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An efficient optimization algorithm for
quadratic programming problem and its
applications to mobile robot path
planning
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Abstract
The quadratic programming problem has broad applications in mobile robot path planning. This article presents an
efficient optimization algorithm for globally solving the quadratic programming problem. By utilizing the convexity of
univariate quadratic functions, we construct the linear relaxation programming problem of the quadratic programming
problem, which can be embedded within a branch-and-bound structure without introducing new variables and con-
straints. In addition, a new pruning technique is inserted into the branch-and-bound framework for improving the speed of
the algorithm. The global convergence of the proposed algorithm is proved. Compared with some known algorithms,
numerical experiment not only demonstrates the higher computational efficiency of the proposed algorithm but also
proves that the proposed algorithm is an efficient approach to solve the problems of path planning for the mobile robot.
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Introduction

The mobile robot has drawn more and more attention in

scientific areas and engineering applications. One of the

fundamental issues in mobile robot performing tasks in an

unknown environment is the path planning resolution

problem. That is, given the desired task, arriving at the

destination or catching a target with the shortest distance,

(or spending the least amount of energy), how can the

mobile robot search from the environment to start from

the initial position to achieve its own purpose by the best

or suboptimal path according to some performance indi-

cators? In the path planning, navigation involves a series

of common problems, with collision avoidance in some

form being almost universally needed, which underlaid

by more general assumptions about the problem would

be considered superior.1 In dealing with aircraft

(autonomous robot) navigation problems, second-order

central difference filtering algorithm2 and the new method

based on wavelet multiresolution analysis and adaptive
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Kalman filter3 are proposed to perform better than the

classical.

The most challenging problem for path planning is to

arrive at the destination or catch a target with the shortest

distance or least consumption of fuel when real time is

demanded in dynamic environments involving multiple

obstacles. The quadratic programming model is formulated

as follows

min J ¼ 1

2
xT ðo1Q� o2HÞxþ ðo1xT � o2f T Þx

s :t : τig AOCiðkÞ � τi

�
g AOCiðkÞ þ Dg AOCiðkÞÞ

�
� π

max

"
� Dmax;�

 
VA max þ nAxðkÞ

T

!#
� ax � min

"
Dmax;

 
VA max � nAyðkÞ

T

!#

max

"
� Dmax;�

 
VA max þ nAyðkÞ

T

!#
� ay � min

"
Dmax;

 
VA max � nAyðkÞ

T

!#

max

"
� Dmax;�

 
VA max þ nAzðkÞ

T

!#
� az � min

"
Dmax;

 
VA max � nAzðkÞ

T

!#

sinqm cos’nax þ sinqm sin’nay þ cos’maz � Dmax
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where Q 2 Rn�n is semidefinite matrix; c 2 Rn�1 is coeffi-

cient vectors and H 2 Rn�1 is right-hand side vectors;

x 2 Rn�1 is variable vector; o1 and o2 are the weights used

to balance the relative distance and the optimal velocity

direction; τi is assigned to evaluate the threat imposed by

an obstacle on the robot; the angle between VAO and LAO is

defined as obstacle angle, denoted by g AOiðkÞ, VAO denotes

the vehicle velocity relative to the obstacle, and LAO

denotes the vehicle position relative to the obstacle;

g AOCiðkÞ is the collision region angle in time step iðkÞ,
g AOiðkÞ represents the obstacle angle in step iðkÞ after

robot’s movement, I denotes the label of the obstacle;

Dmax represents the upper bound of acceleration and

VA max stands for the upper bound of the robot velocity;

ax, ay
, and az represent the acceleration elements of the

mobile robot; T is the planning period; and k is the time

step. Such problems can be expressed as the following

general quadratic programming problem (QPP)

ðQPPÞ :

min G0ðyÞ ¼
Xn

j¼1

Xn

k¼1

b0
jkyjyk þ

Xn

k¼1

a0
k yk

s: t: GiðyÞ ¼
Xn

j¼1

Xn

k¼1

bi
jkyjyk þ

Xn

k¼1

ai
kyk � bi; i ¼ 1; . . . ; m

y 2 Y 0 ¼ y 2 Rn : l0 � y � u0g
�

8>>>>>>><
>>>>>>>:

where bi
jk ;a

i
k ; bi 2 R; i ¼ 0; 1; . . . ; m; j ¼ 1; � � � ; n;

