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Introduction

There is evidence that the low immunogenicity and the intense 

immunosuppressive tumor microenvironment (TME) of breast 

cancers (BC) limit the benefit of immunotherapies targeting the 

adaptive immune system, such as checkpoint inhibitors (CPI) [1, 

2]. Immunosuppressive mechanisms are essential for the develop-

ment of normal mammary glands; these strategies are also used by 

BC cells to promote tumor tolerance and escape from immune 

surveillance in the early stages of disease, suggesting an important 

role of adaptive and innate immunity in BC development and pro-

gression. Increased insights into the molecular mechanisms em-

ployed by cancer cells to subvert or escape from immune recogni-

tion have recently opened an array of new therapeutic interven-

tions. These include the implementation of monoclonal antibodies 

directed against neoantigens, the development of cancer vaccines, 

adoptive T-cell transfer, and the use of immunomodulatory agents 

such as cytokines, costimulatory receptor agonists, and CPI. 

Therefore, we here review the different immune escape strategies 

of BC as well as the role of tumor-infiltrating immune cells in the 

TME and their clinical relevance, finally suggesting the develop-

ment of novel strategies to overcome immunosuppression and to 

enhance the immunogenicity of tumors by reverting their im-

mune escape with the aim to develop and/or improve immuno-

therapies for this malignancy.

Immune Escape Mechanisms of Tumors

Recent evidence has demonstrated an essential role of cells from 

the innate and adoptive immune system involved in the initiation 

but also progression of cancer. This is mediated by the suppression 

of immune rejection leading to enhanced tumor growth and spread 

including the formation of the primary metastatic lesions [3, 4]. In 

the early steps of tumor development, host immune factors, in par-
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Summary
While detailed analysis of aberrant cancer cell signaling 
pathways and changes in cancer cell DNA has domi-
nated the field of breast cancer biology for years, there 
now exists increasing evidence that the tumor microen-
vironment (TME) including tumor-infiltrating immune 
cells support the growth and development of breast can-
cer and further facilitate invasion and metastasis forma-
tion as well as sensitivity to drug therapy. Furthermore, 
breast cancer cells have developed different strategies to 
escape surveillance from the adaptive and innate im-
mune system. These include loss of expression of immu-
nostimulatory molecules, gain of expression of immu-
noinhibitory molecules such as PD-L1 and HLA-G, and 
altered expression of components involved in apoptosis. 
Furthermore, the composition of the TME plays a key 
role in breast cancer development and treatment re-
sponse. In this review we will focus on i) the different 
immune evasion mechanisms used by breast cancer 
cells, ii) the role of immune cell infiltration in this dis-
ease, and (iii) implication for breast cancer-based immu-
notherapies.
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ticular cells of the innate immune system such as natural killer 

(NK) cells, tumor-associated macrophages, tumor-associated neu-

trophils, and myeloid-derived suppressor cells, play a key role in 

the rejection of cancer cells [5], while in the equilibrium phase 

tumor cells survive in a quiescent state [6]. This is followed by an 

immune escape in which tumor variants grow out and evade im-

mune recognition and establish an immunosuppressive TME [7, 

8]. This so-called immunoediting process suggests that tumors de-

velop distinct mechanisms to evade immune surveillance, induce 

tolerance, and survive in the host. Only recently, immune evasion 

has also been recognized as a hallmark of BC [9]. The underlying 

mechanisms include reduced expression of major histocompatibil-

ity complex (MHC) class I, adhesion and costimulatory molecules, 

loss of antigens, and increased expression of immunosuppressive 

components such as HLA-G, HLA-E, and PD-L1 and of other im-

munosuppressive factors such as cytokine and metabolites that 

contribute to the escape from immune recognition [10]. Due to 

these alterations and the influence of host immunity, tumors de-

velop low immunogenicity and a strong immunosuppressive TME 

and do not elicit an adaptive immune response. Furthermore, the 

frequency of CD4+ T cells and CD8+ cytotoxic T lymphocytes 

(CTL) in the TME is low, and their phenotype is often associated 

with immune exhaustion [11]. Based on this information, a num-

ber of studies are currently ongoing analyzing the nature of im-

mune cells in the TME and the peripheral blood of tumor patients 

in combination with the cytokine profile produced by these cells 

and the immunogenic phenotype of tumor cells.

