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Abstract. In this paper, we construct isospectral Hamiltonians without shape invariant potentials for a harmonic
oscillator Wigner function on a real line. In this case, we actually remove the ground state of the second Hamiltonian,
which forms a special case, m = 0, of an exceptional Laguerre differential equation with solutions {L−2

n }∞n=2 as
eigenfunctions form a complete orthogonal set in the Hilbert space.
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1. Introduction

The Sturm–Liouville equation is given as

p(x)y′′
n + q(x)y′

n + r(x)yn = λn yn, (1)

where p(x), q(x) and r(x) are polynomials of order 2, 1
and 0, respectively. It is well known in the mathematical
literature that the only possible solutions to the Sturm–
Liouville equation are Hermite, Laguerre and Jacobi
polynomials. This famous theorem is known as Bochner
theorem [1]. It should be noted that y0 is constant in
all these systems. In the last decade, Gómez-Ullate
et al [2,3] have constructed a new orthogonal polyno-
mial system (OPS), which starts with yn (n = 1, 2, . . .)

by a suitable modification to its weight function and
forms a complete set. The new OPS was constructed
by relaxing the constraint on the Sturm–Liouville prob-
lem, where r(x) is not constant. It is possible to extend
all three classical OPSs to exceptional Laguerre poly-
nomials, exceptional Hermite and exceptional Jacobi
polynomials. Initially, Laguerre and Jacobi polynomials
were shown to allow such extensions known as excep-
tional polynomials. Later on, the extensions to Her-
mite polynomials are found to be exceptional Hermite
polynomials [4].

Recently, the classification of the exceptional orthog-
onal polynomials is given in terms of the codimension
of the exceptional family [5]. The codimension of the

exceptional family is defined as the total number of
missing degrees in the polynomial sequence. These
missing degrees in the polynomials put constraints
on the Sturm–Liouville equation and in turn on the
Bochner theorem. They have also shown that every sys-
tem of exceptional orthogonal polynomials is related
to the respective classical orthogonal polynomials by a
sequence of Darboux transformations.

Quesne was the first to construct the Darboux trans-
formations of codimension two in [6,7]. Odake and
Sasaki have constructed an exceptional OPS for arbi-
trary codimension [8,9]. The role of Darboux trans-
formations was further studied and clarified in [10,
11]. Exceptional orthogonal families were generated
through higher-order Darboux transformations [11–13].
Exceptional polynomials are developed using prepoten-
tial approach [14]. Exceptional polynomials are also
extended to the PT symmetry Hamiltonians [15] and
the well-known examples are PT-symmetric Scarf II
potentials [16–18]. An exceptional polynomial for a
symmetry group preserving the form of the Rayleigh–
Schrödinger equation is constructed [19]. Alternative
derivation of infinitely many exceptional Wilson and
Askey–Wilson polynomials is presented in [20]. These
exceptional polynomial systems appear as solutions
to the quantum mechanical problems in exactly solv-
able models [21,22] or in superintegrable systems
[23].
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In this paper, we construct the Wigner function for
harmonic potential on a real line, given in terms of
the exceptional Laguerre polynomials. We give a brief
description of the exceptional Laguerre polynomials
below.

One can construct the exceptional X1-Laguerre poly-
nomials Lk

n(x), k > 0, using the Gram–Schmidt proce-
dure from the sequence [2,3]

v1 = x + k + 1, vi = (x + k)i , i ≥ 2 (2)

and using the weight function

Ŵk(x) = xke−x

(x + k)2 (3)

as defined in the interval x ∈ (0, ∞) and the scalar
product

( f, g)k =
∫ ∞

0
dxŴk(x) f (x)g(x). (4)

The weight function of the normal Laguerre polyno-
mial Wk(x) = xke−x is multiplied by suitable factors
by which one obtains a new Ŵk(x) such that one can
construct a new OPS excluding the zero degree polyno-
mial. The exceptional X1-Laguerre differential equation
is

Tk(y) = λy, (5)

where λ = n − 1 with n = 1, 2, . . . and

Tk(y) = −xy′′ +
(
x − k

x + k

)
[(k + x + 1)y′ − y]. (6)

In general, one can construct Xm-Laguerre polynomi-
als and Xm-Laguerre differential equation. For more
details, we refer the reader to a recent review on excep-
tional Laguerre polynomials [24].

It is well known that the Wigner function for harmonic
potential on a real line is given in terms of Laguerre
polynomials. It has been shown in [25] that whenever a
potential admits Laguerre/Jacobi as a solution, then one
can construct an isospectral Hamiltonian with excep-
tional Laguerre/Jacobi as a solution and the potential
is determined uniquely. In our problem, it turns out that
m = 0 in the exceptional Laguerre differential equation.