k ¼ 1; � � � ; n; l0 ¼ ð l0
1; . . . ; l0

nÞ
T; u0 ¼ ðu0

1; . . . ; u0
nÞ

T :
The QPPs have a wide variety of applications in informa-

tion science, control science and engineering, management

science, finance and economy, and so on.4–7 Except for the

above reviewed applications, the QPP presents important

theoretical and computational difficulties since the kind of

problems possess many local optimum points which are not

global optimal. So, the QPP has attracted attention from many

scientists. In past several decades, many special optimization

algorithms have been proposed for solving the special forms

of the QPP, such as reformulation convexification,8 Lagran-

gian underestimate and interval Newton method,9 semidefi-

nite relaxation,10 polyhedral approximation,11 duality

bound,12 robust solution,13 parametric relaxation,14 branch

and bound,15–17 and so on. Although some known algorithms

can also be used to compute the QPP, it is rather challenging

to globally compute the QPP because of its complication.18–20

In this article, we will present a branch-and-bound

algorithm for globally solving the QPP. To accomplish

this goal, by utilizing the convexity of univariate quadra-

tic functions, we construct the linear relaxation program-

ming problem (LRPP) of the QPP, which can be

embedded within a branch-and-bound framework without

introducing new variables and constraints. In addition, a

new pruning technique is inserted into the branch-and-

bound framework for improving the convergence of the

algorithm. Next, by combining the linear relaxation

bounding operation with the bisection rule and pruning

operation, an efficient branch-and-bound optimization

algorithm is presented for globally solving the QPP.

Finally, compared with the known algorithms, numerical

experiments demonstrate the higher computational effi-

ciency of the proposed method.

The remaining sections of this article are listed as follows.

By utilizing the convexity of univariate quadratic functions,

“new linear relaxation programming” section derives a
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novel linear relaxation technique, and then the LRPP of the

QPP is established. Based on the LRPP derived in “new

linear relaxation programming” section, “optimization

algorithm and its global convergence” section presents an

efficient branch-and-bound optimization algorithm by

combining the linear relaxation bounding operation with

the bisection rule and pruning operation, and its global

convergence is proved. In “numerical experiments” sec-

tion, in order to compare with some known algorithms,

numerical experiments are given to show the computa-

tional superiority of the proposed algorithm. Finally, some

concluding remarks are discussed.

New linear relaxation programming

In this section, we derive a new linear relaxation technique,

based on the relaxation technique, on which the LRPPs of

the initial problem and its partitioned subproblems can be

established, and the detailed deriving process is demon-

strated as follows.

For any y 2 Y ¼ ½l; u� � Y 0, by the convexity of uni-

variate quadratic function y2
j ; j ¼ 1; 2; � � � ; n; we have

ðlj þ ujÞyj �
ðlj þ ujÞ2

4
� y2

j � ðlj þ ujÞyj � ljuj ð1Þ

Similarly, for any y 2 Y ¼ ½l; u� � Y 0, we can easily

derive the following inequalities

ðlj þ uj þ lk þ ukÞðyj þ ykÞ �
ðlj þ uj þ lk þ ukÞ2

4
� ðyj þ ykÞ2

ðyj þ ykÞ2 � ðlj þ uj þ lk þ ukÞðyj þ ykÞ � ðlj þ lkÞðuj þ ukÞ

8>><
>>:

