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Abstract. Dynamics at infinity and a Hopf bifurcation for a Sprott E system with a very small perturbation constant
are studied in this paper. By using Poincaré compactification of polynomial vector fields in R3, the dynamics near
infinity of the singularities is obtained. Furthermore, in accordance with the centre manifold theorem, the subcritical
Hopf bifurcation is analysed and obtained. Numerical simulations demonstrate the correctness of the dynamical
and bifurcation analyses. Moreover, by choosing appropriate parameters, this perturbed system can exhibit chaotic,
quasiperiodic and periodic dynamics, as well as some coexisting attractors, such as a chaotic attractor coexisting
with a periodic attractor for a > 0, and a chaotic attractor coexisting with a quasiperiodic attractor for a = 0.
Coexisting attractors are not associated with an unstable equilibrium and thus often go undiscovered because they
may occur in a small region of parameter space, with a small basin of attraction in the space of initial conditions.
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1. Introduction

In 1963, Lorenz [1] showed that a continuous 3D
autonomous system of ODEs gave rise to the first chaotic
attractor. Chen and Ueta followed this with the Chen
attractor in 1999 [2]. Based upon a classification con-
dition given by [3] (see also [4]), the Lorenz and Chen
systems satisfy a12a21 > 0 and a12a21 < 0 respec-
tively. Here a12 and a21 refer to two of the off-diagonal
entries in the Jacobian matrix of linearisation about the
trivial equilibrium state. A natural question to ask is
whether one can construct a chaotic 3D system with
a12a21 = 0. We call such a system a transitional sys-
tem. Fortunately, in 2002, Lü and Chen found a system,
which they named as the Lü chaotic system, which satis-
fied a12a21 = 0 [4]. In addition, in 2008, Yang et al gave
another classification condition for chaotic systems [5].
According to this condition, chaotic systems are classi-
fied as the Lorenz system group if a11a22 > 0, the Chen
system if a11a22 < 0 or the Yang–Chen transitional
system group if a11a22 = 0. (For the Lorenz system
a11 = −σ and a22 = −1.) With the wide applications

of chaotic systems in the field of engineering, as well as
the mathematical, physical and chemical sciences etc.,
searching for new chaotic attractors and constructing
simple chaotic systems have been intensively consid-
ered in the past four decades. Many classical Lorenz-like
chaotic systems (of hyperbolic-type) have one saddle
and two unstable saddle-foci, and the existence proof
of chaos is a common Shilnikov criterion [6]. However,
for non-hyperbolic-type chaotic systems, saddle-focus
equilibrium does not exist, and the Shilnikov criteria
will be invalid in these systems because of the violation
of the Shilnikov condition for chaotic systems with sta-
ble equilibria. Therefore, it is interesting to ask whether
or not 3D autonomous chaotic systems exist with stable
equilibria.

In 2008, Yang constructed another chaotic system
with one saddle and two stable node-foci, which
was further analysed in refs [5–7]. Moreover, another
chaotic system with only two stable node-foci is
given in 2010 by Yang et al [5]. For a generic 3D
quadratic autonomous system, we raise the question:
does there exist chaotic system with no equilibrium, one
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equilibrium or any number of equilibria? Sprott [8–10]
gave some simple chaotic systems with no equilibrium
or one equilibrium by a computer search. Subsequently,
chaotic systems with one stable equilibrium [11–15], no
equilibrium [16,17], any number of equilibria [18] and
a line of equilibrium states [19] have been found and
analysed. In the category of chaotic attractors, either
self-excited or hidden [20–22], we call chaotic attrac-
tors in dynamical systems with no equilibria or with
only stable equilibrium hidden attractors. From a com-
putational point of view these hidden attractors cannot
be easily found by numerical methods. Furthermore,
the knowledge of equilibria does not help with locating
hidden attractors [18,23–25]. Therefore, understanding
the local and global behaviours of chaotic systems with
hidden attractors is of great importance and creating a
simple non-hyperbolic-type chaotic system is an impor-
tant issue for scientists.