2. Wigner function

The Wigner function is proposed as an alternative to
the Schrödinger picture to solve quantum mechanical
problems. The Wigner function maps the quantum wave
function to a probability distribution in the phase space,
where the state of the system is described by the position
x and momentum p in terms of the classical Hamilto-
nian. The main aim of the Wigner function is to find

quantum corrections to classical statistical mechanics
where Boltzmann factors contain energies which in turn
are expressed as functions of position and momentum.
It is well known that there is no Heisenberg uncertainty
relation in classical mechanics and due to this, there are
constraints on the probability distribution and Wigner
function. Therefore, for a given quantum state, the prob-
ability distribution in the phase space can be negative;
hence, these distributions are called quasiprobability
distributions [26].

In physics, the Wigner function has found many appli-
cations in the fields of statistical mechanics, quantum
optics and classical optics, for details refer to [26]. In
particular, in quantum optics, the Wigner function is
used for the study of classical and non-classical states
[26]. The Wigner function is also used to study the
phase-space representation of quantum mechanics using
Glauber coherent states [27]. The Wigner functions for
the number states ρ̂ = |n〉〈n| in Fock basis are Laguerre
polynomials [28].

The time-dependent Wigner function is given by

W (x, p, t) = 1

π h̄

∫ ∞

−∞
ψ∗(x + y)ψ(x − y) e2ipy/h̄ dy,

(7)

where ψ is the quantum wave function and the Wigner
function in terms of the density matrix ρ̂(t) is given by

W (x, p, t) = 1

2π h̄

∫ ∞

−∞
dy eipy/h̄

×
〈
x + 1

2
y|ρ̂(t)|x − 1

2
y

〉
(8)

and the Wigner function in terms of the Moyal function
is given by

W|E ′′〉〈E ′|(x, p, t)

= 1

2π h̄

∫ ∞

−∞
dy eipy/h̄

〈
x + 1

2
y|E ′′

〉 〈
E ′|x − 1

2
y

〉
.

(9)

The Moyal function in terms of the quantum Liouville
equation is given as

[
p2

2M
+U − h̄2

8M

∂2

∂x2

+
∞∑
l=1

(−1)l(h̄/2)2l

2l!
∂2lU

∂x2l

∂2l

∂p2l

]
W|E〉 = EW|E〉

(10)
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and[
p

M

∂

∂x
− ∂U

∂x

∂

∂p

−
∞∑
l=1

(−1)l(h̄/2)2l

(2l + 1)!
∂2l+1U

∂x2l+1

∂2l+1

∂p2l+1

]
W|E〉 = 0,

(11)

where W|E〉 = W|E〉〈E | is the diagonal Moyal function,
for details refer to [26]. The harmonic oscillator poten-
tial is given by

U (x) = 1

2
Mωx2. (12)

It has been shown in [26] that the solution to the Wigner
function for the harmonic potential on a real line is the
Laguerre polynomials. We have shown in [25] that any
potential has solutions as the Laguerre polynomials and
by adding an extra potential one can construct excep-
tional polynomials as its solution. Hence, by adding
an extra term to the harmonic oscillator potential, one
obtains

U (x) = 1

2
Mωx2 + 1

2
V (x). (13)

The Moyal Wigner equations in terms of the new poten-
tial will become[

p2

2M
+ 1

2
Mωx2+ 1

2
V (x)− h̄2

8M

∂2

∂x2 − h̄2Mω2

8

∂2

∂p2

+1

2

∞∑
l=1

(−1)l(h̄/2)2l

2l!
∂2l V (x)

∂x2l

∂2l

∂p2l

]
W|E〉

= EW|E〉 (14)

and[
p

M

∂

∂x
− Mω2x

∂

∂p
− 1

2

∂V

∂x

∂

∂p

−1

2

∞∑
l=1

(−1)l(h̄/2)2l

(2l + 1)!
∂2l+1V

∂x2l+1

∂2l+1

∂p2l+1

]
W|E〉

= 0. (15)

One can write the second equation as[
p

M

∂

∂x
− Mω2x

∂

∂p
− 1

2

∂

∂x

∂

∂p

(
V (x)

+
∞∑
l=1

(−1)l(h̄/2)2l

(2l)!
∂2l V

∂x2l

∂2l

∂p2l

)]
W|E〉 = 0. (16)

By making the following change to variable κ =
(Mω/h̄) and introducing the dimensionless position

ξ = κx, momentum ζ = p/h̄κ) and energy η =
E/(h̄ω), the above equations take the form[

