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Abstract: The objective of this paper is to analyze the approximate controllability of a semilinear
stochastic integrodifferential system with nonlocal conditions in Hilbert spaces. The nonlocal initial
condition is a generalization of the classical initial condition and is motivated by physical phenomena.
The results are obtained by using Sadovskii’s fixed point theorem. At the end, an example is given to
show the effectiveness of the result.
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1. Introduction

Controllability is one of the essential concepts in mathematical control theory and plays a crucial
role in each deterministic and stochastic control system. It has been properly documented that the
controllability of deterministic systems is widely employed in many fields of science and technology.
Any control system can be defined as controllable only if every state regarding that process is affected or
controlled in the corresponding time by some control signals. In several projective systems, it is possible
to guide or control the dynamical system from an imperiousinitial state to a peremptoryfinal state with
the help of the set of admissible controls.

Kalman [1] introduced the idea of the controllability for finite-dimensional deterministic linear
control systems. The fundamental ideas of control theory in finite and infinite-dimensional spaces
were introduced in [2] and [3], respectively. However, in several cases, some reasonable randomness
can appear in the problem, so that the system should be modeled by a stochastic form. Only a
few authors have researched the extension of deterministic controllability ideas to stochastic control
systems. Dauer and Mahmudov [4] studied the controllability of a semilinear stochastic system
by using the Banach fixed point technique. In [5-9], Mahmudov et al. established results for the
controllability of linear and semilinear stochastic systems in Hilbert space. On behalf of this, Sakthivel,
Balachandran, and Dauer et al. deliberated on the approximate controllability of nonlinear stochastic
systems in [4,10-12]. Sakthivel et al. studied the existence results for fractional stochastic differential
equations; see [13-20] and the references therein.

On the other hand, only a few authors have investigated the controllability of neutral functional
integrodifferential systems in Banach spaces by using semigroup theory. Recently, in [21-23],
Balachendran and Karthikeyan et al. studied the controllability of stochastic integrodifferential systems
in finite dimension spaces.

To date, from our simplest data, there are no results on the approximate controllability of
semilinear stochastic integrodifferential systems with nonlocal conditions using Sadovskii’s fixed point
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theorem within the literature. Therefore, this paper is dedicated to the estimation of the approximate
controllability of semilinear stochastic integrodifferential control systems with nonlocal conditions
using Sadovskii’s fixed point theorem.

In this work, we shall study the approximate controllability of the following semilinear stochastic
integrodifferential system:

ay(6) = [Ay(H) + Bu(t) + £, y(0) + [ glos, v+ ot (0w, 1] )

y(0) =yo + h(y). 2

where A : D(A) C H — H is a closed, linear, and densely-defined operator on H, which generates
a compact semigroup {T(t) : t € ]} on H. Let B be a bounded linear operator from the Hilbert space U
into H. The control u € Lé([O, bLU f:]xH—-Hg:Jx]xH—-Ho:]xH— Lg; are nonlinear
suitable functions. x( is the 3 measurable H-valued random variable independent of w; g is a
continuous function from C(J, H) — H. For simplicity, we generally assume that the set of admissible
controls is U,d = L (], U).

2. Preliminaries

Let (Q), 3, P) be a complete space with a normal filtration ¢, t € | = [0,b]. Let H, U, and E be the
separable Hilbert spaces and W be a Q-Wiener process on (Q, 33, P) with the covariance operator Q
such that frQ < co. We assume that there exists a complete orthonormal system e, in E, a bounded
sequence of nonnegative real numbers A, such that Qe, = Aye,, 1 =1,2,3---, and a sequence 8, of
independent Brownian motions such that:

i VAnBn(Hen, te].
n=1

Let Hy, = GC([0,b];H) and & = S}, where S¥ is the o-algebra generated by W.
Let L = Ly(Q!/?E; H) be the space of all Hilbert-Schmidt operators from Q'/2E to H with the norm
¢l = tr[¢QC*]- Let L3 (], H) be the space of all S¢-adapted, H-valued measurable square integrable
processes on | x ().