For non-hyperbolic type of chaos, saddle-focus
equilibrium typically does not exist in the systems. In
ref. [8], several non-hyperbolic chaotic systems were
proposed by Sprott. One can see that Sprott E sys-
tem degenerates, and the corresponding equilibria are
not stable. It is also easy to imagine that a tiny per-
turbation to the system may be able to change such a
degenerate equilibrium to a stable one. Therefore, we
can add a simple constant control parameter to Sprott E
chaotic system, trying to change the stability of its single
equilibrium to a stable one while preserving its chaotic
dynamics. From this point of view, it is easy to under-
stand and indeed easy to prove that the new system will
not be topologically equivalent to the Sprott E system.
Moreover, local bifurcation such as Hopf bifurcation is
the first to be studied with the variation of parameter.
However, it cannot obtain global dynamical behaviour
generally. To research the global structure of the system,
especially in high-dimensional systems, most people
will use numerical calculation, but the global structure is
not available. So in order to analyse the global dynamics
system, we can use the theory of Poincaré compactifica-
tion, reduce the dimensions of the system on a Poincaré
ball, and then get the infinity dynamics of the system.
Thus, we can obtain the global dynamics structure fur-
ther. In this paper, motivated by [11,12,26], we study
a simple 3D autonomous chaotic system deriving from
Sprott Case E system, by adding a small parameter a:

ẋ = yz + a, ẏ = x2 − y, ż = 1 − 4x . (1)

The paper is organised as follows. In §2, the stability
of equilibria and behaviour at infinity in Poincaré sphere
are analysed. In order to obtain a periodic solution, the
existence of Hopf bifurcation parameters are determined
in §3. In §4, the stability of the bifurcating solution is
discussed, based on the centre manifold theorem. To

verify the theoretical analysis, numerical simulations are
given in §5. Finally, concluding remarks are given in §6.

2. Analysis of the dynamics

2.1 Basic dynamics

PROPOSITION 1

The system (1) possesses only one equilibrium point
P(1

4 , 1
16 , −16a). It is a saddle for a ≤ −0.17903,

either a saddle-focus or a stable node-focus for a >

−0.17903.

Proof. Under the linear transformation x = X + 1
4 ,

y = Y + 1
16 , z = Z −16a, system (1) can be transformed

into

Ẋ = Y Z −16Y a + 1

16
Z , Ẏ = X2 + 1

2
X −Y, Ż = −4X.

(2)

By linearising (2) at the equilibrium point O(0, 0, 0),
the Jacobian matrix is

J =
⎛
⎝ 0 −16a 1/16

1/2 −1 0
−4 0 0

⎞
⎠ ,

and the corresponding characteristic polynomial is

f = λ3 + λ2 +
(

8a + 1

4

)
λ + 1

4
.

From ref. [27], when

a = − a0

192
− 55

48a0
− 1

48
.= −0.17903,

a0 = 3
√

3988 + 276
√

69,

the characteristic polynomial has a root of multiplic-
ity 2 and all its roots are real, the equilibrium O is a
saddle. When a < −0.17903, the characteristic poly-
nomial has three distinct real roots, one is negative, the
others are positive, the equilibrium O is a saddle. When
a > −0.17903, the characteristic polynomial has one
real root and two non-real complex conjugate roots, the
equilibrium O is a saddle-focus or a node-focus. ��

2.2 Dynamics near infinity

In order to study the behaviour of the trajectories of
system (1) near infinity, we shall use the theory of
Poincaré compactification in R3 in refs [28–30]. Define
the Poincaré ball

S3 = {r = (r1, r2, r3, r4) ∈ R4| ‖r‖ = 1}
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as the unit sphere,

S+ = {r ∈ S3, r4 > 0}, S− = {r ∈ S3, r4 < 0}
as the northern and southern hemispheres respec-
tively. Denote the tangent hyperplanes at the points
(±1, 0, 0, 0), (0, ±1, 0, 0), (0, 0, ±1, 0), (0, 0, 0, ±1)

by the local chart Ui , Vi for i = 1, 2, 3, 4, where
Ui = {r ∈ S3, ri > 0}, Vi = {r ∈ S3, ri < 0}. We only
consider the local chart Ui , Vi for i = 1, 2, 3 for obtain-
ing the dynamics at x , y, and z infinity respectively.