ð2Þ

By equations (1) and (2), for any y 2 Y ¼ ½l; u� � Y 0,

we can easily derive the following inequalities

yjyk ¼
1

2
½ðyj þ ykÞ2 � y2

j � y2
k �

� 1

2
½ðlj þ uj þ lk þ ukÞðyj þ ykÞ

� ðlj þ uj þ lk þ ukÞ2

4
�

� 1

2
½ðlj þ ujÞyj � ljuj þ ðlk þ ukÞyk � lkuk �

¼ 1

2
½ðlj þ ujÞyk þ ðlk þ ukÞyj þ ljuj þ lkuk

�ðlj þ uj þ lk þ ukÞ2

4

and

yjyk ¼
1

2
½ðyj þ ykÞ2 � y2

j � y2
k �

� 1

2
½ðlj þ uj þ lk þ ukÞðyj þ ykÞ � ðlj þ lkÞðuj þ ukÞ�

� 1

2
½ðlj þ ujÞyj �

ðlj þ ujÞ2

4
þ ðlk þ ukÞyk

�ðlk þ ukÞ2

4
�

¼ 1

2
½ðlj þ ujÞyk þ ðlk þ ukÞyj þ ðljþujÞ2

4
þ ðlkþukÞ2

4

�ðlj þ lkÞðuj þ ukÞ�

Let

f l
j ðyÞ ¼ ðlj þ ujÞyj �

ðlj þ ujÞ2

4

f u
j ðyÞ ¼ ðlj þ ujÞyj � ljuj

f I
jkðyÞ ¼

1

2
½ðlj þ ujÞyk þ ðlk þ ukÞyj þ ljuj þ lkuk

�ðlj þ uj þ lk þ ukÞ2

4

f u
jkðyÞ ¼

1

2
½ðlj þ ujÞyk þ ðlk þ ukÞyj þ ðljþujÞ2

4
þ ðlkþukÞ2

4

�ðlj þ lkÞðuj þ ukÞ�

8>>>>>>>>>>>>>>>>>>>><
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Obviously, we have

f l
j ðyÞ � y2

j � f u
j ðyÞ; f l

jkðyÞ � yjyk � f u
jkðyÞ

Since

y2
j � f l

j ðyjÞ ¼ y2
j � ðlj þ ujÞyj �

ðlj þ ujÞ2

4

" #

is a convex function about yj over the interval ½lj; uj�. Thus,

at the point lj or uj, it can obtain the maximum value

max½y2
j � f l

j ðyjÞ� ¼
ðuj � ljÞ2

4

Similarly, since

f u
j ðyjÞ � y2

j ¼ ðlj þ ujÞyj � ljuj � y2
j

is a concave function about yj over the interval ½lj; uj�,
therefore, at the point

ljþuj

2
, ½ f u

j ðyjÞ � y2
j � can obtain maxi-

mum value

max½ f u
j ðyjÞ � y2

j � ¼
ðuj � ljÞ2

4
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Similarly, for any y 2 Y ¼ ½l; u� � Y 0, then ðyj þ ykÞ 2 ½lj þ lk ; uj þ uk �, we have

max ðyj þ ykÞ2 � ðlj þ uj þ lk þ ukÞðyj þ ykÞ �
ðlj þ uj þ lk þ ukÞ2

4

2
4

3
5

8<
:

9=
; ¼ ðuj þ uk � lj � lkÞ2

4

max ½ðlj þ uj þ lk þ ukÞðyj þ ykÞ � ðlj þ lkÞðuj þ ukÞ� � ðyj þ ykÞ2
n o

¼ ðuj þ uk � lj � lkÞ2

4

8>>>>>><
>>>>>>:

Obviously, when k u� l k! 0, we have

max½ y2
j � f l

j ðyjÞ� ! 0

max½ f u
j ðyjÞ � y2

j � ! 0

max ðyj þ ykÞ2 �
�
ðlj þ uj þ lk þ ukÞðyj þ ykÞ �

ðlj þ uj þ lk þ ukÞ2

4

#8<
:

9=
;! 0

max ½ðlj þ uj þ lk þ ukÞðyj þ ykÞ � ðlj þ lkÞðuj þ ukÞ� � ðyj þ ykÞ2
n o

! 0

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

Since

yjyk � f l
jkðyÞ ¼ yjyk �

1

2
½ðlj þ ujÞyk þ ðlk þ ukÞyj þ ljuj þ lkuk �

ðlj þ uj þ lk þ ukÞ2

4

( )

¼ 1

2
½ðyj þ ykÞ2 � y2

j � y2
k � �

1

2
½ðlj þ ujÞyk þ ðlk þ ukÞyj þ ljuj þ lkuk �

ðlj þ uj þ lk þ ukÞ2

4

( )

¼ 1

2
ðlj þ ujÞyj � ljuj � y2

j þ
1

2
ðlk þ ukÞyk � lkuk � y2

k

� �

þ 1

2
ðyj þ ykÞ2 � ðlj þ uj þ lk þ ukÞðyj þ ykÞ �

ðlj þ uj þ lk þ ukÞ2

4

" #( )

� 1

2
max½ f u

j ðyjÞ � y2
j � þ

1

2
max½ f u

k ðykÞ � y2
k �

þ 1

2
max ðyj þ ykÞ2 � ðlj þ uj þ lk þ ukÞðyj þ ykÞ �

ðlj þ uj þ lk þ ukÞ2

4

" #( )