Let C([0, b]; L?(S, H)) be the Banach space of continuous maps from [0, b] into L2(3, H) satisfying
the condition:

supEly(1)|* < eo.
te]

Let Hy = Cy([0,b];H). Now, H, is the closed subspace of C([0,b]; L?>(S,H)) consisting of
measurable and 3;-adapted H-valued processes ¢ € C([0,b]; L?(S, H)) endowed with the norm:

1/2
lpllg, = (st[lopb]Em(t)Hﬁ) -
te|0,

Definition 1. A stochastic process y € Hy is a mild solution of (1)~(2) if for each u € L4([0,b], U), it satisfies
the following integral equation:

WO = T o+ ]+ [ T( =) [Buls) + f(sy(e))ds + [ (=) | [ glomy)ar| as
+ /OtT(t—s)(T(s,y(s))dw(s)
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Let us introduce the succeeding operators and sets [24] L, € L£(Ly (] x Q,U), L2(Q, Sy, H))
defined by:

Lyu = /: T(b — s)Bu(s)ds,

where £(X,Y) denotes the set of bounded linear operators from X to Y. Then, its adjoint operator
Ly : Ly(Q, Sy, H) — L3 (] x Q, U) is given by:

Liz = B'T*(b—HE{z[S).

The set of all states reachable in time b from initial state y(0) = yy € La(Q, S, X) using admissible
controls is defined as:

Rp(Uaa) = {y(biyo,u) € Lo(Q, Sy, H) : u € Upg},
y(b;yo,u) = T(b)[yo+h(y / b —s)Bu(s ds+/ —s)f(s,y(s))ds
b
/ T(b—3s) [/ g(s,r,y(r))dr} ds —i—/ T(b—s)o(s,y(s))dw(s)
0 0 0
Let us introduce the linear controllability operator IT} € £(L,(Q, Sy, H), Lo (Q, Sy, H)) as follows:

g {-} = Ly(Ly)" {}
_ /ObT(b—t)BB*T*(b—t)]E{.|St}dt.

+

The corresponding controllability operator for the deterministic model is:

I = Ly(s)Ly(s)

/b T(b— )BB*T* (b — t)dt.

Definition 2. The stochastic system (1)—(2) is approximately controllable on [0, b] if R(b) = Lp(Q), Sy, H),
where R(b) = {y(b;u):u € Ly(Q, Sy, H) : u € Upd}, and L4([0,b],U) is the closed subspace of
L2([0,b] x Q, U), consisting of all Sy-adapted, U-valued stochastic processes.

Lemma 1. [25] Let o : | x Q — L3 be a strongly-measurable mapping such that fob E|o(t) HZO < 0. Then:
2

E /(;ta(s)dw(s) ’

t
< Lo [ E|o(s)lfyds
forallt € Jand p > 2, where L, is the constant involving p and b.

Lemma 2. (Sadouskii’s fixed point theorem) Suppose that N is a nonempty, closed, bounded, and convex subset
of a Banach space Hand % : N C H — Hl is a condensing operator. Then, the operator 9 has a fixed point

in N.
3. Main Result

To prove our main results, we list the following hypotheses:

Hypothesis 1 (H1). A is the infinitesimal generator of a compact semigroup {T(t) : t > 0} on H.
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Hypothesis 2 (H2). The function f : | x H — H satisfies linear growth and Lipschitz conditions, i.e., there
exist positive constants Cy, Cy such that:

If(ty) = fFby) > < Cillys — wal)?
IFEWIP < G+ yl?).

Hypothesis 3 (H3). The function o : ] x H — Lg satisfies linear growth and Lipschitz conditions, i.e., there
exist positive constants N1, Ny such that:

lo(ty1) — ot y2) > < Nilyi — vl
ot IP < Na(L+ |yl

Hypothesis 4 (H4). The function g : | x | x H — H satisfies linear growth and Lipschitz conditions, i.e.,
there exist positive constants Ky, Ky such that:

2

IN

| [t 3n(6) = stt s mao)las| < Kl

2

t
|[sttsvenas| < Kl -l

Hypothesis 5 (H5). The function h is a continuous function, and there exists some positive constants Mg
such that:

k() = () > < Mgllys — v
k)P < Mg(1+ |yl),

forallyi,y, € C(J, H).