The local charts U1 and V1

With the change of variables (x, y, z) = (w−1, uw−1,

vw−1) and t = wτ , system (1) becomes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

du

dτ
= 1 + w

2
− wu − u2v + 16au2w − uvw

16
,

dv

dτ
= −4w − uv2 + 16auvw − v2w

16
,

dw

dτ
= −uvw + 16auw2 − vw2

16
.

(3)

When w = 0, system (3) reduces to

du

dτ
= 1 − u2v,

dv

dτ
= −uv2. (4)

System (4) has no equilibrium points, but we can still use
a geometrical approach to determine the phase portrait
by considering the signs of du/dτ and dv/dτ . When
(du/dτ) = 0 and (dv/dτ) = 0, we obtain three null-
clines [31]: v = 1/u2, u = 0, v = 0. These nullclines
divide the plane into six regions as shown in figure 1.
We can also find the general directions of the vector field
in these regions and whether the vector field points up,
down, to the right, or to the left as in figure 1.

We can obtain some trajectories in the local phase
portraits as shown in figure 2. The flow in the local chart
V1 is the same as that in the local chart U1, reversing
time. Hence, the phase portrait of (1) on the sphere at
infinity is at the negative end point of the x-axis as shown
in figure 2, reversing the time direction.

The local charts U2 and V2
Next, we study the dynamics of system (1) at infinity
along the y-axis. Under the transformation (x, y, z) =
(uw−1, w−1, vw−1), with t = wτ , system (1) becomes⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

du

dτ
= v − 16aw + vw

16
− u3 − u2w

2
+ uw,

dv

dτ
= −4uw − vu2 − uvw

2
+ vw,

dw

dτ
= −wu2 − uw2

2
+ w2.

(5)

Figure 1. Nullclines for system (4).

Figure 2. Trajectories in the local phase portraits of system
(4).

If w = 0, system (5) reduces to

du

dτ
= v − u3,

dv

dτ
= −vu2, (6)

which has a nilpotent singular point at (0, 0). Let r̂ =
v − u3. Then (6) becomes

u̇ = r̂ , ˙̂r = −u5 − 4ru2.

By the nilpotent singular point theorem [28], we know
that the singular point (0, 0) is an attracting node. Using
the geometrical approach, we can determine the trajec-
tory structure near the origin as shown in figure 3. Also,
we can obtain the local phase portraits as shown in fig-
ure 4. The flow in the local chart V2 is the same as that in
the local chart U2. Hence, the phase portrait of system
(1) on the sphere at the negative infinite end point of the
y-axis is shown in figure 4, reversing the direction of
time.

The local charts U3 and V3
Finally, we consider infinity in the z direction. Let
(x, y, z) = (uw−1, vw−1, w−1) and t = wτ . System
(1) becomes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

du

dτ
= v − 16awv + w

16
+ 4u2w,

dv

dτ
= u2 + wu

2
− wv + 4uvw,

dw

dτ
= 4uw2.

(7)
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Figure 3. Nullclines for system (6).

Figure 4. Attracting nilpotent node of system (6).

When w = 0, system (7) reduces to

du

dτ
= v,

dv

dτ
= u2, (8)

with a nilpotent singular point at (0, 0). Again, by the
nilpotent singular point theorem, we know that (0, 0) is
a cusp. By computing an energy function, we see that
system (8) is a Hamiltonian system, with total energy
E = 1

2v2 − 1
3u3. We can determine the level sets of

E as shown in figure 5 and the local phase portraits as
shown in figure 6. The flow in the local chart V3 is the
same as that in the local chart U3. Hence, the phase
portrait of (1) on the sphere at infinity in the negative
end point of the z-axis is shown in figure 6, reversing
time.

