. Lasers Eng, 78, pp. 17-25, 2016.
[13] Irawan, C., Setiadi, D.R.I.M., Sari, C.A. & Rachmawanto, E.H., Hiding

and Securing Message on Edge Areas of Image Using LSB

Steganography and OTP Encryption, International Conference on

Informatics and Computational Sciences (ICICoS), Semarang, Indonesia,
pp. 1-6, 2017.

[14] Reddy, M.I.S. & Kumar, A.P.S., Secured Data Transmission Using

Wavelet Based Steganography and Cryptography by Using AES
Algorithm, Procedia Comput. Sci, 85, Cms, pp. 62-69, 2016.

[15] Charan, G.S., Nithin Kumar, S.S.V., Karthikeyan, B., Vaithiyanathan, V.

& Divya Lakshmi, K., A Novel LSB Based Image Steganography With

Multi-Level Encryption, in International Conference on Innovations in
Information, Embedded and Communication Systems (ICIIECS),

Coimbatore, India, pp. 1-5, 2015.

[16] Bai, J., Chang, C.C., Nguyen, T.S., Zhu, C. & Liu, Y., A High Payload
Steganographic Algorithm Based on Edge Detection, Displays, 46(1), pp.

42-51, 2017.

[17] Kaur, N.I., A Hybrid Technique for Image Steganography Using LSB &
Bi-orthogonal Wavelet Transform, International Journal of Computer

Science and Information Security (IJCSIS), 14(9), pp. 5500, 2016.

[18] Kusuma, E.J., Indriani, O.R., Sari, C.A., Rachmawanto, E.H. & Setiadi,

D.R.I.M., An Imperceptible LSB image Hiding on Edge Region using
DES Encryption, International Conference on Innovative and Creative

Information Technology (ICITech), Salatiga, Indonesia, pp. 1-6, 2017.

[19] Akhtar, N., Khan, S. & Johri, P., An Improved Inverted LSB Image
Steganography, Int. Conf. Issues Challenges Intelligent Comput. Tech.,

pp. 749-755, 2014.

122 Edi Jaya Kusuma, et al.

[20] Setiadi, D.R.I.M., Santoso, H.A., Rachmawanto, E.H. & Sari, C.A., An

Improved Message Capacity and Security using Divide and Modulus

Function in Spatial Domain Steganography, International Conference on

Information and Communications Technology(ICOIACT), Yogyakarta,
Indonesia, pp. 186 - 190, 2018.