Hypothesis 6 (H6). For each 0 < t < b, the operator a(al +T?)~1 — 0 in the strong operator topology as
a — 01, where:

b
o= /t T(b— )BB*T* (b — s)ds
is the controllability Gramian.

Observe that the linear deterministic system corresponding to (1)—(2):

dy'(t) = [Ay(t)+Bu(t)]dt, te]
y©0) = wo ®

is approximately controllable on [t,b] iff the operator a(al +T?)~1 — 0 strongly as a — 07.
For simplicity, let us take:

Mp = max{|[B|}.

Two lemmas, as far as approximate controllability is concerned, will be utilized in the result.
The accompanying lemma is needed to define the control function.

Lemma 3. [7] For any y;, € Lo (Q, Sy, H), there exists ¢ € L (], L9) such that:

v =Byt [ pls)du(s)
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Now, for any a > 0 and y;, € Ly(Q, Sy, H), we define the control function in the form below:

Ut (t,y1)

BT (b~ 1) (014 #0) By — TO) 0+ h(01))) + [ (a1 +#) T g(s)aus)
— B*T*(b—t) /t(tXI +¥)) T (b —5)f(s,y1(s))ds

0
B*T*(b—t) /t(tXI +¥)71IT(b —s) [/Osg(s,r,yl (r))dr] ds

0

B*T*(b— t) /Ot(le +¥0)IT(b — s)o (s, y1 (s))dw(s)

Lemma 4. There exists a positive constant M, such that for all y,,y, € Hy, we have:

14 14 M
E U (ty1) U (ty2)|* < — I A €
" M
E U (t,y0) | < = (1 lyall?). ®)

Proof. Let y1,y» € Hp. From Holder’s inequality, Lemma 1, and the presumption on the data,
we obtain:

E“ua(t,yl)*ua(t,yz)nz < 4E‘ Hz

BXT*(b —t)(al +¥0) "' T(0)[h(11) — h(y2)]

b BB 00 [ @ )T - 9156 () - Fls va(o)]|

t s 2
+ 4E B*T*(b—t)/o(le—b—‘I’f)‘lT(b—s) UO [g(s,r,yl(r))—g(s,r,yz(r))]d‘r} ds

" 2
+ A4E|B*T*(b— t)/o (ocI+‘I’2)’1T(b —9)[o(s,y1(s)) — (s, y2(s))]dw(s)

4

IN

4 t
MMM 1 ol + s MEMP [ CIE [y (5) = yals) [ ds

IN

a2
4 54 [t 2 4 00 ! 2
£ MM [KGE Iy (s) — ya(o)lif ds + S MEMPLe [ NAE 1) — va(s) [ s
4
S MEM [ Mg+ CrE? + LoNob + K4y — v,

M
= Tl vl

where M, = 4M3M* [Mg + C1b® + Lo Nib + b?K;|. When u®(t,») = 0, the second inequality can be
proven in the same approach. O

Theorem 1. If the hypothesis (H1)-(H6) are fulfilled, then the system (1)—(2) has a mild solution on [0, b]
provided that:

M
12M?>M, + 6M? <6M%b2a2” + b2Cy + LgNob + bKy 4+ /Lo Vb + K) <1. (6)

SMZM%b% + 5M2bCy + 5M2LeNyb + 5M?K1b + 5M?\/T1 Vb + 5M?Kb < 1.
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Proof. The proof of this theorem is classified into three steps: For any « > 0, define the operator
d, : Hy — H by:

@) = TWlo+sW]+ [ Tt~ 9B (s,y) + fs,y(s))lds
+ / (t—s) [/ (sry())dr]ds—i—/ (t—s)o(s,y(s))dw(s).

Step1. Foranyy € Hp, ®,(y)(t) is continuous on | in the LP-sense. Let 0 < t; < t, < b. Then,
for any fixed y € Hp, it follows from Holder’s inequality, Lemma 1, and presume for the
theorem that:

E [|(@ay)(t2) = (@ay) () [* < 9{“*3 I(T(k2) = T(t1))yo + h(y)]|?

