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Abstract
Background/Aims: Cardiac arrhythmias are triggered by environmental stimuli that may 
modulate expression of cardiac ion channels. Underlying epigenetic regulation of cardiac 
electrophysiology remains incompletely understood. Histone deacetylases (HDACs) control 
gene expression and cardiac integrity. We hypothesized that class I/II HDACs transcriptionally 
regulate ion channel expression and determine action potential duration (APD) in cardiac 
myocytes. Methods: Global class I/II HDAC inhibition was achieved by administration of 
trichostatin A (TSA). HDAC-mediated effects on K+ channel expression and electrophysiological 
function were evaluated in murine atrial cardiomyocytes (HL-1 cells) using real-time PCR, 
Western blot, and patch clamp analyses. Electrical tachypacing was employed to recapitulate 
arrhythmia-related effects on ion channel remodeling in the absence and presence of HDAC 
inhibition. Results: Global HDAC inhibition increased histone acetylation and prolonged APD90 
in atrial cardiomyocytes compared to untreated control cells. Transcript levels of voltage-gated 
or inwardly rectifying K+ channels Kcnq1, Kcnj3 and Kcnj5 were significantly reduced, whereas 
Kcnk2, Kcnj2 and Kcnd3 mRNAs were upregulated. Ion channel remodeling was similarly 
observed at protein level. Short-term tachypacing did not induce significant transcriptional 
K+ channel remodeling. Conclusion: The present findings link class I/II HDAC activity to 
regulation of ion channel expression and action potential duration in atrial cardiomyocytes. 
Clinical implications for HDAC-based antiarrhythmic therapy and cardiac safety of HDAC 
inhibitors require further investigation.
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Introduction

Electrophysiological properties of cardiomyocytes are governed by ion channels, pumps 
and exchangers. Ion channel dysfunction represents a key factor in the pathophysiology of 
heart rhythm disorders [1-5]. Specifically, alterations of ion channel expression contribute 
to the initiation and maintenance of cardiac arrhythmias [6, 7]. Current pharmacological 
antiarrhythmic therapy is limited by reduced effectiveness and side effects in a significant 
subgroup of patients [8-10]. Targeted therapeutic approaches based on underlying 
molecular mechanisms may improve future antiarrhythmic management. However, specific 
mechanisms contributing to defective regulation of ion channel expression during cardiac 
arrhythmia are poorly understood.

We hypothesized that regulation of gene expression programs through epigenetic 
modulation may affect cardiac electrophysiology and promote arrhythmogenesis. DNA 
within the nucleus of eukaryotic cells is packaged 
together with histones and non-histone proteins in 
a dynamic manner as chromatin [11]. Histones are 
subject to modification, including acetylation and 
deacetylation mediated by histone acetyltransferases 
(HATs) and histone deacetylases (HDACs), 
respectively [12]. Deacetylation of histone lysine 
residues results in chromatin condensation and 
modification of gene transcription. In addition, 
HDACs interact with non-histone proteins such as 
transcription factors, co-activators and co-repressors 
[13]. Recent reports revealed that HDACs are 
involved in cardiac hypertrophy [14-16], fibrosis [17-
19] and metabolism [20]. Furthermore, QT-interval 
prolongation and ventricular arrhythmias have been 
observed during small molecule HDAC inhibition for 
anticancer therapy in humans, suggesting cardiac 
electrophysiological effects of HDAC inhibition [21-
24].