By equation (3), we have yjyk � f l
jkðyÞ ! 0 as k u� l k! 0:

Similarly, we can prove that f u
jkðyÞ � yjyk ! 0 as k u� l k! 0:

Let

GL
i ðyÞ ¼

Xn

k¼1

ai
kyk þ

Xn

k¼1;bi
kk>0

bi
kk f l

k ðykÞ þ
Xn

k¼1;bi
kk<0

bi
kk f u

k ðykÞ

þ
Xn

j¼1

Xn

k¼1;k 6¼j;bi
jk>0

bi
jk f l

jkðyÞ þ
Xn

j¼1

Xn

k 6¼1;bi
jk<0

bi
jk f u

jkðyÞ

Gu
i ðyÞ ¼

Xn

k¼1

ai
kyk þ

Xn

k¼1;bi
kk<0

bi
kk f l

k ðykÞ þ
Xn

k¼1;bi
kk>0

bi
kk f u

k ðykÞ

þ
Xn

j¼1

Xn

k¼1;k 6¼j;bi
jk<0

bi
jk f l

jkðyÞ þ
Xn

j¼1

Xn

k 6¼1;bi
jk>0

bi
jk f u

jkðyÞ

Obviously, by equation (3), we can derive that as k u� l k! 0

GU
i ðyÞ � GiðyÞ � GL

i ðyÞ; GiðyÞ � GL
i ðyÞ ! 0 and GU

i ðyÞ � GiðyÞ ! 0:
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Based on the above linearizing process, we can derive

the LRPP of the QPP over Y as follows

LRPPðY Þ :

min GL
0ðyÞ

s: t: GL
i ðyÞ � bi; i ¼ 1; . . . ; m

y 2 Y ¼ y : l � y � u � Y 0
��

8><
>:

where

GL
i ðyÞ ¼

Xn

k¼1

ai
kyk þ

Xn

k¼1;bi
kk>0

bi
kk f l

k ðykÞ þ
Xn

k¼1;bi
kk<0

bi
kk f u

k ðykÞ

þ
Xn

j¼1

Xn

k¼1; k 6¼j;bi
jk>0

bi
jk f l

jkðyÞ þ
Xn

j¼1

Xn

k¼1; k 6¼j;bi
jk<0

bi
jk f u

jkðyÞ:

By the above linearizing process, for any Y � Y 0; every

feasible point of the QPP is also feasible to the LRPP, the

LRPP can provide a reliable lower bound for the global

optimum value of the QPP.

Optimization algorithm and its global
convergence

In this section, we first introduce several fundamental tech-

niques; next, by combining these techniques, we present an

efficient branch-and-bound optimization algorithm for

globally solving the QPP. The detailed contents are given

as follows.

Several fundamental techniques

Firstly, we introduce a bisection rule as partitioning

method. This selected bisection rule is exhaustiveness,

which can guarantee the global convergence of the pro-

posed optimization algorithm. For any given subbox,

Y k ¼ ½lk ; uk � � Y 0. This bisection rule is as follows.

Assume that h 2 argmaxfui � liji ¼ 1; . . . ; ng, then Y k

can be partitioned into two subboxes: Y k;1 ¼
fy 2 Rnjli � yi � ui; i 6¼ h; lh � yh � lhþuh

2
g and Y k;2 ¼

fy 2 Rnjli � yi � ui; i 6¼ h; lhþuh
2
� yh � uhg:

Secondly, to improve the convergent efficiency of

the proposed branch-and-bound optimization algorithm,

we introduce a pruning technique for deleting a part of

the investigated box Y, which does not contain any global

optimum point of the QPP. Without loss of generality, for

any y 2 Y ¼ ðYjÞn�1 with Yj ¼ ½lj; uj� ðj ¼ 1; . . . ; nÞ, we

assume that

GL
i ðyÞ ¼

Xn

j¼1

gijyj þ hi; i ¼ 0; 1; . . . ; m

Assume that UBk be a currently known upper bound of

the proposed optimization algorithm at kth iteration, by

utilizing the structure of the branch-and-bound optimiza-

tion algorithm, similar as Voorhis,11 for any subbox

Y ¼ ðYjÞn�1 � Y 0, we can get the following conclusions.

