
Advanced Control for Robotics and Autonomous Systems-Research Article

Improving the Hybrid A* method
for a non-holonomic wheeled robot

Dušan Nemec, Michal Gregor, Emı́lia Bubenı́ková,
Marián Hruboš and Rastislav Pirnı́k

Abstract
This article proposes and completely describes a modification of the Hybrid A* method used for navigation of a non-
holonomic mobile wheeled robot. Our modification allows straightforward multi-criterial adjustment of the algorithm
according to the desired behavior considering not only traveled distance but also time, changing of direction, stopping,
going backwards while avoiding obstacles. The obstacle avoidance algorithm evaluates the danger of collision smoothly
(not-binarily) using danger fields. Such behavior reflects human-like sensing of danger—the closer to the obstacle the
robot is, the higher is the danger of collision. A modified uniform state expansion method has been used to cover the state
space of the robot more uniformly providing the possibility of precise near-target navigation. A greed factor has been
introduced to decrease the computational time and improve the real-time performance of the algorithm.

Keywords
Non-holnomic robot, heuristics, navigation, path-planning, obstacle avoidance

Date received: 24 October 2018; accepted: 4 January 2019

Topic: Mobile Robots and Multi-Robot Systems
Topic Editor: Andrey V Savkin
Associate Editor: Bin He

Introduction

The navigation of the mobile robot is a dynamic control

process during which the control algorithm computes

actions which lead the mobile robot to the target. The posi-

tion of the robot and the target can be defined by three

degrees of freedom (3 DoF)—Cartesian coordinates x, y,

and direction . The non-holonomic robot has non-zero

minimal turning radius Rmin—its 3 DoF are not fully con-

trollable. To connect the current position and the target by a

physically achievable trajectory, the robot cannot travel

straight to the target due to its physical constraints. More

constraints are introduced by obstacles. To take all these

factors into account, it is possible to use a form of a Model

Predictive Controller (MPC).1 This type of the controller

can also be used in many non-robotic applications (see e.g.

Hoy et al.2). To intercept the paths of the moving obstacles

(e.g. humans in the working area), Bayesian representation

of the obstacles has been used.3

One of the great methods of navigation for wheeled

mobile robots is a Vector Field Histogram (VFH) combined

with the A* searching algorithm (abbreviated as VFH*). The

method was originally proposed by Ulrich and Borenstein.4

The concept of the method is described by following steps:

� The current position of the robot is expanded by

admissible actions into new projected positions.

� Each new position is evaluated with respect

to (w.r.t.) the target and the previous position. The

Department of Control and Information Systems, Faculty of Electrical

Engineering, University of Žilina, Žilina, Slovak Republic

Corresponding author:

Marián Hruboš, Department of Control and Information Systems, Faculty

of Electrical Engineering, University of Žilina, Univerzitná 8215/1, 01026

Žilina, Slovak Republic.

Email: marian.hrubos@fel.uniza.sk

International Journal of Advanced
Robotic Systems

January-February 2019: 1–12
ª The Author(s) 2019

DOI: 10.1177/1729881419826857
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0002-3871-1145
https://orcid.org/0000-0002-3871-1145
mailto:marian.hrubos@fel.uniza.sk
https://doi.org/10.1177/1729881419826857
http://journals.sagepub.com/home/arx
http://www.creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881419826857&domain=pdf&date_stamp=2019-02-06

position that is closer to the target and requires less

maneuvering, has a lower cost. If the new position

collides with an obstacle, the position is rejected.

The total cost of the position is a sum of the previ-

ously spent cost and the estimated further cost.

� Positions are recursively explored up to a given

depth or until the target is reached. The A*

searching algorithm is used to achieve optimal

behavior. Searching is optimal and complete if

the estimated cost is always smaller or equal to

the true cost.

� The first action along the found trajectory is physi-

cally applied to the robot and the whole process

repeats. The navigation is local (does not consider

the whole world but only limited surroundings) and

real-time.

The original paper4 proposed the following cost function

for the first expansion

gðr1Þ ¼ �1 �Dð 1; tÞ þ �2 �Dð 1; 0Þ
þ �3 �Dð 1; d;n�1Þ

ð1Þ

and for deeper expansions

gðriÞ ¼ li�1½�01 � maxðDð i; tÞ;Dð e; tÞÞ
þ �02 �Dð i; 0Þ þ �03 �Dð i; i�1Þ�

ð2Þ

where i is the depth of the expansion, i is the direction at

position ri, t is the direction to the target, 0 is the current

direction, d;n�1 is the previously decided direction, e is

the effective direction

 e ¼ atan2ðyi � yi�1; xi � xi�1Þ ð3Þ

The delta operator over directions is defined by formula

Dð a; bÞ ¼ minðj a � bj; j a � b � 2pj; j a � b þ 2pjÞ
ð4Þ

A heuristic estimation of the future cost is

hðriÞ ¼ li½�01 �Dð e; tÞ þ �02 �Dð t; AÞ þ �03 �Dð t; i�1Þ�
ð5Þ

Coefficient �1 increases orientation of the robot to the

target, coefficients �2 and �3 increase the smoothness of

the trajectory. Coefficient l is the discount factor and

improves the overall behavior of the searching algorithm.4

The main drawbacks of the original VFH* algo-

rithm are:

� The target is defined only by direction (as the target

is in infinity) within the method.