The mechanisms underlying electrophysiological 
actions of HDAC modulation are not known. This 
study was designed to investigate transcriptional and 
functional effects of HDAC inhibition on repolarizing 
cardiac K+ channels. To this end, the hydroxamic 
acid trichostatin A (TSA), an established and 
highly specific small molecule HDAC inhibitor with 
antitumor activity [25-28], was employed. At the 
molecular level, TSA serves as pan-HDAC inhibitor of 
class I (HDACs 1, 2, 3, and 8) and II HDACs (HDACs 
4, 5, 6, 7, 9, and 10) at nanomolar concentrations 
by reversibly binding to the catalytic site of the 
enzyme [29]. TSA is a zinc-dependent HDAC inhibitor 
that harbors three distinct domains (Fig. 1 A) [30]. 
First, the surface recognition site is formed by an 
aromatic group and interacts with the binding pocket 
of HDAC molecules. Second, a zinc binding domain 
coordinates to the active site of Zn2+ ion. Third, the 
linker region connects the surface recognition site 
to the zinc binding domain. Specifically, structural 
studies using TSA bound to HDAC revealed that the 

Fig. 1. Increased histone acetylation after 
pan-HDAC inhibition by trichostatin A 
(TSA). A. Chemical structure (C17H22N2O3) 
of TSA. Functional domains of the 
compound are indicated. B. Protein levels 
of acetylated histone H3 (Ac-H3) were 
analyzed by Western blot in HL-1 cells 
incubated with 100 nM TSA for 12 hours, 
followed by quantification of optical 
density normalized to glyceraldehyde 
3-phosphate dehydrogenase (GAPDH). 
Immunoblots (upper panel) and mean 
values (±SEM) obtained following TSA 
application (n=3) or control treatment 
(n=3) (lower panel) are shown; *p<0.05.
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surface-recognition element interacts with the entrance rim of the active site, whereas the 
zinc binding domain forms complexes with the metal ion at the bottom of the site pocket 
located inside the HDAC molecule [31-33].

The results of this work revealed epigenetic, HDAC-mediated regulation of action 
potential duration and K+ channel expression in atrial cardiomyocytes.

Materials and Methods

HL-1 cell culture
HL-1 cells (kindly provided by Dr. William Claycomb, Louisiana State University Health Science Center, 

New Orleans, LA, USA) were derived from atrial tumor (AT-1) cells of transgenic mice expressing the SV40 
large T antigen under the control of the atrial natriuretic factor (ANF) promoter and exhibit cardiomyocyte-
specific ion channel expression [34, 35]. Cells were cultured in supplemented Claycomb medium (JRH 
Biosciences, Lenexa, KS, USA) as previously described [36, 37].

Drug administration
Trichostatin A (Sigma-Aldrich, Steinheim, Germany) was prepared as 5 mM stock solution in DMSO. 

Aliquots of the stock solutions were diluted freshly to the desired concentrations with culture media on the 
day of experiments. TSA treatment of HL-1 cell cultures was performed in supplemented Claycomb medium 
(Sigma-Aldrich, St. Louis, MO, USA) for 12 h when cells were 60-80% confluent, unless indicated otherwise.

Action potential recordings
Cardiac action potentials were recorded from HL-1 cells 12 h after application of 100 nM TSA using 

the whole-cell patch-clamp technique. Fire-polished capillary glass pipettes (World Precision Instruments, 
New Haven, CT, USA) were back-filled with 140 mM KCl, 1.0 mM MgCl2, 10 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 5 mM ethyleneglycol tetraacetic acid (EGTA), 5 mM adenosine 
triphosphate potassium salt (KATP), 0.1 mM guanosine triphosphate sodium salt (NaGTP) and 3 mM 
phosphocreatine sodium salt (Na2CP) (pH adjusted to 7.2 with KOH). The extracellular solution was 
Tyrode’s solution (140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM glucose and 10 mM HEPES, pH 
adjusted 7.4 with NaOH). Pipettes had resistances between 1.5 and 5 MΩ. Data were low-pass filtered at 1 to 
2 kHz (–3 dB, four-pole Bessel filter) before digitalization at 5 to 10 kHz. Recordings were performed using 
a commercially available amplifier (Warner OC-725A, Harvard Apparatus, Holliston, MA, USA) and pCLAMP 
software (Molecular Devices, Sunnyvale, CA, USA) for data acquisition and analysis. Action potentials were 
elicited in current clamp mode by injection of brief current pulses (2 ms, 1 nA) at a stimulation frequency of 
1 Hz and recorded at near physiological temperatures of 30 - 32°C.