From the above analysis, we have the following
proposition.

PROPOSITION 2

For any value of the parameter a, the phase portrait of
system (1) on the Poincaré sphere at infinity is shown in
figure7. There are two cusps at the positive and negative
ends of the z-axis and two nodes at the positive (stable)
and negative (unstable) ends of the y-axis.

Figure 5. Level sets of total energy function E for (8).

Figure 6. Local phase portraits near the cusp of (8).

Figure 7. Phase portrait of system (1) on the Poincaré sphere
at infinity.

3. Existence of a Hopf bifurcation for system (1)

According to Hopf bifurcation theory, substituting λ =
ωi in the characteristic equation, f ,

−ω3i − ω2 +
(

8a + 1

4

)
ωi + 1

4
= 0.

Separating real and imaginary parts, we obtain{−ω3 + (8a + 1
4)ω = 0,

−ω2 + 1
4 = 0,
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leading to the following proposition:

PROPOSITION 3

The characteristic equation has a negative eigenvalue
λ1 = −1 < 0 and a pair of purely imaginary eigenval-
ues λ2,3 = ±1

2 i when a = 0. System (1) then undergoes
a Hopf bifurcation at the equilibrium point P .

Proof. If a = 0, then the eigenvalues of system (1) at the
equilibrium point P are λ1 = −1, λ2,3 = ±1

2 i . Since

dλ

da
= −8λ

3λ2 + 2λ + (8a + 1
4)

,

the transversality condition satisfies:

Re

(
dλ

da

∣∣∣∣
a=0

)
= Re

⎛
⎝ −8λ

3λ2 + 2λ + 1
4

∣∣∣∣∣
λ=± 1

2 i

⎞
⎠ 	= 0

and system (2) undergoes a Hopf bifurcation at O . Sys-
tem (1) therefore undergoes a Hopf bifurcation at the
point P .

4. Stability of the bifurcating periodic solution

In this section, we shall analyse the direction of the Hopf
bifurcation and the stability of the bifurcating periodic
solution of system (2) at a = 0 using the centre manifold
theorem. Let x = X1 + 1

4 , y = Y1 + 1
16 , z = Z1, then

eq. (1) can be transformed into

Ẋ1 = Y1 Z1 + 1

16
Z1,

Ẏ1 = X1
2 + 1

2
X1 − Y1, Ż1 = −4X1. (9)

The eigenvalues of the Jacobian matrix for system (9)
are λ1 = −1, λ2 = 1

2 i , λ3 = −1
2 i . The corresponding

eigenvectors are

v1 =
⎛
⎝0

1
0

⎞
⎠ , v2 =

⎛
⎜⎜⎜⎝

−1

8
i

− 1

40
− 1

20
i

1

⎞
⎟⎟⎟⎠ ,

v3 =

⎛
⎜⎜⎜⎝

1

8
i

− 1

40
+ 1

20
i

1

⎞
⎟⎟⎟⎠ .

Let

u1 = (v2 + v3)

2
=

⎛
⎜⎝

0

− 1

40
1

⎞
⎟⎠ ,

u2 = (v2 − v3)

2i
=

⎛
⎜⎜⎜⎜⎝

−1

8

− 1

20
0

⎞
⎟⎟⎟⎟⎠ ,

u3 = v1 =
⎛
⎝0

1
0

⎞
⎠

and

X1 = −1

8
Y2,

Y1 = − 1

40
X2 − 1

20
Y2 + Z2,

Z1 = X2.

We then have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ẋ2 = 1

2
Y2,

Ẏ2 = 1

5
X2

2 + 2

5
X2Y2 − 8X2 Z2 − 1

2
X2,

Ż2 = 1

100
X2

2 + 1

50
X2Y2 − 2

5
X2Y2 + 1

64
Y 2

2 − Z2.