� The original cost function does not consider the dis-

tance travelled by the robot.

� Each state used in prediction is expanded only to

different directions, but not to different distances

(see Figure 1). Therefore, the state space is not cov-

ered uniformly.

Other navigational methods are mainly based on grids.

Chung and Huang described a navigation algorithm which

represents the world as a 2-D grid of occupied or non-

occupied cells. The occupancy grid can be obtained simul-

taneously from the readings of the robots’ sensors.5 Many

different sensors can be used to detect the surrounding

obstacles and the robot’s own position (e.g. encoders, ultra-

sonic sensors, electronic compass, etc.).6 Szabo7 described

a method for integration of the sensors’ readings by an

event representation. The final path obtained by A* search-

ing contains only eight possible directions alongside the

grid or diagonally.8 Daniel et al. introduced the Theta*

algorithm that also uses a grid, but applies an any-angle

search algorithm, which allows connection of more distant

grid vertices by a straight line (line of sight). The obtained

trajectory is more smooth and efficient than only

8-directional trajectory.9 Yap et al. proposed the Block A*

method that utilizes a data base of local distances between

blocks. The data base contains more than eight nearest

blocks; therefore, it is more efficient than A* or Theta*.10

To overcome the non-holonomic nature of the planned

grid trajectories (not smooth), the Stanford University team

building robot Junior for DARPA Urban Challenge11

developed algorithm named Hybrid A*. The algorithm uses

continuous states within 4-D state space (two horizontal

coordinates, orientation, and direction of motion—forward

or reverse). The surroundings of the best node were

explored in six defined directions (combinations of for-

ward/backward throttle and left/straight/right steering),

which results in six child states. Each child state is assigned

to one horizontal grid cell. To improve the efficiency of the

expansion, two different heuristic functions have been used

to evaluate each state: the first considering non-holonomic

nature of the robot and the second considering obstacles. It

results in fewer nodes being required to be explored during

navigation. The resultant path is smoothed by Conjugate

Gradient filtering.12

Uniform expansion method

Using the original version of VFH*, the local maneuvering

of the robot to a nearby target defined by all three

Figure 1. Exploration of the nearby robot’s positions.

2 International Journal of Advanced Robotic Systems

coordinates is not working perfectly. One of the reasons is

that the expansion uses constant travel distance (the origi-

nal histogram used in VFH considered only directions). If

the target is closer than the expansion distance, the robot

will oscillate. The Hybrid A* algorithm is a good starting

point in solving the problem.

To cover the state space hx; y; i more uniformly, we

have to discretize the state space into a grid. The grid size

corresponds to the tolerance of the whole navigation algo-

rithm. The position of the robot, when snapped to the grid is

½x; y; � ¼ ½nxGxy ; nyGxy; n G � ð6Þ

where Gxy is a translational grid cell size, G is a rotational

grid cell size, and nx, ny, nz are integers. Introducing the

grid also enables fast searching for already visited positions

within the A* searching algorithm, which avoids oscilla-

tions and loops during the search.

The exploration of the near positions around the cur-

rently best position is done reversely: first, we set the

desired position and then we compute the required action

to achieve that position. We assume that the robot’s steer-

ing control does not need to be continuous (the curvature of

the trajectory may change rapidly). The scenario is illu-

strated in Figure 2, note that direction (angle) i�1 is rep-

resented by a directional arrow.

The length and the direction of the distance vector

PiPi�1 are (in that order)

di ¼ jdij ¼
ffi
ðxi � xi�1Þ2 þ ðyi � yi�1Þ2

q
ð7Þ

 di ¼ atan2ðyi � yi�1; xi � xi�1Þ ð8Þ

The angle di is equal to

di ¼ ð di � i�1Þ � 2p
���� di � i�1

2p

���� ð9Þ

where kxk denotes the nearest integer to a given real num-

ber x. The distance di is:

di ¼ 2Risindi ð10Þ

where Ri is the turning radius. Then we obtain

Ri ¼
di

2sindi

ð11Þ

If we assume that the vehicle has two control variables:

throttle T and steering S, both are within range h � 1; 1i.
Steering is then

Si ¼
Rmin

Ri

¼ 2Rminsindi

di

ð12Þ

where Rmin is the minimal turning radius of the robot. The

length of the trajectory is

Li ¼

di if jdij < e;

di

jdij
sinjdij

if e � jdij �
p
2
;

�di

ðp� jdijÞ
sinðp� jdijÞ

if
p
2
< jdij � ðp� eÞ;

�di if jdij > ðp� eÞ

8>>>>>>>>><
>>>>>>>>>:

ð13Þ

where e is the numerical precision of the data type used in

the implementation (e.g. e ¼ 10�6). A negative length Li

means going backwards.