RNA isolation and RT-qPCR
Total RNA was isolated from HL-1 cells with TRIzol-Reagent (Invitrogen, Karlsruhe, Germany), followed 

by chloroform extraction and isopropanol precipitation. RNA was quantified by assessing optical density at 
260 and 280 nm (NanoDrop 2000, Thermo Fisher Scientific, Wilmington, DE, USA). Complementary DNA 
synthesis was carried out with the Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Fisher 
Scientific, Waltham, MA, USA) using 2-3 µg (10 μl) of total RNA, 4 μl of 5-fold reaction mixture, and 2 μl 
Maxima enzyme mix in 20 μl final volume. Quantitative real time PCR (RT-qPCR) was performed using the 
7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) according to the manufacturer's 
protocol. 96 well optical detection plates (Applied Biosystems) were loaded to a total volume of 10 μl 
per well, consisting of 0.5 μl cDNA, 5 μl TaqMan Fast Universal Master Mix (Applied Biosystems), and 
6-carboxyfluorescein (FAM)-labeled TaqMan probes and primers (TaqMan Gene Expression Assays; Applied 
Biosystems) detecting Kcnq1 (Mm00434640_m1), Kcnk2 (Mm01323942_m1), Kcnk3 (Mm04213388_s1), 
Kcnj2 (Mm00434616_m1), Kcnj3 (Mm00434618_m1), Kcnj5 (Mm01175829_m1), Kcnj12 (Mm00440058_
s1), Kcnj4 (Mm02027786_s1), Kcnd3 (Mm01302126_m1), Kcne1 (Mm01215533_m1), Kcna4 (Mm00445241_
s1), Kcna5 (Mm00524346_s1), and Kcnh2 (Mm00465377_mH). Primers and probes detecting glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) were used for normalization. All RT-qPCR reactions were performed 
in triplicate or higher replicates, and non-template control (NTC) and dilution series were included on each 
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plate for quantification. Data are expressed as an average of triplicates. Data analyses were performed with 
the Applied System using the second derivative method. All measurements were adjusted using a standard 
probe, and quantification was corrected for efficiency calculated with the standard curves.

Protein extraction and Western blot analysis
Protein immunodetection was performed by sodium dodecyl sulfate (SDS) gel electrophoresis and 

Western blotting [38, 39]. HL-1 cells were lysed in radioimmunoprecipitation (RIPA) buffer containing 20 
mM Tris-HCl, 0.5% NP-40, 0.5% sodium-deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM Na3VO4, 1 mM NaF, 
and inhibitors of proteases (Complete) and phosphatases (PhosStop) (Roche Applied Science, Indianapolis, 
IN, USA). Homogenates were centrifuged at 4°C for 30 min at 14000 g. Supernatants were collected, and 
the protein concentration was determined using the bicinchoninic acid (BCA) protein assay (Thermo 
Scientific, Rockford, IL, USA). Equal amounts of protein were separated on 6–20% SDS polyacrylamide gels, 
transferred to polyvinylidene difluoride membranes, and developed using primary antibodies directed 
against acetyl-histone H3 (Ac-H3) (sc-8655; Santa Cruz Biotechnology, Heidelberg, Germany), KCND3 (sc-
11686; Santa Cruz Biotechnology), KCNJ2 (sc-18708; Santa Cruz Biotechnology), KCNJ3 (APC-005; Alomone 
Labs; Jerusalem, Israel), KCNJ5 (sc-23635; Santa Cruz Biotechnology), KCNK2 (sc-11556; Santa Cruz 
Biotechnology), KCNQ1 (sc-10646; Santa Cruz Biotechnology). Horseradish peroxidase (HRP)-conjugated 
goat anti-rabbit (ab6721; Abcam, Cambridge, UK), mouse anti-goat (sc-2354; Santa Cruz Biotechnology), and 
goat anti-mouse (sc-2005; Santa Cruz Biotechnology) secondary antibodies were used where appropriate. 
Signals were developed using the enhanced chemiluminescence assay (ECL Western Blotting Reagents, GE 
Healthcare, Buckinghamshire, UK) and quantified with ImageJ 1.41 Software (National Institutes of Health, 
Bethesda, MD, USA). After removal of primary and 
secondary antibodies (ReBlot Strong Stripping 
Solution, Merck, Germany), the membranes were 
re-probed with anti-GAPDH antibodies (G8140-
11; US Biological, Swampscott, MA, USA) and 
corresponding secondary antibodies (sc-2005; 
Santa Cruz Biotechnology). Protein content was 
normalized to GAPDH for quantification of optical 
density.