Breast Cancer and Its Immunogenicity

BC has been suggested to be a very heterogeneous disease, and 

based on histology and the molecular and transcriptional profile, 

different BC subtypes have been identified and correlated with 

clinical outcome. Primarily, BC have been classified based on the 

presence or absence of certain hormone receptors, growth factor 

receptors, and mutational load resulting to the definition of differ-

ent BC subtypes. Recently, a link between their molecular make up 

and immunologic features was reported based on RNA sequencing 

data of the The Cancer Genome Atlas (TCGA) [12].

Breast Cancer and Tumor-Associated Antigens

High throughput technologies allowed the identification of 

structural alterations, such as gene mutations, amplifications, and 

loss of heterozygosity (LOH), in BC subtypes. This can result in the 

development of neoantigens presented by human leukocyte anti-

gen (HLA) class I molecules, which can then be recognized as for-

eign by CD8+ CTL. Next to these mutation-specific neoantigens, 

other tumor-associated antigens (TAA) are autoantigens which are 

expressed excessively, differentiation-specific antigens, cancer tes-

tis genes (CTA) that display normal expression in immune-privi-

leged organs but aberrant expression in several types of cancer in-

cluding BC-modified autoantigens, TAA that are highly expressed 

in tumors such as HER2/neu, and viral-associated antigens. For 

example, members of the CTA family of melanoma-associated an-

tigens (MAGEs), MAGE-A9 and MAGE-A11, are less expressed in 

estrogen receptor(ER)-negative and HER2/neu-negative BC [13, 

14]. In contrast, upregulation of MAGE-A9 in invasive ductal BC is 

correlated with an unfavorable outcome for patients [15]. Further-

more, mesothelin is overexpressed in triple-negative breast cancer 

(TNBC) via modifying the T-cell receptor (TCR) [16]. Other TAA 

expressed by BC cells include MUC1, Claudin, and HER2/neu [17, 

18]. The latter is highly overexpressed in HER2/neu-positive BC, 

and its expression levels are positively correlated with histologic 

tumor grade and associated with poor prognosis [19–22]. Although 

low expression of HER2/neu might restrict the immune cell-medi-

ated destruction of tumor cells, high levels of HER2/neu have been 

shown to diminish HLA class I surface expression resulting in re-

duced CTL activity [23]. Loss or modification of surface antigens 

may promote immune evasion via a lack of tumor cell recognition. 

These distinct TAA and mechanisms may become potential targets 

to broaden the immunotherapeutic strategies in BC.

Immunogenicity of Breast Cancer and Immune Escape

Recent data suggest that BC might also be an immunogenic 

tumor. Using RNA sequencing data from the TCGA obtained from 

>1,004 BC cases, 4 distinct immune phenotypes were identified 

based on the expression of immune-relevant genes. These Immu-

nologic Constant of Rejection (ICR) phenotypes, ICR1–4, define 

an immune-favorable phenotype (ICR4) and immune-unfavorable 

phenotypes (ICR1) associated with tumor progression and survival 

of BC patients [12].

Abnormal Expression of MHC Class I and Components of the 

Antigen Processing and Presentation Machinery and Interferon 

Signal Transduction Pathway in BC

The MHC class I/TAA complex expressed on tumor cells is rec-

ognized by CD8+ effector CTL. Loss or downregulation of MHC 

class I surface antigens allows tumor cells to escape immune sur-

veillance [24, 25]. Tumor cells of distinct origin are able to silence 

MHC class I surface expression, which is often caused by dimin-

ished expression of components of the MHC class I antigen pro-

cessing and presentation machinery (APM) and of the interferon 

(IFN) signal transduction pathway and associated with a worse 

outcome [26]. Concerning BC, HLA class I expression levels have 

been shown to be significantly downregulated in BC, which is nec-

essary for the transformation of normal cells into abnormal cells. 