Within one step of the algorithm, it is reasonable to

explore up to the maximal achievable distance, which cor-

responds to full throttle

Lmax ¼ vmaxDt ð14Þ

where vmax is the maximal speed of the robot and Dt is the

time period of one exploration step. The throttle is then

Ti ¼
Li

Lmax

ð15Þ

The final direction of the robot after the turn is

 i ¼ i�1 þ
Li

Ri

¼ i�1 þ
2Lisindi

di

ð16Þ

If the computed throttle Ti or steering Si is outside the

h � 1; 1i boundary, the point is unreachable. Figure 3

shows reachable positions within distance

Lmax ¼ p
2

Rmin(quarter turn). The horizontal grid cell size

was set to Gxy ¼ Lmax=10.

To speed up the calculation, it is possible to precompute

a set of possible actions ½T ; S� that will later be used for

exploration.

Distance between the robot and the obstacle

Evaluation of collisions requires the distance between the

robot’s projection into given position Pi and the surround-

ing obstacles. In many cases, the robot and the obstacles

have rectangular horizontal footprint. More complex

shapes can be computed as a combination of rectangles.

The problem of finding the distance to the nearest obstacle

is therefore transformed to computing the distance between

two arbitrary rotated rectangles. The distance between rec-

tangles is the minimum of distances between all corners of

one rectangle and sides of the other rectangle. Figure 4

illustrates the whole situation.

Figure 2. Approaching the nearby position in the ith expansion
depth.

Nemec et al. 3

Position of the robot’s origin is shifted from the rectan-

gle’s centrum Ci to the centrum of the non-controlled axle

Pi by dislocation e0. Dimensions of the robot are a0 � b0,

dimensions of the kth obstacle are ak � bk . The position of

the robot’s geometrical centrum is

Ci ¼ Pi þ e0 � ½cos i sin i�T ð17Þ

Positions of the obstacle’s corners are

Mk;n ¼ Ck þ
1

2

cos k �sin k

sin k cos k

� �
�

+ak

+bk

� �
ð18Þ

where k is the orientation (angle of rotation) of the obsta-

cle and n ¼ 1; 2; � � � 4 is the index of the corner. The

positions of the obstacle’s corners in robot’s local coordi-

nate system hx0; y0i are

M0k;n ¼
x0k;n

y0k;n

" #
¼

cos i sin i

�sin i cos i

� �
� ðMk;n � PiÞ ð19Þ

The distances between the obstacle’s corner and the

robot are

dk;n ¼ minðjx0k;n � e0j � a0; jy0k;nj � b0Þ ð20Þ

Using similar approach, we obtain positions of the

robot’s corners Ni;n

Ni;n ¼ Ci þ
1

2

cos i �sin i

sin i cos i

� �
�

+ai

+bi

� �
ð21Þ

The positions of the robot’s corners w.r.t. the obstacle

are

N0i;n ¼
x0i;n

y0i;n

" #
¼

cos k sin k

�sin k cos k

� �
� ðNi;n � CkÞ ð22Þ

The distances di;n between the robot’s corners and the

obstacle are

di;n ¼ minðjx0i;nj � a0; jy0i;nj � b0Þ ð23Þ

The distance between the ith robot’s projection and the

kth obstacle is the minimum of all eight distances

ci;k ¼ minðdk;1; dk;2; dk;3; dk;4; di;1; di;2; di;3; di;4Þ ð24Þ

Clearance ci is the minimum of ci;k across all obstacles

k.

If the obstacle or robot is significantly larger than the

grid cell, the proposed method provides significant

speedup of the clearance calculation compared to widely

used computation of clearance using distances between

occupied cells. It also allows more precise maneuvering,

since each object may occupy its border cells only par-

tially and the robot and the obstacle may occupy the same

cell safely without collision. If the true horizontal foot-

print of the robot is not rectangular, we use minimal area

bounding rectangle.