Rapid electrical stimulation of HL-1 cells
Gelatin-/fibronectin-coated 6-well dishes 

were seeded with 2x106 HL-1 cells. After 24h 
incubation the cells were ≥90% confluent and 
subjected to electrical stimulation using the 
C-Pace EP system (IonOptix, Milton, MA, USA), 
a multi-channel stimulator designed for chronic 
stimulation of bulk quantities of cultured cells in 
incubators, providing continual uniform electric 
field stimulation of cardiac myocytes. The cells 
were stimulated with 10 V / 10 ms pulses at 5 
Hz stimulation rate. Following rapid electrical 
stimulation for 12 h, cell-viability was visually 
assessed by microscopic examination, before cells 
were harvested and subjected to RNA isolation.

Statistics
Data are expressed as mean ±SEM of 

n experiments. Multiple comparisons were 
performed using one-way ANOVA, as no interaction 
between independent nominal variables (i.e., 
TSA concentrations) could be expected. If the 
hypothesis of equal means could be rejected at the 

Fig. 2. Action potential prolongation induced by 
HDAC inhibition. A. Representative action potentials 
recorded from HL-1 cells under untreated control 
conditions and after administration of 100 nM 
trichostatin A (TSA) for 12 h. B. Corresponding mean 
(±SEM) action potential durations at 50% (APD50) 
and 90% (APD90) repolarization for controls (n=5) 
and following HDAC inhibition (n=9). **p<0.01 
versus control conditions.
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0.05-level, pairwise comparisons of groups were 
made and the probability values were adjusted 
for multiple comparisons using the Holm-Sidak 
correction. Statistical analyses were performed 
with GraphPad Prism 6.0 software (GraphPad 
Software, La Jolla, CA, USA). Statistical differences 
of continuous variables were determined using 
unpaired Student’s t tests (two-sided tests). Mann-
Whitney U tests were applied if F tests of two 
samples indicated unequal variance. P<0.05 was 
considered statistically significant.

Results

HDAC inhibition causes action potential 
prolongation in HL-1 cardiomyocytes
HL-1 cells were employed to elucidate 

transcriptional and functional actions of 
HDAC-inhibition. The cells exhibit multiple 
features of adult atrial cardiomyocytes 
including typical ionic currents [34, 40]. 
First, TSA (Fig. 1 A) was applied to assess 
the effects of broad spectrum class I/
II HDAC inhibition on action potential 
duration (APD). Inhibition of histone 
deacetylation by application of 100 nM 
TSA for 12 h significantly increased the 
level of acetyl-histone H3 by 11.5-fold 
(n=3, p=0.04) compared with untreated 
controls (n=3), indicating effective target 
modulation by the intervention (Fig. 1 
B). TSA treatment prolonged APD at 90% 
repolarization (APD90) by 2.9-fold to 53±8 
ms (n=9, p=0.005) compared to untreated 
HL-1 cells (18±5 ms; n=5) (Fig. 2 A and B). 
APD at 50% repolarization (APD50) was not 
significantly affected by TSA (control, 10±5 
ms, n=5; TSA, 19±5 ms, n=9; p=0.25).