2

+ B[ M7 =) = Tt - 9l (s,v()ds

2

+ E /: T(ty —s)f(s,y(s))ds

2

+ E /Otl [T(tp —s) — T(t; —s)] {/Osg(s, r,y(r))dr} ds

+ E /tzT(tz—s)[ a(s,m,y(r }

+ E / [T(t, —s) — T(t; —8)]o(s y())dw()

2

+ 8] 7102 - 1ot y(e)(s)

h 2
+ E /0 [T(tr —s) — T(t, — )| BU (s, y)ds

]

< 9[ 2 (BII(T(t2) = T(t))yo > + E | (T(t2) = T(1))h(w) )

t
+ E /ZT(tz—s)BM“(s,y)ds
ty

+ H /Otl E||[T(tp —s) — T(t; — S)]f(S,]/(S))HZ ds
+ M- 1) [ B y(E) P

2

o [T -5 = -9l | [ sy | as

2
ds

+ MZ(tz—tl)/tltzEH/O.sg(s,r,y(r))dr
Lo [VRITG; - 5) - T(h - 9t y(o)|Pds
+ ML [VBo(s,y(s) s

t
+ b [ ENT(z =) = T(h = )] BU(s,p)|*ds

2 a2 b2 ® 2
£ IBIP M~ 1) [ E (s, ds
1

Thus, utilizing LDCT, we infer that the right-hand side of the above inequality tends to
zero as tp —t; — 0. Accordingly, we conclude that ®,(y)(f) is continuous from the right in
[0,b). A comparative contention demonstrates that it is likewise continuous from the left in (0, b].
Consequently, @, (y)(t) is continuous on | in the LP-sense.
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Step2.  For each positive integer g, let B; = {y eHy:E|y(t) ||%I < q}, then the set By is clearly
a bounded, closed, and convex set in H:

From Lemma 1, Holder’s inequality, and the assumption (H1), we have:

[ [ o -ssaena| < & [ 1me- o]
y 2
< 028 | [ v s
< Mzb'/;Cz(1+E||y(s)|h2m)ds

t
< M2bC2/ (1+ sup E |y(s)|Z)ds
0 s€(0,b]

< MPPCy(1+ [|yl|).

which deduces that T(t —s)f(s, y(s)) is integrable on ], and by Bochner’s theorem, ®, is well defined
on B,. Next, from the assumption (H4), it follows that,

t 2 ¢ 2
E /0 T(t—s) [/Osg(s,r,y(r))dr} ds < bMZ/O IEH/Osg(S,r,y(r))dr ds
t
< oM [ K1 +E y(s)]F)ds
2 i 2
< M Kz/ 1+ sup E|ly(s)|lg)ds
0 se[0,b]
< PMEa(1+ |yl)

Similarly from the assumption (H2) and Lemma 1, we have:

E|T(t - s)o(s,y(s)du) < Lo [ EIT(-s)o(s,y(s) g ds

t
< LM [ E[lo(s,y(s)) g ds
t
< LMy [[(1+ sup E|ly(s) s
s€[0,b]
< LeM*Nob(1+|lylE,).

Now, we claim that there exists a positive number g such that ®,(B;) C By.

If this is not true, then for each positive number g, there is a function y,(-) € By, but ®,, does
not belong to By, that is E ||®,y,(t) ||]124I > ¢ for some t € J. On the other hand, from the assumptions
(H2), (H3), and Lemma 4, we have:
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2
g <E|Tavg(t)|Z = SE|T(\)lyo +h(y)]|% + 6E

[ = s)mutsy

H
2

+ S5E /OtT(t—s)f(s,y(s))ds

H

+ 5E /Ot T(t—s) [/Osg(s,r,y(r))dr

2

2
ds

H

+ 5E /Ot T(t—s)o(s,y(s))dw(s)

H

IN

SM? [28 o 2+ 2 [1a(y) ] + SM2MEE 2 (1 + 1)