(10)

Denote the local two-dimensional centre manifold of
system (10) near the origin as the set

W c
loc(O) =

{
(X2, Y2, Z2) ∈ R3

∣∣∣∣ Z2 = h(X2, Y2),

|X2| + |Y2| ≤ 1,

}
,

where

h(0, 0) = ∂h

∂ X2
(0, 0) = ∂h

∂Y2
(0, 0) = 0.

Assuming Z2 = h(X2, Y2) = a11 X2
2 + a12 X2Y2 +

a22Y 2
2 +· · · , and denoting X2 = w+u, Y2 = i(w−u),

system (10) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ = 1

2
iw − 1

10
iw2 − 1

5
iwu − 1

10
iu2

+1

5
w2 − 1

5
u2 + 4ihw + 4ihu,

u̇ = −1

2
iu + 1

10
iw2 + 1

5
iwu + 1

10
iu2

−1

5
w2 + 1

5
u2 − 4ihw − 4ihu,

Ż2 = − 9

1600
w2 + 41

800
wu − 9

1600
u2

+ 1

50
iw2 − 1

50
iu2 − 2

5
hw − 2

5
hu − h,

(11)

where u = w̄.
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Rewriting Z2 in the complex variable form:

Z2 = N11w
2 + N12wu + N22u2 + o(|w|3),

we have

Ż2 = 2N11ẇw + N12(ẇu + wu̇) + 2N22u̇u. (12)

Substituting the first and the second equations of system
(11) into system (12) gives

Ż2 = i N11w
2 − i N 12u2 + o(|w|3). (13)

From the third equation of system (11), we have

Ż2 = − 9

1600
w2 + 41

800
wu − 9

1600
u2 + 1

50
iw2

− 1

50
iu2 − 2

5
N11w

3 − 2

5
N12uw2 − 2

5
N22wu2

−2

5
N11uw2 − 2

5
N12wu2 − 2

5
N22u3 − N11w

2

−N12wu − N22u2. (14)

Equating coefficients of w2, wu, u2 in (13) and (14), we
have

N11 = 23

3200
+ i

41

3200
, N22 = − 23

3200
− i

41

3200
,

N12 = − 41

800
.

The dynamics on the centre manifold is then governed
by the equation

ẇ = 1

2
iw +

(
− 1

10
i + 1

5

)
w2

−1

5
iwu +

(
− 1

10
i − 1

5

)
u2

+
(

− 41

800
i − 41

800

)
uw2 + o

(|w|3) . (15)

Denoting the coefficients of w2, wu, u2, w2u as g20,
g11, g02, g21 respectively, we obtain

g20 = 2

(
− 1

10
i + 1

5

)
, g11 = −1

5
i,

g02 = 2

(
− 1

10
i − 1

5

)
, g21 = 2

(
− 41

800
i − 41

800

)
.

The first Lyapunov coefficient is defined as

�1(0) = 2Re(C(0)),

where

C(0) = i

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+ g21

2


 2.875 × 10−2 − 0.2379i.

Since �1 > 0, system (2) undergoes a subcritical Hopf
bifurcation at the point O . We also have the following
proposition which we state without proof.

PROPOSITION 4

System (1) undergoes a subcritical Hopf bifurcation at
the equilibrium point P when a = 0. The point P loses
stability to an unstable limit cycle when a > 0.

5. Numerical simulations

5.1 Existence of the limit cycle

In this section, we apply the results from the previ-
ous sections to system (1) for the Hopf bifurcation to
show the existence of the limit cycle. Taking a = 0.01,
a = 0.03, a = 0.05 respectively, we obtain periodic
orbits, as shown in figures 8, 9 and 10. The corre-
sponding numerical values of the eigenvalues, Lyapunov

Figure 8. A periodic solution of period three for system (1)
with a = 0.01.