TSA induces transcriptional remodeling 
of potassium channel expression
Prolongation of the action potential 

duration may be caused by reduced 
expression of repolarizing K+ channels. 
To explore the molecular basis of AP 
modulation induced by HDAC inhibition, 
mRNA levels of 13 potassium channel 
subunits relevant to cardiac electrophysiology were analyzed by real-time qPCR in HL-1 cells 
(Fig. 3A – 3C). TSA application (100 nM, 12 h) was associated with significant transcriptional 
changes affecting multiple K+ channels (Fig. 3 B and C; n=3 independent assays) compared 
with untreated control cells (Fig. 3 A). HDAC inhibition was characterized by reduced mRNA 
expression of the IK,Ach channel subunits Kcnj3 (Kir3.1; -36%, p=0.049) and Kcnj5 (-93%, 
p=0.0006) involved in repolarization of atrial cardiomyocytes, as well as the pore-forming 

Fig. 3. HDAC-related remodeling of K+ channel 
mRNA. Transcription of cardiac ion channel DNA 
was assessed in HL-1 cells under baseline conditions 
(Untreated; n=3; A) and after HDAC inhibition using 
100 nM trichostatin A (TSA; n=3) (B). C. TSA-induced 
changes in mRNA expression levels were normalized 
to glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH). Data are expressed as mean±SEM; 
*p<0.05; **p<0.01; ***p<0.001.
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slowly-activating delayed-rectifier K+ current (IKs) channel subunit Kcnq1 (Kv7.1; -35%, 
p=0.013), a major contributor to atrial and ventricular action potential repolarization. These 
changes are consistent with delayed repolarization and prolonged APD of cardiomyocytes. 
By contrast, significantly increased mRNA levels were observed for Kcnk2 (K2P2.1, TREK-
1; +330%, p=0.002), Kcnj2 (Kir2.1; +470%, p=0.0003), and Kcnd3 (Kv4.3; +286%, p=0.01) 
channels.

HDAC inhibitors such as TSA induce biological effects at nanomolar concentrations in a 
dose-dependent manner. To further characterize pharmacological regulation of K+ channel 
transcription by HDAC inhibition, concentration-dependent effects of TSA were assessed. 
Messenger RNA expression of channels exhibiting significant modulation by 100 nM TSA 
(Fig. 3) was quantified in one (Kcnk2, Kcnj2, Kcnj3, Kcnj5) or two (Kcnq1, Kcnd3) independent 
assays after application of increasing concentrations of TSA (25 nM, 50 nM, 100 nM, 150 
nM, and 300 nM) for 12 h relative to control conditions in the absence of TSA (Fig. 4A – 
4F). Kcnj3 (25 nM: -75%, p<0.001; 300nM: -92%, p<0.001) and Kcnj5 transcript levels (25 
nM: -74%, p<0.001; 300 nM: -93%, p<0.001) underlying atrial IK,Ach exhibited concentration-
dependent downregulation (Fig. 4 D and E). In addition, we observed reduced Kcnq1 mRNA 
expression (25 nM: -56%, p<0.001; 300 nM: -71%, p<0.001) (Fig. 4 A). Corresponding to 
our screening data presented above, TSA induced concentration-dependent enhancement 
of Kcnk2 (5.2-fold increase at 300 nM; p<0.0001) and Kcnd3 (2.9-fold increase at 300 nM; 
p=0.003) transcript levels (Fig. 4 B and F). Furthermore, Kcnj2 mRNA levels normalized to 
GAPDH were increased by 4.6-fold (300 nM TSA, p=0.0006) (Fig. 4C).