SM2b2Ca (1 + ||y ||Fy) + 5M2b* Ko (1 + ||y||H> + 5L M2Nob (1 + [|y||)
M

b272u(1 +q)

S5M?b*Co(1+ q) + 5M?b*Ka (14 q) + 5LGM2N2b(1 +9)

N+

10M2E |Jyo||* + 10M2 M, (1 + q) + 5M2 M3

IN -+

<1OM2E lyoll* + 10M2M, +5M2M2b2 - +5M2C,

+

5LcM2Nyb + 5M2bK2> + <1OM2Mg +5M>M?3 b2 L L 5M2ACy
+ SLeM?Nab + 5M2bK2> q.
Dividing both sides by g and taking the limit as g — oo, we get:
10M>M, + 5M? <MZBbZZZIz” +b%Cy + LeNob + szz) > 1.

This contradicts with Condition (5). Hence, for some positive number g, ®,B; C B,.

Step 3.  Define the operators ®,, and ®,, as:

(@uy)(t) = T(t)yo+h(y)],
(@uy)(f) = /OT(t—s)[BU"‘(sy)—i-fsy ds+/ (t—s) U

+ /Ot T(t—s)o(s,y(s))dw(s), te]

S

sl ()i s

Now, we will prove that @, is completely continuous, while ®,, is a contraction operator.
It is clear that ®,, is completely continuous by the assumption (H3). To prove ®,, is a contraction,
let us take y1,y2 € B;. Then, from the assumptions (H2), (H3), and for each t € |, we have:
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¢ 2

E ||(®Payy1)(t) — (Puyya) ()5 < 4E| [ T(t—s)BU*(s,x) — U (s,y)]ds

Jo H
+ 4E tT t—s)[f(s,x(s)) — f(s,y(s))]ds ’
0 H
2
+ 4E / (t—s) {/ (s, r,y1(r)) — g(s,r,y2(r))dr| ds .
2
+ 4E /OT(t—s)[a(s () = (s, y(s)Jdwo(s) |

M 2 2
< AMEMED— [y — wallfy + 4MPBC [y - vl
+ AMPKib|lyr — ol + 4AMPLo N [[y1 — a1y
<

(4M2M2Bb]f;’ +4M?bCy + 4MPLoNyb + 4M2K1b> I =yl

Therefore,

E|[(Puy1)(t) — (@) D < Kollyi — w2l
where:

M u

Ky = (4M2M2b + 4M?bC4 +4M2L0N1b+4M2K1b> <1

Thus, ®,, is a contraction mapping.

Now, we have that ®, = ®,, + ®,, is a condensing map on By, so Sadovskii’s fixed point theorem
is satisfied. Hence, we conclude that there exists a fixed point y(-) for ®, on B;, which is the mild
solution of (1)-(2). O

Theorem 2. IF the assumptions (H1)-(H6) are fulfilled and if f, o, and g are uniformly bounded, then the
system (1)—(2) is approximately controllable on [0, b].

Proof. Let y, be a fixed point of @, in H. By using the stochastic Fubini theorem, it is easy to see that:

() = ool + 8 (B = T(E) o + ()
b [ @I T TT0 — 9)f s a(s))ds
o [t -9 | [t nar] d
[ @I T T — 5)o (s, () — 9()ldw(s)

By the assumption that f, o, and g are uniformly bounded, there exists C > 0 such that:

2

16+ s ya(s) 1+ | s maatonar| <

in [0,b] x Q.
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Then, there is a subsequence denoted by:

{6, 0(50a9), [ st r st

weakly converging to say {f(s,w),o(s,w)} in H x LY and {[;&(s,7,ya)} in H x H x LJ.
The compactness of S(t) implies that:

(b=3s)f(s,yals)) —
(b—s)o(s,ya(s)) — T(b—s)o(s),
%

T(b—s)g(s,7,ya(s)) T(b—s)g(s,r,y). in Jx Q.