Figure 9. A periodic solution of period two for system (1)
with a = 0.03.

Figure 10. A periodic solution of period one (limit cycle)
for system (1) with a = 0.05.
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Table 1. Numerical results for three different parameter values
for a. Here, Pv: Parameter value, Iv: Initial value, Ev: Eigen-
values, Le: Lyapunov exponents, Ld: Lyapunov dimension, Pp:
Phase portrait.

Pv Iv Ev Le Ld Pp

a = 0.01 [1, 1, 1] −0.93 0 1 Figure 8
−0.03 + 0.52i −0.07
−0.03 − 0.52i −0.94

a = 0.03 [1, 1, 1] −0.78 0 1 Figure 9
−0.11 + 0.55i −0.08
−0.11 − 0.55i −0.92

a = 0.05 [1, 1, 1] −0.61 0 1 Figure 10
−0.20 + 0.61i −0.05
−0.20 − 0.61i −0.95

Table 2. Numerical results for three different parameter values for a. Here, Pv:
Parameter value, Iv: Initial value, Ev: Eigenvalues, Le: Lyapunov exponents,
Ld: Lyapunov dimension, Pp: Phase portrait.

Pv Iv Ev Le Ld Pp

a = 0.01 [1, 1, 3] −0.93 0.06 2.06 Figure 11
−0.03 + 0.52i 0
−0.03 − 0.52i −1.06

a = 0 [0.1, 0.01,−2.2] −1 0.08 2.07 Figure 12
0.5i 0

−0.5i −1.08
a = 0 [0.26, 0.0625, 0.05] −1 0 2 Figure 13

0.5i 0
−0.5i −1

Figure 11. A chaotic attractor of system (1) with
a = 0.01.

Figure 12. A chaotic attractor of system (1) with
a = 0.

Figure 13. A quasiperiodic attractor of system (1) with
a = 0.

Figure 14. Coexisting attractors for system (1) with a = 0.
Dash line: chaotic attractor, real line: periodic attractor.
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Figure 15. Coexisting attractors for system (1) with a = 0,
dash line: chaotic attractor, real line: quasiperiodic attractor.

exponents and Lyapunov dimensions are summarised in
table 1.

5.2 Coexisting attractors

By choosing proper parameter values, many coexisting
attractors of system (1) can be discovered by numerical
integrations. The corresponding results are summarised
in table 2, and the phase portraits are shown in fig-
ures 11, 12 and 13 respectively. From tables 1 and 2,
we see that when a = 0.01, a chaotic attractor coexists
with a period-three solution of system (1) (see figure 14),
and when a = 0, a chaotic attractor and a quasiperiodic
attractor coexist, as shown in figure 15.

5.3 Basins of attraction

In this subsection, we are interested in obtaining the
basins of attraction of the different attracting sets defined
as the set of initial points whose trajectories converge
on the given attractor. Under the following linear trans-
formation

x1 = x − k1, y1 = y − k2, z1 = z − k3

system (1) becomes⎧⎨
⎩

ẋ1 = (y1 + k2)(z1 + k3) + a,

ẏ1 = (x1 + k1)
2 − (y1 + k2),

ż1 = 1 − 4(x1 + k1).

(16)

The Hartman–Grobman theorem states that the local
behaviour of an autonomous dynamical system in the
neighbourhood of a hyperbolic equilibrium is quali-
tatively the same as (i.e. topologically equivalent to)
the behaviour of its linearisation near this equilibrium.
No matter how the values ki (i = 1, 2, 3) change, the
characteristic equations of system (16) and system (1)
have the same eigenvalues at the corresponding equi-
libria. Consider the system parameter a = 0.01 and
a = 0 respectively. System (16) (which is topologically
equivalent to system (1)) has one stable equilibrium.
Moreover, system (16) is chaotic for a certain parameter

0 1 2 3 4 5
0

1

2

3

4

5

k2

k 3

Figure 16. Dynamical region of system (16) with a = 0.01
and k1 = 1. Green regions denote non-chaotic states, while
the red region denotes chaotic attractors.