HDAC-related transcriptional remodeling alters cardiac K+ channel protein levels
Translational effects of transcriptionally regulated K+ channels were assessed by Western 

blot analysis in HL-1 cells incubated with 100 nM TSA for 12 h (Fig. 5A – 5F). Suppressed 
mRNA expression of IK,Ach channel subunits resulted in KCNJ3 and KCNJ5 protein reduction 
by 49% (p=0.012; n=6) and 31% (p=0.041; n=6), respectively (Fig. 5 D and E). Similarly, 
reduced protein expression was observed for KCNQ1 after HDAC inhibition (-43%; p=0.004; 
n=6) (Fig. 5 A). In addition, enhanced mRNA transcription after HDAC inhibition resulted in 
upregulated KCNK2 (+93%; p=0.009; n=6) and KCNJ2 protein levels (+87%; p=0.037; n=6), 

Fig. 4. Concentration-dependent effects of 
trichostatin A (TSA) on K+ channel mRNA 
transcription. A.-F. Changes in mRNA expression 
of indicated channels were determined after 
administration of increasing concentrations 
of TSA relative to untreated controls. Data 
are given as mean (±SEM) normalized to 
glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH). Levels of significance (*p<0.05; 
**p<0.01; ***p<0.001) include adjustments for 
multiple comparisons using ANOVA followed 
by Holm-Sidak post hoc testing.
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respectively (Fig. 5 B and C). Finally, KCND3 protein levels were not significantly altered by 
TSA application (n=6), indicating low relevance of HDAC-dependent modulation of pore-
forming Kv4.3 subunits under the given experimental conditions (Fig. 5 F).

Tachypacing-associated upregulation of KCNJ5 potassium channels is reversed by broad-
spectrum HDAC inhibition
Rapid electrical pacing of cultured cells in vitro or tissue in vivo is an established model 

of cardiac tachyarrhythmia that may induce electrophysiological remodeling similar to 
human findings [1, 3, 5, 35, 41, 42]. In particular, tachypacing of HL-1 cells has been shown 
to cause action potential shortening [35]. To test the hypotheses that rapid pacing induces 
AP shortening by K+ channel upregulation, and that reduced APD may be reversed by 
HDAC inhibition and associated K+ current suppression, experiments with HL-1 subjected 
to tachypacing (TP) were performed (Fig. 6A – 6F). Resulting mRNA levels were compared 
to non-paced control cells. Rapid electrical pacing for 12 h did not induce significant 
transcriptional regulation of Kcnj3 or Kcnj5 IK,Ach subunits, inward-rectifier potassium 
channel subunits Kcnj2, or Kcnq1, Kcnk2, and Kcnd3 mRNA abundance, respectively (Fig. 6A – 
6F; n=3 each). By contrast, HDAC inhibition (100 nM) during electrical tachypacing reduced 
mRNA levels of IK,Ach channels (Kcnj3: -33%, p<0.001, n=6; Kcnj5: -81%, p=0.003, n=3) (Fig. 6 

Fig. 5. Effects of HDAC 
inhibition on K+ channel 
protein expression. 
R e p r e s e n t a t i v e 
immunoblots (upper 
panels) and mean optical 
density values normalized 
to glyceraldehyde 
3-phosphate dehydrogenase 
(GAPDH) obtained from six 
independent experiments 
(lower panels) are shown 
in the absence (Control) 
and presence of 100 
nM trichostatin A (TSA) 
for subunits exhibiting 
significant transcriptional 
regulation (see Fig. 3): 
KCNQ1 (A), KCNK2 (B), 
KCNJ2 (C), KCNJ3 (D), KCNJ5 
(E), and KCND3 (F). *p<0.05; 
**p<0.01 for indicated 
pairwise comparisons.
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D and E). Apparent increases of Kcnk2 and Kcnd3 mRNA abundance, and reduction of Kcnq1 
mRNA levels during TP in the presence of TSA were not significantly different from untreated 
controls or from cells subjected to TP alone, respectively, following correction for multiple 
statistical comparisons (Fig. 6 A, B and F).