On the other hand, by the assumption (H6), for all 0 < s < b, the operator:

T
T

a(al +T8) "1 50 stronglyas a — 0
and moreover:
Htx(odJrl“i’)_lu < 1

Hence, by the Lebesgue dominated convergence theorem, we obtain:

2
Ellxe(b) —xp]| < 8

aal + Tg)fl [Exb —T(b)[xo + g(x)]}

2
1 ds>

b 2
[ #tar =+ 1T =9 x0(5)) = £ ds)

+ 8E /Ob a(al +T8) " 1g(s)

2
/0 a(aI+Fg)_1T(b—s)f(s)Hds)
/Ob a(al + Fs’f)*lH 1T —s)[o(s,xx(5)) — o (s)] ”%2 ds)
2
/0 1 ds>
/Oh w(al +TO)71T(b —s) {/Osg(s,r)} dr

[ lsorer]

w(al +TY)IT(b - s)o(s)

2
ds)

769 [ [sts,r00) = sls,0) |

2
ds)

This results in the approximate controllability. [J

4. Example

Consider the stochastic control system:

dy(t,0) = [yee + Bu(t,0) + p(t,y(t)) + /Ot q(t,s,y(s))ds]dt +k(t,y(y(t)))dw(t) ?)

y(t,0) =y(t,m) =0, t€[0,T], 0<O<m ®)
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n
y(0,0) + ) aiy(t;, 0) = yo(6) )
i=1
Let X = L,[0, r]. Here, B is a bounded linear operator from a Hilbert space U into X, and
fiJxX—=X,0:]xX =Ly andgq: ] x ] x X — Xare all continuous and uniformly bounded; u(t)
is a feedback control; and w is a Q-Wiener process.
Let A : X — X be an operator defined by:

Ay = Yoo
with domain:
D(A) = {ye€X:y,yy areabsolutely continuous, yg € X, y(0) = y(m) =0}
Let f: [ xX =X,
fty)(0) = p(ty®), (Ly) €]xX, 6€][0,n]

Leto: ] xX — LY,
o(t,y)(0) = k(ty(6)),
Letg: [ x [ xX =X,

g(ts,y)(0) = q(tsy(0)),

The function s : C(J,X) — X,

M-

s(y)(8) = w;y(t;,0),

i=1

for0<t; < Tand 6 € [0, 7.

With this option of A, B, f,, g, and s, (1)—(2) is the abstract formulation of (7)—(9), such that the
conditions in (H1) and (H2) are fulfilled. Then:

o)

4y = ZeinZt(y/en)en(Q), yeX

n=1

For the time being, define an infinite-dimensional space:

u = {u:u: Y unen(0)] Zu%<oo}
n=2 n=2

0 1/2
fully = (Zbﬁ)
n=2

and a linear continuous mapping B from U — X as follows:

with the norm defined by:

[e0]

Bu = 2upe1(0)+ ) un(t)ea(6).
n=2
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It is well known that for u(t,8,w) = Y0 5 un(t, w)e, (8) € L3 (], U):

Bu(t) = 2up(t)er(0)+ i un(t)en(8) € L3 (J,X).

n=2
Moreover,
B'v = (2vi+12)ex(0) + ) vnen(),
n=3
B*S*(t)z = (zzle*t + Zzef4t)e2(9) + Z Zneinzte”(e),
n=3

forv=Y7" 1v4e,(0) and z = Y, 1 znen(6).
Now, let ||B*S*(t)z|| = 0, t € [0, T]. It follows that:

—n?t 2 —
Zne =0, t€[0,T]

2 (o)
HZzle_t +zze_4tH + Z ‘
n=3

=z,=0 n=1,273,..
=7Z=0

Consequently, by Theorem 4.1.7 [1], the deterministic linear system with reference to (7)-(9) is
approximately controllable on [0, T]. Hence, the system (7)—-(9) is approximately controllable provided
that f, o, g, and I satisfy the assumptions (H1)-(H4).

5. Conclusions

In this paper, we study the approximate controllability of a semilinear stochastic integrodifferential
system with nonlocal conditions in Hilbert spaces. The nonlocal initial condition is a generalization of
the classical initial condition and is motivated by physical phenomena. The results are obtained by
using Sadovskii’s fixed point theorem.

In future work, we intend to extend these results to a new class of stochastic differential equations
driven by fractional Brownian motion.
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