0.15

0.1

0.05

-0.05

-0.1

0.2 0.22 0.24 0.26 0.28 0.3

0

k1
k 3

Figure 17. Dynamical region of system (16) with a = 0 and
k2 = 0.0625. Green regions denote non-chaotic states, while
the red region denotes chaotic attractors.

ki (i = 1, 2, 3). Figures 16 and 17 show the dynami-
cal regions in the 2D parameter spaces (k2 − k3) and
(k1 − k3) of system (16) for a = 0.01 and a = 0.
The green regions in the (k2 − k3) and (k1 − k3)-planes
correspond to non-chaotic states, while the red regions
correspond to hidden chaotic attractors. For each point
in this plot, it is necessary to search for initial condi-
tions that give bounded solutions and then to estimate
the largest Lyapunov exponent for each point. The cri-
terion used is to assume that Lyapunov exponents in the
range (−0.001, 0.001) are periodic (limit cycles, shown
in green), while those that are more negative correspond
to stable equilibria (point attractors, shown in green),
and those that are more positive correspond to chaotic
attractors (hidden attractors, shown in red).

5.4 Bifurcation analysis

When a = 0, system (1) is the Sprott E system, and
it degenerates in the sense that its Jacobian eigenvalues
at the equilibria consist of one conjugate pair of pure
imaginary numbers and one real number. The Shilnikov
homoclinic criterion might not be applied to this system.
When a > 0, the stability of the equilibrium is funda-
mentally different from that of the Sprott E system. In
this case, the equilibrium becomes a node-focus. The
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Figure 18. Bifurcation diagram, showing a period-halving
bifurcation (reversed period bifurcation) route to chaos in y
(at x = 0.25) vs. the parameter a.

Shilnikov homoclinic criterion is therefore inapplicable
to this case. Moreover, according to the definition of
self-excited attractor and hidden attractor (an attractor
is called a self-excited attractor if its basin of attraction
intersects with any open neighbourhood of a stationary
state (an equilibrium), otherwise it is called a hidden
attractor) [32], hidden attractors are attractors in systems
with no equilibria or with only one stable equilibrium,
and the nature of the attractor of system (1) is a hid-
den attractor. Figure 18 shows a bifurcation diagram
versus the parameter a, demonstrating a reverse period
doubling route to chaos, and indicates that although the
equilibrium is changed from an unstable saddle-focus
to a stable node-focus, the chaotic dynamics survive in
a relative narrow range of the parameter a.

6. Conclusion

In this paper, the dynamics at infinity of Sprott E
system perturbed with a tiny constant a is analysed
using Poincaré–Lyapunov compactification. The Hopf
bifurcation for this system is computed by the theory
of centre manifolds, and a subcritical Hopf bifurca-
tion is obtained. Numerical simulations confirmed the
correctness of the Hopf bifurcation analysis. Choos-
ing appropriate parameters, this perturbated system can
exhibit chaotic, quasiperiodic and periodic dynamics. In
particular, coexisting attractors can be observed, such
as a chaotic attractor and a periodic attractor for a > 0
and a chaotic attractor and a quasiperiodic attractor for
a = 0.

Another form of complexity arises for asymptotically
stable equilibrium points for attracting sets coexisting
via a > 0. This is usually referred to as coexisting
attractors and when this occurs, the trajectories of the
system selectively converge on either of the attracting

sets depending on the initial state of the system. When
coexisting attractors occur, engineers and scientists are
usually interested in obtaining the basins of attraction of
the different attracting sets, defined as the set of initial
points whose trajectories converge on the given attrac-
tor [25]. Indeed, the global dynamical behaviours and
the geometrical structure of the current system have not
been presented completely. The generation mechanism
of the chaos for this special system, as well as the alge-
braic structure (or normal form) for this system need to
be studied. These will be provided in future works.
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