i. If
Pn
j¼1

min g0jlj; g0juj þh0 > UBkg
n

, then the

subbox Y should be deleted; else ifPn
j¼1

min g0jlj; g0juj þh0 � UBkg
n

, then for each

p 2 1; 2; . . . ; ngf , we have

If g0p > 0, then the interval

UBk �
	Pn

j¼1 min
�
g0jlj; g0juj

�
þ h0



þ min

�
g0plp; g0pup

�
g0p

; up

0
@

3
5\ Yp

should be deleted;

If g0p < 0, then the interval

lp;
UBk �

	Pn
j¼1 min

�
g0jlj; g0juj

�
þ h0



þ min

�
g0plp; g0pup

�
g0p

2
4

1
A \ Yp

should be deleted.

ii. If
Pn
j¼1

min
�
gijlj; gijujg þ hi > bi for some

i 2 1; . . . ; mgf , then the subbox Y should be

deleted; else if
Pn
j¼1

min
�
gijlj; gijujg þ hi � bi for

some i 2 1; . . . ; mgf , then for each

p 2 1; . . . ; n
��

, we have

If gip > 0, then the interval

bi � ð
Pn

j¼1 min
�
gijlj; gijuj

�
þ hiÞ þ min

�
giplp; gipup

�
gip

; up

 #
\ Yp

should be deleted.

If gip < 0, then the interval

lp;
bi � ð

Pn
j¼1 min

�
gijlj; gijuj

�
þ hiÞ þ min

�
giplp; gipup

�
gip

" !
\ Yp

should be deleted.

From the above conclusions, we can construct the new

pruning technique to prune a part of the investigated box

which does not contain the global optimal point of the QPP,

so that the computational speed of the proposed branch-

and-bound optimization algorithm can be improved and

accelerated.

Thirdly, the bounding process is needed to update the

lower bounds and upper bounds of the optimal value of

the QPP. Here, we update the lower bounds by solving the

former LRPP using simple method. At the same time, we

update the upper bounds by computing the objective func-

tion value of feasible points for the QPP.

Fourthly, denote LBðY kÞ and yk ¼ yðY kÞ as the global

optimum value and the global optimum solution for the LRPP

in the subbox Y k , respectively. Based on the above bisection

rule, the pruning technique and bounding process, we design

the following branch-and-bound optimization algorithm for

the QPP. The detailed steps of algorithm are given as follows.

Steps for optimization algorithm are follows:

Cai et al. 5



Step 1. Initialize k ¼ 0, L0 ¼ Y 0g
�

, F ¼:, e > 0,

UB0 ¼ þ1.

Solve the LRPP ðY 0Þ to obtain LB0 ¼ LB(Y0) and

y0 ¼ yðY 0Þ. If y0 is satisfied with the feasibility of the

QPP, then let F ¼ y0g
�

and UB0 ¼ G0ðy0Þ.
If UB0 � LB0 � e, then the algorithm terminates;

at the same time, we get the global optimal solution y0

of the QPP. Otherwise, continue to step 2.

Step 2. For the investigated box Y k 2 Lk , using the

proposed bisection method, partition the box Y k

into two subboxes and denote the new subboxes

set by Y̆ k .

Step 3. For each subbox Y 2 Y̆ k , using the former

pruning technique to delete a part of the investi-

gated box which does not contain the global opti-

mal point of the QPP11, and let the remaining

subbox be Y and the remaining partitioning set

be Y̆ k .

Step 4. For each subbox Y 2 Y̆ k , solve the LRPP ðY Þ
to get LBðY Þ and yðY Þ; if LBðY Þ > UBk , then let

Y̆ k ¼ Y̆ k\Y . Otherwise, we detect the feasibilities

of the midpoint y mid and yðY Þ and update the fea-

sible point set. At the same time, update

UBk ¼ miny2FG0ðyÞ and denote the current best

feasible solution by yk ¼ argmin y2FG0ðyÞ. Let

Lk ¼ ðLk\Y kÞ [ Y̆ k and LBk ¼ infY2Lk
LBðY Þ.

Step 5. If UBk � LBk � e; then the algorithm termi-

nates; UBk and yk are the global optimum value

and the global optimum point for the QPP, respec-

tively. Otherwise, let k ¼ k þ 1, and select

Y k ¼ argmin Y2Lk
LBðY Þ, and return to step 2.

Global convergence of the algorithm

The global convergence of the above branch-and-bound

optimization algorithm is discussed as follows.