The reliability and safety of the proposed method

depends on the way how the position of the obstacle

is obtained. The obstacle may be detected by the

robots’ local sensors, or, in case of multiple robots,

the information may be provided by communication

among them. Then, the most critical factor is the safety

of the communication, which has to be evaluated

separately.13

The cost of single exploration step

To find the optimal trajectory, the A* method expands a

non-opened node with the smallest (best) total cost during

each iteration. The total cost f i is a sum of the cost gi spent

by reaching the ith node and the estimated future cost hi

that has to be spent to reach the target. The spent cost gi

increases with distance, changing of the direction, changing

of the speed, or going backwards.

The cost of distance. The cost of distance is proportional to

the length of the trajectory

gLi ¼ KL � jLij ½KL� ¼ m�1 ð25Þ

where KL is the (constant) cost per meter.

Figure 4. Minimal distance between the robot and the obstacle.

Figure 3. Reachable positions from the current position within
one exploration step.

4 International Journal of Advanced Robotic Systems

The cost of changing the direction. If it is required to maintain

a smooth trajectory, the cost of changing the heading may

be introduced. The cost is proportional to the arc angle

gSi ¼ KS � j i � i�1j ¼ KS �
���� 2Lisindi

di

���� ½KS � ¼ rad�1

ð26Þ

where KS is the (constant) cost per radian.

The cost of stopping the robot. To avoid too many reversal

points (point where the vehicle has to stop and change the

polarity of throttle), we introduce the cost of stopping

gTi ¼ KT � negðT i�1 � T iÞ ½KT � ¼ 1 ð27Þ

where Ti�1 is the previous throttle, KT is a fixed cost per

one reversal point and negðxÞ is the following function

negðxÞ ¼
�

1 if x < 0

0 if x � 0
ð28Þ

The cost of going backwards. For certain mobile robots, it is

not convenient to go backwards (e.g. due to worse maneu-

vering abilities). The cost of going backwards is

gbi ¼ �Kb � negðLiÞ � Li ½Kb� ¼ m�1 ð29Þ

where Kb is the (constant) cost per one meter of going

backwards.

The cost of danger. The most crucial part of the navigation is

avoiding collisions with obstacles. Chen and Zhang14 pro-

posed a method for estimation of the distance between

moving non-holonomic robots. Since the estimation of the

position is not absolutely precise, collision detection should

not be binary (the real position of the robot could collide

with an obstacle while the estimated position does not col-

lide). Therefore, we have introduced a danger field, which

is derived from the potential field navigation method. The

danger field defines a dimensionless danger of collision as

a function of the robot’s position ½x; y; �. The function is

as follows

Di ¼
c1 � c0

maxðci � c0; eÞ

� �k
ð30Þ

where ci is a clearance (minimal distance) between the

robot projected to position Pi and the surrounding obsta-

cles, c0 is a safety border in meters around each obstacle, c1

is a normalization constant which corresponds to the dis-

tance at which the danger is equal to 1. Coefficient k is the

steepness of the danger function (we use k ¼ 2) and e is a

very small positive number (prevents division by zero). If

any obstacle moves, the danger field function also changes

due to the changes of clearance.

The cost of danger is then

gDi ¼ KD � Di ½KD� ¼ 1 ð31Þ

where KD is the weight (dimensionless constant) of the

danger. If the KD is higher, the robot is “more afraid” of

collision.

The cost of time. The same trajectory can be achieved by a

smaller number of large steps (higher speed) or by a larger

number of small steps (small speed). It is desirable to select

the faster trajectory, so we have introduced the cost of time.

Each time step has the cost proportional to parameter Kt

gti ¼ KtDt ½Kt� ¼ s�1 ð32Þ

The overall estimated spent cost is then given by the

sum of all partial costs and the cost gi�1 spent for reaching

the position Pi�1

gi ¼ gi�1 þ gLi þ gSi þ gTi þ gbi þ gDi þ gti ð33Þ

Estimation of future cost

In this chapter, we will solve the problem of the minimal

distance which has to be run by a non-holonomic wheeled

robot to move from one position to another. The space of all

possible trajectories is too large to search and contains

discontinuities; therefore, it is necessary to choose a certain

pattern of the trajectory.

Possible trajectories

We have chosen the trajectory pattern shown in Figure 5

which consists of an initial arc PX, then followed by a

straight line XY, and finished by another arc YB. To keep

the trajectory length minimal, the radius of the initial and

the final arc turns is Rmin. Such trajectory has been proved

by Dubins to be the shortest.15 These trajectories are com-

monly referred to as Dubins paths. Due to the motion plan-

ning purposes, also reversing should be considered. By

modifying the Dubins principle, Reeds and Shepp16 intro-

duced a more complex method using at most five segments

of arcs and/or straight lines. This article proposes the usage

of a three-segment curve but also considers reversing.

First, we define process variables (we omit the index i of

the position Pi and of other variables):

� P ¼ ½xP; yP� the evaluated horizontal position,

� P the evaluated direction,

� B ¼ ½xB; yB� the target horizontal position,

Figure 5. Trajectory pattern, forward trajectory.