Furthermore, downregulation of beta-2 microglobulin (β2-m), cal-

nexin, and transporter-associated antigen processing (TAP) subu-

nit 1 leading to impaired HLA class I expression was found in met-

astatic brain lesions of BC, which was also negatively linked to the 

frequency of CTL infiltration [27]. The underlying molecular 

mechanisms responsible for deficient HLA class I expression are 

diverse and could be attributed to gene mutations, LOH, and tran-
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scriptional, posttranscriptional, and translational control, and al-

tered oncogenic and IFN signaling [28–33]. This results in de-

creased tumor immunogenicity, which is consequently associated 

with increased malignancy, metastasis formation, worse prognosis, 

and poorer response to (immuno-)therapies [34–37]. While down-

regulation of HLA class I antigens negatively interferes with T-cell 

responses only, the expression of the non-classical HLA-G, which 

consists of 4 membrane-bound and 3 soluble isoforms [38], results 

in escape of tumor cells from both NK- and T-cell-mediated recog-

nition [39]. In BC, increased HLA-G expression levels were found 

[40] which were not only associated with poor prognosis [41, 42] 

but also with therapy response of BC treated with neoadjuvant 

chemotherapy [40]. In addition, high soluble HLA-G concentra-

tions were detected in the serum of BC patients and correlated with 

occurrence of metastasis, suggesting their usefulness as prognostic 

biomarker [43]. However, whether HLA-G could be detected in ex-

osomes and thus spread to other cells to reduce their immunogenic 

phenotype remains controversial [44]. The role of HLA-G in BC 

was further underlined by the fact that the 14 bp InDel polymor-

phism in the HLA-G gene was a risk factor for the development of 

BC [45]. Similar to HLA-G, the stress-induced MHC class I-related 

gene A (MICA) is also frequently upregulated in high-grade BC 

and is an indicator of poor prognosis [46]. Taken together, the link 

between low HLA class I/high HLA-G/MICA expression and 

worse BC prognosis postulates the induction of HLA class I expres-

sion and inhibition of HLA-G/MICA expression as a new thera-

peutic option in the treatment of BC [47].

Disturbance of Antiapoptotic Function in Breast Cancer

Next to alterations of classical and non-classical HLA class I 

genes, reduced apoptosis represents a major strategy for evading 

immune response in cancer development [48]. This includes al-

tered expression of Fas (factor associated with suicide), also known 

as CD95, and its ligand FasL (CD95L) [49]. This system can acti-

vate apoptosis signaling and induce apoptosis in cells. Increased 

FasL levels in BC cells cause effector T lymphocytes to die, result-

ing in escape from immune surveillance [50, 51]. Furthermore, 

tumor cells can resist Fas-mediated apoptosis by silencing or 

downregulating the Fas/FasL signaling pathways, which has been 

reported to be associated with a worse prognosis in BC. It is note-

worthy that CD95L exists not only at the transmembrane but also 

in a soluble form (sFasL) due to cleavage by metalloproteases. 

sFasL has been found in the serum of TBNC patients promoting 

metastatic dissemination [52]. In addition to Fas/FasL, other pro-

teins such as Bcl-2, survivin, and caspase play an important role in 

apoptosis in BC. Bcl-2 is overexpressed in BC cells leading to pre-

vention of apoptosis associated with neoplastic transformation and 

an enhanced cellular live span [53, 54]. Expression of survivin, an-

other member of the antiapoptotic family, is increased in BC. This 

is accompanied by poor outcome, advanced tumor grade, increased 

metastasis formation, and a low survival rate of patients [55]. In 

contrast, decreased caspase activation due to downregulation of 

caspase expression represents a further strategy of tumors to resist 

apoptosis. In this context, it is noteworthy that caspase-3 and -7 

expression is downregulated in BC [56], but this deregulation ap-

pear not to be significantly correlated with the clinicopathologic 

features of this disease [57].