Theorem 1. If the proposed optimization algorithm termi-

nates at kth iteration, then a global optimal solution yk can

be obtained. Otherwise, the proposed optimization algo-

rithm will generate an infinite subsequence ykqg
�

of ykg
�

such that its accumulation point is the global optimal solu-

tion for the QPP.

Proof. If the proposed optimization algorithm stops after

finite k iteration, then from the termination condition of

algorithm, it is obvious that UBk � LBk � e:
From the bounding process, we know that there does

exist a feasible solution yk such that UBk ¼ G0ðykÞ; so

we have G0ðykÞ � e � LBk :
Let v	 be the global optimal value, then from the struc-

ture of the proposed optimization algorithm, we have

LBk � v:
Since yk is a feasible solution for the QPP, then we

follow that G0ðykÞ � v:

From comprehensive analysis of the above results, we

can follow that v � LBk � G0ðykÞ � e � v� e: Obviously,

yk is a global optimal solution of the QPP.

If the proposed optimization algorithm does not stop

after finite k iterations, based on the sufficient condition

of the convergence of the branch-and-bound optimiza-

tion algorithm, we can draw a conclusion that the

bounding operation of the proposed optimization algo-

rithm must be consistent and its selection operation may

be improved.

From the construction of the above optimization algo-

rithm, the selected bisection method is exhaustive, so that

any unfathomed box can be further partitioned by the

branching process. By the deriving process of the LRPP,

it is easy to follow that limk!1ðUBk � LBkÞ ¼ 0 must

hold. Therefore, the bounding operation must be

consistent.

From the proposed bisection method, the selected sub-

box Y k of which the lower bound can be immediately

attained from further partitioning process. Therefore, the

selecting operation of the proposed optimization algorithm

that satisfies the bound must be improved.

From comprehensive analysis of the above discus-

sions, we have that the bounding operation of the pro-

posed algorithm must be consistent and its selection

operation may be improved. Finally, according to liter-

ature,15–17 we can follow that the proposed optimization

must be globally convergent to the optimal solution of

the initial problem (QPP).

Numerical experiments

In this section, to verify the feasibility and efficiency of the

proposed branch-and-bound optimization algorithm, some

random numerical test problems in recent literatures are

solved using the proposed optimization algorithm on

microcomputer, the algorithm procedure is coded in Cþþ,

and the LRPPs are solved by simplex approach. These

random numerical test problems and their computational

results are demonstrated as follows

ðQPPÞ :

min G0ðyÞ ¼
Xn

j¼1

Xn

k¼1

b0
jkyjyk þ

Xn

k¼1

a0
k yk

s: t: GiðyÞ ¼
Xn

j¼1

Xn

k¼1

bi
jkyjyk þ

Xn

k¼1

ai
kyk � bi; i ¼ 1; . . . ; m

y 2 Y 0 ¼ y 2 Rn : l0 � y � u0
� �

8>>>>>>><
>>>>>>>:

where b0
jk and a0

k are randomly generated in ½�1; 1�, bi
jk and

ai
k ; i ¼ 1; � � � ; m are randomly generated in ½�1; 1�, and bi

is randomly generated in ½�300;�90�, l0 ¼ ½0; � � � ; 0�T ;
and u0 ¼ ½10; � � � ; 10�T .

The numerical experimental results for these test prob-

lems are listed in Table 1, where n represents the number of

variable and m represents the number of constraints. The

numerical results indicate the feasibility of the proposed

optimization algorithm.
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Concluding remarks

Path planning for the mobile robot is still a challenging

problem because the inherent constraints arising from

the robot body and the exterior environment cannot be

solved. Thus, the major difficulties are that most of

existing methods can only get local optimal value

instead of global one. To address these difficulties, in

this article, we present an efficient optimization algo-

rithm for globally solving the QPP. Based on the con-

vexity of univariate quadratic function, we derive the

LRPP of the initial problem, which is embedded into a

branch-and-bound framework, so that we can construct a

global optimization branch-and-bound algorithm. In

addition, a new pruning technique is inserted into the

branch-and-bound optimization algorithm to improve the

global convergent speed of the proposed optimization

algorithm. Finally, the global convergence of the pro-

posed algorithm is proved, and compared with the

known algorithms, numerical experiment demonstrates

the higher computational efficiency of the proposed

algorithm. Therefore, the bounding operation of the pro-

posed algorithm must be consistent and its selection

operation may be improved, and it provides an efficient

approach to solve the problems of path planning for the

mobile robot.
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