Nemec et al. 5

� B the target direction,

� R1 the radial vector of the initial turn (perpendicular

to the P),

� R3 the radial vector of the final turn (perpendicular

to the target B),

� d the distance vector between the centrums of the

turns,

� d the direction of vector D,

� L1 the length of the initial arc PX,

� L2 the length of the straight line XY,

� L3 the length of the final arc YB,

� a1 the initial arc angle,

� a3 the final arc angle,

� s1 the polarity of the initial arc (1 ¼ counterclock-

wise, �1 ¼ clockwise),

� s3 the polarity of the final arc (1 ¼ counterclock-

wise, �1 ¼ clockwise).

According to Figure 5, the centrum of the initial arc is

C1 ¼ Pþ s1R1 ¼ Pþ s1Rmin½�sin P; cos P� ð34Þ

analogically, the centrum of the final turn is

C3 ¼ Bþ s3Rmin½�sin B; cos B� ð35Þ

The distance vector between the centrum of the turns

is then

d ¼ C3 � C1 ¼ ½dx; dy� ð36Þ

and its direction is

 d ¼ atan2ðdy; dxÞ ð37Þ

In the following sections, we will compute all possible

trajectories matching the given trajectory pattern.

The same polarity of turns. First, we will discuss the case

when both turns have the same polarity

s1 ¼ s3 ð38Þ

The arc angles are then (according to Figure 5)

a1þ ¼ s1ð d � PÞ ð39Þ

a3þ ¼ s3ð B � dÞ ð40Þ

Positive sign in indices denotes that the straight segment of

the trajectory is traveled forwardly. Polarities s�1 and s3 were

introduced, because we want to avoid negative angles. To keep

the arc angles within the interval ½0; 2pÞ, we remove the period

ak ak � 2p
ak

2p

j k
ð41Þ

where bxc denotes the nearest smaller integer to a given

number x. A similar relation is valid for all used

angles. Positions X and Y can be reached not just by

turning by angles a1þ and a3þ, respectively, but also

by complementary angles ð2p� a1þÞ and ð2p� a3þÞ in

reverse manner (displayed by the dashed line).

There is also a possibility of travelling the straight line

reversely (see Figure 6).

The arc angles in the reverse case are

a1� ¼ s1ð d þ p� PÞ ð42Þ

a3� ¼ s3ð B � d � pÞ ð43Þ

Operation (41) has to be applied to both angles (42) and

(43) to keep them within the interval ½0; 2pÞ. The length of

the straight element is

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

2 þ dy
2

q
ð44Þ

To denote all possible trajectories in a compact way, we

will denote each trajectory as a vector ½L1; L2; L3�. The

negative sign will mean that the robot should travel back-

wards. Using this notation, the possible trajectories for the

case of the same polarity of turns are

½Rmina1þ; d; Rmina3þ�
½�Rminð2p� a1þÞ; d; Rmina3þ�

½Rmina1þ; d; � Rminð2p� a3þÞ�
½�Rminð2p� a1þÞ; d; � Rminð2p� a3þÞ�

½Rmina1�; � d; Rmina3��
½�Rminð2p� a1�Þ; � d; Rmina3��

½Rmina1�; � d; � Rminð2p� a3�Þ�
½�Rminð2p� a1�Þ; � d; � Rminð2p� a3�Þ�

ð45Þ

The opposite polarity of turns. The case when initial and final

turns have opposite polarities is shown in Figure 7, the

reverse variant is in Figure 8.

The arc angles are

b1þ ¼ s1ð D � PÞ þ d ð46Þ

b3þ ¼ s3ð B � DÞ þ d ð47Þ

where the angle d (according to the figure) is

d ¼ asin
Rmin

d=2

� 	
¼ asin

2Rmin

d

� 	
ð48Þ

The complementary arc angles (dashed arcs) are com-

puted in the same way as in the previous case. From equa-

tion (48), it is clear that the trajectory exists only if

Figure 6. The same polarity of turns, reverse trajectory.

6 International Journal of Advanced Robotic Systems

Rmin <
d

2
ð49Þ

The length of the straight section of the trajectory is

s ¼
ffi
dx

2 þ dy
2 � 4Rmin

2

q
ð50Þ

Like in the case when both circles have the same

polarity, there is also the possibility to travel reversely (see

Figure 8).