Expression of Co-Inhibitory Molecules

Based on the successful implementation of antibodies directed 

against immune checkpoints, the programmed death receptor 1 

(PD-1) and its ligand PD-L1 have come into the focus of research 

[58, 59]. The interaction between PD-1 on T lymphocytes with 

PD-L1 expressed on the surface of tumor cells inhibits the activa-

tion of effector T cells and induces FasL and the immunosuppres-

sive cytokine interleukin (IL)-10. PD-L1 is expressed in many 

tumor cells of distinct origin and at a high frequency on BC cells 

[60] and circulating tumor cells [61]. Inhibition of PD-L1 signifi-

cantly blocks T-cell apoptosis in tumor models [61, 62]. PD-L1 

could directly synergize with FOXP3+ regulatory T cells [62], but 

could also be affected by ubiquitination and N-glycosylation [63]. 

In different BC subtypes, heterogeneous expression of PD-1/PD-L1 

was shown [64–66]. In particular in TNBC, PD-L1 was found to be 

overexpressed [67, 68], which is related to tumor grade [69, 70], 

local cytotoxic immune response, and prognosis [71]. This was the 

rationale for the implementation of anti-PD1/anti-PD-L1 for the 

treatment of TNBC, stimulating tumor regression and improving 

patient outcomes. Indeed, results from clinical trials demonstrated 

an increase in lasting local antitumor responses accompanied by a 

promising clinical benefit [72, 73]. Other co-inhibitory molecules 

include the lymphocyte activation gene 3 (LAG-3) and the T cell 

immunoglobulin and mucin domain-3 (TIM-3) checkpoints, 

which have recently been investigated in a large cohort of BC pa-

tients and their expression pattern linked to clinicopathologic pa-

rameters. LAG-3-positive tumor-infiltrating lymphocytes (TILs) 

were particularly enriched in ER-negative BC and were negatively 

associated with young age, large tumor size, and high proliferation, 

while a high proportion of PD-1/PD-L1-positive tumors were co-

infiltrated with LAG-3-positive TILs [74]; TIM-3 expression levels 

were high on tumor cells and significantly associated with clinico-

pathologic parameters such as age, axillary lymph node metastasis, 

and TNM stage [75]. In addition, other B7 family members, such 

as B7-H3 known to stimulate IL-10 secretion, also contribute to 

tumor immune evasion and tumor progression. Expression of 

B7-H3 was found at a high frequency of BC lesions, which was cor-

related with IL-10 [76]. Thus, other immune checkpoints also pro-

mote BC development and progression and might be used as inde-

pendent prognostic factors for invasive ductal carcinoma (IDC) 

patients.

Tumor Microenvironment in Breast Cancer

Different components of the TME have been show to play a key 

role in tumor development and progression. These are cellular, sol-

uble, and physical factors which are shaped by specific structures, 

functions, and metabolic properties of neoplastic lesions [77, 78]. 

Autocrine and paracrine mechanisms of tumor cells alter the inter-
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play between tumor and immune cells thereby maintaining condi-

tions essential for the survival, development, proliferation, and pro-

gression of tumors. Furthermore, advances in molecular biologic as 

well as immunologic features of BC have helped elucidate the asso-

ciation between malignant BC cells and immune factors or their 

modulators around the tumor. Different types of immune responses 

have been linked to a distinct cytokine microenvironment: While 

tumor-specific B-cell responses were correlated with increased 

transforming growth factor (TGF)-β1, reduced IFN-α, absence of 

T-cell responses, and worse prognosis, high IFN-γ levels were asso-

ciated with a strong presence of T-cell infiltration and activity [79]. 