Discussion

Electrophysiological effects of HDAC inhibition in cardiomyocytes
This study reveals action potential prolongation by broad spectrum HDAC inhibition in 

HL-1 atrial cardiomyocytes. Changes of cardiomyocyte electrophysiology were associated 
with reduced mRNA and protein levels of repolarizing KCNQ1, KCNJ3 and KCNJ5 potassium 
channels. Inhibition of the IK,Ach channel subunits KCNJ3 and KCNJ5 by tertiapin or by 
lentiviral knock-down was previously shown to prolong action potential duration in neonatal 
rat atrial cardiomyocytes and in intact atria [43]. Furthermore, reduction of repolarizing 
IKs conducted by KCNQ1/KCNE1 channels caused by genetic mutation or pharmacological 
inhibition accounts for APD prolongation and long QT syndrome [44-46]. Thus, decreased 
KCNJ3, KCNJ5 and KCNQ1 levels are likely to contribute mechanistically to prolonged cardiac 
repolarization after HDAC inhibition. Of note, regulation of additional (non-potassium) ion 
channels that were not investigated here may have contributed to APD regulation as well. 
Other K+ channels (i.e., KCNK2, KCNJ2 and KCND3) were upregulated in response to pan-HDAC 
inhibition. Enhanced levels of voltage-gated potassium channels in isolation are expected 
to shorten action potential duration. Here, K+ channel upregulation may have attenuated 
the prolongation of repolarization by K+ channel suppression in HL-1 cells. However, it is 
important to note that overall expression levels of Kcnk2, Kcnj2 and Kcnd3 mRNAs were 
relatively low compared to Kcnq1, Kcnj3 and Kcnj5 (Fig. 3 A). Thus, low abundance of 
Kcnk2, Kcnj2 and Kcnd3 likely accounts for the lack of action potential shortening despite 
increased channel mRNA expression. Both shortening and prolongation of cardiomyocyte 
APD are clinically relevant, as they might either promote heart rhythm disorders or could be 
exploited for antiarrhythmic therapy, depending on the type of arrhythmia and on individual 
electrophysiological conditions.

Fig. 6. Differential effects of 
electrical tachypacing (TP) and 
HDAC inhibition using 100 nM 
trichostatin A (TSA) on potassium 
channel mRNA levels. A.-F. Kcnq1 
(A), Kcnk2 (B), Kcnj2 (C), Kcnj3 
(D), Kcnj5 (E), and Kcnd3 (F) 
mRNA expression under indicated 
experimental conditions was 
calculated relative to untreated 
controls (Ctrl.) as mean (±SEM) 
normalized to glyceraldehyde 
3-phosphate dehydrogenase 
(GAPDH) (n=3 each). *p<0.05; 
**p<0.01; ***p<0.001. P values 
were calculated by ANOVA followed 
by Holm-Sidak post hoc testing.
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The emerging role of HDACs in atrial fibrillation pathophysiology and therapy
Effective and safe management of AF still poses a major clinical challenge in 

cardiovascular medicine. Antiarrhythmic drugs frequently rely on non-selective inhibition 
of potassium or sodium channels, resulting in prolongation of APD, refractory periods, 
or electrical conduction velocity [47]. To date there is no clinical antiarrhythmic concept 
targeting arrhythmia-induced electrical remodeling. HDACs represent potential novel 
targets as they may act as key regulators of proarrhythmic gene programs. Shortening of 
atrial effective refractory periods and APD are observed in chronic AF patients, promoting 
electrical re-entry and perpetuation of the arrhythmia [7]. In the present work, HDAC 
inhibition prolonged atrial APD, suggesting that HDAC inhibition may be utilized in 
antiarrhythmic interventions in patients with chronic (i.e., persistent or long-standing 
persistent) AF. Antagonistic molecular effects of AF and HDAC-inhibition, respectively, 
provide the cellular electrophysiological basis for a novel rhythm control paradigm. Of note, 
in this study we employed a non-selective HDAC inhibitor, resulting in cumulative effects of 
multiple HDACs on cardiac cellular electrophysiology. Future translation of this epigenetics-
based concept will require the identification of specific HDACs involved in proarrhythmic ion 
channel remodeling during AF.