The corresponding arc angles are

b1� ¼ s1ð D þ p� PÞ � d ð51Þ

b3� ¼ s3ð B � d � pÞ � d ð52Þ

After removing the period from all arc angles using

equation (41), we obtain another set of possible trajectories

(valid for the case of opposite arc polarities)

½Rminb1þ; s; Rminb3þ�
½�Rminð2p� b1þÞ; s; Rminb3þ�

½Rminb1þ; s; � Rminð2p� b3þÞ�
½�Rminð2p� b1þÞ; s; � Rminð2p� b3þÞ�

½Rminb1�; � s; Rminb3��
½�Rminð2p� b1�Þ; � s; Rminb3��

½Rminb1�; � s; � Rminð2p� b3�Þ�
½�Rminð2p� b1�Þ; � s; � Rminð2p� b3�Þ�

ð53Þ

Computing the minimal cost of travelling to the target

There are 4 possible combinations of arc polarities

½s1; s3� 2 f½�1; � 1�; ½�1; 1�; ½1; � 1�; ½1; 1�g ð54Þ

For each combination, we obtain eight possible trajec-

tories (using equation (45) for the same polarities and

equation (53) for the opposite polarities). The full set

contains 4 � 8 ¼ 32 possible trajectories matching the

defined pattern. Each trajectory has its cost, which reflects

the requirements of the application. Generally, the cost

increases with the distance, changing of the heading, stop-

ping the robot, or going backwards. Note that we do not

evaluate danger (since it must be evaluated at each point

of the trajectory). The formulas for predicted future costs

are similar to the formulas for the spent cost (equations

(25) to (33))

hLi ¼ KLðjL1ij þ jL2ij þ jL3ijÞ ð55Þ

hSi ¼ KS

ðjL1ij þ jL3ijÞ
Rmin

ð56Þ

hTi ¼ KT ½negðTi � L1iÞ þ negðL1i � L2iÞ þ negðL2i � L3iÞ�
ð57Þ

hbi ¼ Kb½negðL1iÞ � L1i þ negðL2iÞ � L2i þ negðL3iÞ � L3i�
ð58Þ

hti ¼ Kt

ðjL1ij þ jL2ij þ jL3ijÞ
vmax

ð59Þ

where T i is the throttle which was used to reach position

Pi (corresponds to the forward speed of the robot). The

cost of time is computed as if the speed was maximal

during the whole trajectory (minimal time). The overall

estimated future cost is then given by the sum of all

costs

hi ¼ hdi þ hSi þ hTi þ hbi þ hti ð60Þ

The estimated future cost is computed for each of the 32

possible trajectories and the best trajectory is selected.

The greed factor

If the original A* searching algorithm is used, the total cost

of any predicted position Pi is

f i ¼ gi þ hi ð61Þ

The navigation algorithm finds the optimal trajectory

but it examines too many nodes which results in poor

real-time performance. To speed up the calculation and

searching, we have introduced the greed factor g. It sacri-

fices a small portion of the optimal (minimal cost) to

decrease the number of nodes required to be expanded

during search. The modified total cost function replaces

equation (61)

f i ¼ ð1� gÞgi þ hi ð62Þ

When the greed factor is equal to 1, the searching

does not consider the spent cost gi that results in greedy

search.

Figure 7. Opposite direction of turns, forward trajectory.

Figure 8. Opposite direction of turns, reverse trajectory.

Nemec et al. 7

Each predicted state of the robot will be represented by

the structure Node:

structure Node

. [x, y,] -- position

. [T, S] -- action

. parent -- previous node

. g -- spent cost

. h -- estimated future cost

. f -- total cost
end

The cost spent from the starting state into predicted

state is computed using function spent_cost shown in

Algorithm 1: The estimated cost from predicted state

into next state is computed by the function future_cost

described in Algorithm 2:

Algorithm 1. function spent_cost (node, obstacles)

Algorithm 2. function future_cost (node, target)

8 International Journal of Advanced Robotic Systems

Exploration of the child states is accomplished by the

function expand shown in Algorithm 3:

Finally, the function navigate implements A* searching

with greed factor (see Algorithm 4):

Experimental results

The proposed system has many adjustable parameters. To

obtain results, that are comparable across experiments, we

have used simulation in the simulated world (see Figure 9).

The parameters of the robot were as follows: vmax ¼ 100

pixels s�1, Rmin ¼ 50 pixels, the tolerance of reaching the

target (also the grid cell size): 10 pixels/5	. The resolution

of the visualization was set to 640 � 480 pixels. The simu-

lation was implemented in the OpenCV framework using

the Cþþ programming language. The algorithm was eval-

uated on a standard PC with double-core Intel Pentium

G870 3.10 GHz.

Algorithm 3. function expand(node, target, obstacles)

Algorithm 4. function navigate (from, target, obstacles, T0, S0)

Figure 9. The simulated world and the optimal trajectory found
(300,260 nodes has been explored).

Nemec et al. 9

The world contains 12 static obstacles which makes it

difficult for the robot to choose the optimal trajectory

(many trajectories have the same cost).