Recently, a number of studies characterized the BC TME concern-

ing suppressive immune cells, re-programmed fibroblast cells, al-

tered extracellular matrix, and soluble factors, which negatively in-

terfere with an effective antitumor response and promote BC pro-

gression and metastasis. It has been suggested that changes in the 

TME not only have an important impact on BC development and 

progression but appear to also serve as prognostic factors for the 

clinical outcome of patients and response to (immuno-)therapies. 

Substantive tissue and tumor subtype-specific differences of multi-

ple cell types, in particular TILs, have been identified in BC sub-

types, and in particular TNBC and HER2/neu-negative BC exhibit a 

unique TME distinct from that of other BC subtypes. Immunohis-

tochemical analyses have demonstrated that CD8+ CTL, known to 

contribute to tumor clearance, were associated with good prognosis 

and long-term survival [80] and are thus of clinical relevance [81]. 

Furthermore, the number of tumor-infiltrating CD8+ T cells was 

associated with primary tumor size, lymph node metastasis, WHO 

(World Health Organization) grade, Ki-67, and molecular classifi-

cation. Although the major focus of most studies was on CD8+ 

CTL, Th1 CD4+ T cells could also contribute to the elimination of 

BC by the production of IFN-γ, resulting in reduced angiogenesis 

and enhanced T-cell and M1 macrophage activity [82]. In contrast, 

the role of Th2 CD4+ T cells has not yet been identified in detail in 

BC, but might be more tumor-promoting than tumor-suppressive. 

There is also evidence that infiltration with CXCL13-expressing 

CD4+ follicular helper cells in BC predicts improved patient sur-

vival [83] and could serve as a prognostic marker in this disease 

[84]. The function of B-cell infiltration is also poorly understood, 

and discrepant results have been reported regarding its importance, 

or lack thereof, for poor/good clinical prognosis [85]. Therefore, 

more detailed analyses have to be performed in order to conclu-

sively determine the prognostic and predictive potential of immune 

cells in BC. Expression profiling of BC lesions further revealed a 

differential expression pattern of genes associated with immune 

cells, such as IFN-regulated genes [86, 87], B-lymphocyte marker 

[86], as well as T-lymphocyte-associated genes [87], which further 

underpins the crucial role even of host immune responses in this 

disease. This was also underlined and extended by a recent report 

comparing the expression of immune-relevant genes in normal 

mammary tissues, ductal carcinoma in situ (DCIS), and IDC [88]. A 

decrease in CD8+ signatures in IDCs versus DCIS and of activated 

GZMB+CD8+ T cells in IDC was detected. These were accompa-

nied by significantly higher TCR clonotype diversity in DCIS than 

in IDCs. Furthermore, a link between the frequency of TILs in the 

stroma and prognosis as well as response to chemotherapy has been 

shown [89–91].

Perspectives and Conclusion

The main hurdle for BC in generating a broad and robust anti-

tumor immune response is to overcome the evasion of immune 

surveillance. However, the underlying molecular mechanisms lead-

ing to immune escape in BC have to still be elucidated in detail. 

Despite some treatment success with CPIs, the response seen in 

patients is limited. The cause of intrinsic and extrinsic resistance 

mechanisms of BC have not yet been analyzed. However, first evi-

dence in melanoma patients suggests that resistance to anti-PD1 

therapy is mediated by structural alterations or reduced expression 

of HLA class I APM and/or IFN signaling components [92]. Future 

perspectives to improve patient outcome and monitor therapy re-

sponse are therefore based on the molecular make up in combina-

tion with the expression of immune-relevant molecules in both im-

mune cells and tumor cells and the thorough analysis of the com-

position of the immune cell infiltrate as well as the peripheral 

blood of BC patients. This might lead to the development and de-

sign of therapies in which CPIs will be combined with each other 

or with targeted therapies, chemotherapy, and/or radiation. Exam-

ples are anti-PD-1/anti-PD-L1 or inhibitors of MAP2K and gluco-

corticoid-induced tumor necrosis factor receptor (GITR) [93, 94], 

which are currently under way and will be covered by a separate 

article in this issue.
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