Significance of HDAC inhibition in ventricular electrophysiology and safety pharmacology
The clinical application of HDAC inhibitors for anticancer treatment is associated with 

QT prolongation and ventricular arrhythmias [21-24, 48]. TSA-induced APD prolongation 
in cardiomyocytes is consistent with QT interval prolongation observed in humans 
during clinical application of small molecule HDAC inhibitors. While extrapolations from 
experiments in atrial HL-1 cells to ventricular repolarization are limited by differences in ion 
channel expression between atrial and ventricular cardiomyocytes, the majority of channels 
that are relevant to safety pharmacology are present in the cells investigated here (i.e., 
KCNQ1 and KCNH2). In particular, reduced KCNQ1 levels (conducting the slowly activating 
component of the delayed rectifier K+ current in ventricular myocytes, IKs) could account for 
ventricular proarrhythmia during clinical application of TSA. Of note, Kcnh2 mRNA encoding 
the rapidly activating IKr that is frequently affected by QT-prolonging compounds [49-52] 
was not reduced by TSA. Finally, KCNJ3 and KCNJ5 mRNAs display very low ventricular 
expression in humans [7]. Therefore, TSA- and HDAC-dependent modulation of encoded IK,ACh 
is not expected to contribute significantly to ventricular electrophysiology. Based on these 
findings we suggest that effects of HDAC inhibitors on KCNQ1 subunits should be carefully 
considered during preclinical safety assessment.

Potential limitations and future directions
The present approach does not allow for the identification of specific HDAC isoforms 

responsible for the regulation of potassium channel expression. TSA was applied to achieve 
broad inhibition of multiple class I/II HDACs to assess cumulative HDAC effects in HL-1 atrial 
cardiomyocytes. Given that different HDAC isoforms may govern specific gene expression 
programs in physiology and disease, the future investigation of isoform-selective inhibitors 
may identify compounds with improved target specificity, efficacy and safety. Furthermore, 
alterations of protein acetylation may directly affect cardiac ion channel biophysics and 
regulation that were not addressed in this investigation.

In the present study we used a 12 h tachypacing period with a moderate pacing rate to 
mimic typical episodes of paroxysmal atrial fibrillation. The lack of transcriptional effects 
on potassium channel subunits may be attributable to the short duration of tachypacing, 
as K+ channel remodeling is time- and rate-dependent under experimental conditions 
[53]. Therefore, we cannot exclude that additional electrical alterations may occur during 
longer AF simulation periods that may more closely resemble chronic AF. Furthermore, 
neurohumoral proarrhythmic mechanisms may not be fully represented by rapid pacing of 
cultured cells.
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Finally, the study focused on the emerging role of histone modification in cardiac 
arrhythmogenesis and antiarrhythmic therapy. In addition to HDAC-dependent 
transcriptional regulation, DNA hypermethylation was observed in AF patients, and 
pharmacologic hypomethylation suppressed atrial arrhythmias in a rat model [54, 55]. We 
suggest that mechanisms related to methylation and other epigenetic factors involved in 
electrical remodeling are beyond the scope of the present work and remain to be investigated 
in separate approaches.

Conclusion

Effects of HDAC inhibition and increased histone acetylation on potassium channel 
expression and cardiomyocyte APD highlight previously unrecognized epigenetic regulation 
of cardiac electrophysiology. Pharmacological targeting of specific HDACs may exert 
antiarrhythmic effects by preventing or correcting ion channel remodeling. Potential 
proarrhythmic effects of broad-spectrum HDAC inhibitors on ventricular repolarization 
require consideration during preclinical drug safety screening.
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