We have evaluated the cost of the found trajectory, the

computation time, and the count of explored nodes as a

function of the greed factor. All the experiments were

conducted with the same pseudorandom set of 1000 targets

and 20 different settings of the greed factor (20,000 experi-

ments). The cost constants which describe the properties

of the optimal trajectory were set to the following val-

ues: the prediction step Dt ¼ 480 ms, the cost of dis-

tance KL ¼ 1=pixel, the cost of steering

KS ¼ 20 rad�1, the cost of stopping KT ¼ 100, the cost

of going backwards Kb ¼ 0:3, the cost of danger

KD ¼ 200, the cost of time Kt ¼ 1 s�1. The parameters

of the danger function were as follows: the safety border

c0 ¼ 5 pixels, the unit distance c1 ¼ 15 pixels, the expo-

nent k ¼ 2 (Figure 10 shows a map of danger around the

obstacles and the robot itself).

Figure 11. A suboptimal path computed using a greed factor
g ¼ 0.4 (only 49,240 nodes has been explored).

Figure 10. Map of danger.

Figure 12. Average cost of the trajectory versus greed factor.

Figure 13. Average count of explored nodes versus greed factor.

Figure 14. Average computation time versus greed factor.

Figure 15. Probability of finding the trajectory within timeout
(1 s) versus greed factor.

10 International Journal of Advanced Robotic Systems

To limit the simulation time, each experiment was lim-

ited to 1 s of computational time. If the algorithm did not

find the solution within the given time limit, it was consid-

ered as unsuccessful. Such targets were removed from the

set of targets. The remaining experiments were averaged

for the same setting of the greed factor across all targets.

To demonstrate the importance of the uniform expan-

sion method, we compare its performance with the state

expansion in six directions only, which was proposed by

the original Hybrid A* method.

As predicted, a higher greed factor allows the method

to find the trajectory faster but the obtained trajectory

is slightly suboptimal (compare Figures 9 and 11).

Figure 12 shows the relation between the average cost per

one target and the greed factor. With the greed factor

from the range of 0 to 0.8, the cost of the trajectory is

increasing only slightly (the greed factor g ¼ 0:8
caused an average increase of the cost by 35%). Further

increase of the greed factor causes rapid increase of the

cost (highly suboptimal behavior).

Figure 13 shows the average count of nodes which had to

be explored to find the solution. With the greed factor from 0

to 0.3, the average count of nodes decreases almost linearly,

and for a greed factor above 0.6, it is almost constant.

Computational time is closely related to the count

of explored nodes, therefore the relation in Figure 14 is

similar to the one in Figure 13. A higher greed factor means

lower computational time. For a greed factor above 0.5, the

average computational time was below 100 ms.

Since we require the algorithm to operate in real-time, the

computation time was limited to 1 s. Figure 15 shows the

probability of finding the trajectory within the given time

limit. Without the greed factor, solutions for only 20% of the

targets were found on time. For a greed factor above 0.5, more

than 70% of the solutions were found on time. Note that using

only six directions for expansion significantly increases the

count of explored nodes, thus finding the solution times out in

many cases. Figure 14 shows average of successful searches,

therefore, it does not reflect poor probability of finding the

solution in case of the six-directional expansion.

The algorithm has been evaluated in real world using

e-puck robot (e-puck is a small mobile robot developed by

GCtronic).17,18 The testing environment with the e-puck

robot inside can be seen in Figure 16. The environment has

been modeled also in the control program (see Figure 17).

The robot accomplished to pass the proposed trajectory

while its position has been estimated using onboard

odometers.

Conclusion

Our proposed method improves the evaluation method of the

Hybrid A* algorithm. First, we have introduced a uniform state

expansion method which improves searching speed and

decreases count of nodes needed to be explored. Then, we have

modified and simplified the heuristic method used to estimate

the future cost required to reach a given target. The navigation

algorithm considers not only the length of the trajectory but

also reversing, going backwards, changing the direction, the

danger of collision, and the time of travel. Each feature is

penalized by a separate parameter which allows simple adjust-

ment of the behavior of the algorithm according to the require-

ments of any application. The evaluation of danger is not

binary as used in many implementations of Hybrid A* (e.g.

studies by Kurzer1,19), but smooth, which reflects the limited

precision of the robot’s localization system.

To speed up the real-time computations, we have used

the greed factor which allows us to set the right balance

between the required computational power and the cost of

the projected trajectory. Our experiments show that a greed

factor around 0.5 decreases the cost of the obtained trajec-

tory only by 16% but decreases the computational time 5

times, which greatly improves the real-time performance of

the algorithm.

Figure 16. Testing environment with e-puck robot.

Figure 17. Designed trajectory.

Nemec et al. 11

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work has been supported by the Educational Grant Agency of the

Slovak Republic KEGA, within the projects 014ŽU-4/2018 and

016ŽU-4/2018.

ORCID iD

Marián Hruboš https://orcid.org/0000-0002-3871-1145

References

1. Kurzer K. Hybrid A* Path Planner for the KTH Research

Concept Vehicle, 2015. https://github.com/karlkurzer/path_

planner (accessed 29 May 2018). GitHub.

2. Hoy M, Matvev A, and Savkin A. Algorithms for collision-

free navigation of mobile robots in complex cluttered envir-

onments: a survey. Robotica 2015; 33(3): 463–497.

3. Hrbček J and Šimák V. Implementation of multi-dimensional

model predictive control for critical process with stochastic

behavior. In: Zheng T (ed) Advanced model predictive con-

trol. Rijeka, Croatia: IntechOpen, 2011, p. 19.

4. Ulrich I and Borenstein J. VFH*: local obstacle avoidance

with look-ahead verification. In: Proceedings 2000 ICRA.

Millennium conference. IEEE International conference on

robotics and automation. Symposia Proceedings, 24–28 April

2000, San Francisco, CA, USA, pp. 2505–2511. San Francisco,

CA, USA: IEEE.

5. Chung SY and Huang HP. Predictive navigation by under-

standing human motion patterns. Int J Adv Robot Syst 2011;

8(1): 13.

6. Gomez C, Hernandez AC, Crespo J, et al. A topological

navigation system for indoor environments based on percep-

tion events. Int J Adv Robot Syst 2017; 14(1): 12.

7. Szabo R. Topological navigation of simulated robots using

occupancy grid. Int J Adv Robot Syst 2004; 1(4): 6.

8. Choset H, Lynch K, Hutchinson S, et al. Principles of robot

motion: theory, algorithms, and implementations. Cambridge

Center, Cambridge, MA: MIT Press, 2005.

9. Daniel K, Nash A, Koenig S, et al. Theta*: any-angle path

planning on grids. J Artif Int Res 2010; 39: 533–579.

10. Yap P, Burch N, Holte R, et al. Block A*: database-driven

search with applications in any-angle path-planning. In:

AAAI’11 proceedings of the twenty-fifth AAAI conference on

artificial intelligence, 07–11 August 2011, San Francisco, Cali-

fornia. pp. 120–125. San Francisco, California: AAAI Press.

11. Buehler M, Iagnemma K, and Singh S (eds). Junior: the

Stanford entry in the urban challenge. In: The 2005 DARPA

grand challenge: the great robot race. Germany: Springer-

Verlag Berlin Heidelberg, 2006, p. 31. DOI: 10.1002/rob.

20258.

12. Dolgov D, Thrun S, Montemerlo M, et al. Path planning for

autonomous vehicles in unknown semi-structured environ-

ments. Int J Robot Res 2010; 29(5): 485–501.

13. Franeková M and Rástočný K. Safety evaluation of fail-safe

fieldbus in safety related control system. J Elect Eng 2011;

61(6): 350–356.

14. Chen W and Zhang T. An indoor mobile robot navigation

technique using odometry and electronic compass. Int J Adv

Robot Syst 2017; 14(3): 15.

15. Dubins LE. On curves of minimal length with a constraint on

average curvature, and with prescribed initial and terminal

positions and tangents. Am J Math 1957; 79(3): 497–516.

16. Reeds JA and Shepp LA. Optimal paths for a car that goes both

forwards and backwards. Pacific J Math 1990; 145(2): 367–393.

17. Bernabeu EJ, Valera A, and Gomez-Moreno J. Distance com-

putation between non-holonomic motions with constant

accelerations. Int J Adv Robot Syst 2013; 10(9): 15.

18. Nolfi S and Mirolli M (eds) Evolution of communication and

language in embodied agents. New York: Springer, 2009, p. 4.

19. Kurzer K. Path planning in unstructured environments: a

real-time Hybrid A* implementation for fast and determinis-

tic path generation for the KTH research concept vehicle

[thesis]. School of Industrial Engineering and Management

(ITM), 2016, p. 63. http://www.diva-portal.org/smash/record.

jsf?pid¼diva2%3A1057261&dswid¼-1770 (accessed 27

May 2018).

12 International Journal of Advanced Robotic Systems

https://orcid.org/0000-0002-3871-1145
https://orcid.org/0000-0002-3871-1145
https://orcid.org/0000-0002-3871-1145
https://github.com/karlkurzer/path_planner
https://github.com/karlkurzer/path_planner
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1057261&dswid=-1770
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1057261&dswid=-1770
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1057261&dswid=-1770
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1057261&dswid=-1770
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1057261&dswid=-1770

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