∂2

∂ζ 2 + ∂2

∂ξ2

]
W|E〉−

[
2η − (ζ 2+ξ2)+ 1

2
V (ξ)

]
W|E〉

−c1
1

2

[ ∞∑
l=1

(−1)l(h̄/2)2l

(2l)!
∂2l V

∂ξ2l

∂2l

∂ζ 2l

]
W|E〉 = 0

(17)

and[
ζ

∂

∂ξ
− ξ

∂

∂ζ

]
W|E〉 − c2

1

2

∂

∂ξ

∂

∂ζ

[
V (ξ)

+c1

∞∑
l=1

(−1)l(h̄/2)2l

(2l)!
∂2l V

∂ξ2l

∂2l

∂ζ 2l

]
W|E〉 = 0. (18)

We make another change of variable

y(ξ, ζ ) = ξ2 + ζ 2 (19)

which will give

∂W|E〉
∂ξ

= 2ξ
∂W|E〉

∂y
,

∂W|E〉
∂ζ

= 2ζ
∂W|E〉

∂y
, (20)

and then

∂2W|E〉
∂ξ2 = 4ξ2 ∂2W|E〉

∂y2 + 2
∂W|E〉

∂y
,

∂2W|E〉
∂ζ 2 = 4ζ 2 ∂2W|E〉

∂y2 + 2
∂W|E〉

∂y
. (21)

With the help of these equations, the first term in eq.
(18) is zero

[2ζ ξ − 2ξζ ]
∂W|E〉

∂y
= 0 (22)

and substituting it into the second equation, one obtains

V (y) + c1D1

∞∑
l=1

(−1)l(h̄/2)2l

(2l)!
∂2l V

∂y2l

∂2l

∂y2l = A. (23)

Substituting eq. (23) into eq. (17), we obtain
[
y

∂2

∂y2 + ∂

∂y
+ 2η − y + V (y) − A

]
W|E〉 = cW|E〉.

(24)

We make an ansatz

W|E〉 = L(y) e−y, (25)

then

y
∂2

∂y2 L(y) + (1 − 2y)
∂

∂y
L(y)

+ ((2η + V (y)) − 1 − A)L(y) = 0. (26)
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If V (y) = 0 and A = 0, then the above differential
equation is the Laguerre differential equation. Without
loss of generality, we choose the constant A = −1. Then
the differential equation reduces to

y
∂2

∂y2 L(y) + (1 − y)
∂

∂y
L(y) + (λ + Ve(y))L(y) = 0.

(27)

We apply the following theorem:

Theorem 1. Add an extra term Ve(x) to the Laguerre/
Jacobi differential equation and demand the solutions
to be g(x) = f (x)/(x + m) and g(x) = f (x)/(x − b)
for the new differential equations, where f (x) are the
Laguerre and Jacobi polynomials, respectively. Then
g(x) satisfies the X1-exceptional differential equation
for the Laguerre and Jacobi, respectively, Ve(x,m) can
be determined uniquely.

Proof. Let g(x) = Lm
λ (x) satisfy the Laguerre differ-

ential equation

x
d2

dx2 g(x) + (m + 1 − x)
d

dx
g(x) + λg(x) = 0, (28)

where λ is an integer. By adding an extra term Ve(x,m)

to the Laguerre differential equation:

x
d2

dx2 h(x) + (m + 1 − x)
d

dx
h(x)

+(λ + Ve(x,m))h(x) = 0, (29)

and setting h(x) = f (x)/(x + m) and λ = n−1, where
f (x) satisfies the X1 exceptional Laguerre differential
equation

−x f ′′(x) +
(
x − m

x + m

) [
(m + x + 1) f ′(x) − f (x)

]

= (n − 1) f (x), (30)

one determines Ve(x,m) to be

Ve(x,m) = 2m

(x + m)2 − 1

(x + m)
. (31)

If g(x) = f (x)/(x + m) j with f (x) satisfying the X j
exceptional differential equation

−x f ′′(x) +
(
x − m

x + m

) [(
(m + x + 1)

−2x( j − 1)

x − m

)
f ′(x) − j f (x)

]
= (n − j) f (x),

(32)

one obtains Ve(x,m) to be

Ve(x,m) = j ( j + 1)m

(x + m)2 − j

(x + m)
(33)

for the general case. 	

It should be noted that our construction of exceptional

polynomials is at the level of differential equations.
Hence, the superpotential is constructed using the oper-
ator Ô [2,3,7], which connects the ordinary Laguerre
polynomials to the exceptional Laguerre polynomials

ÔLk−1
ν (x) = Lk

ν+1(x), (34)

where Ô = (x + k)((d/dx) − 1) − 1.
We repeat the demonstration of the supersymmetry

for the three-dimensional (3D) oscillator [25]. The wave
function for the exceptional 3D oscillator is given by

|ψ+
ν 〉 = ξ l/2e−(ξ/2)

(ξ + ((2l + 1)/2))
Lk
n(ξ) (35)

and the wave function for the 3D oscillator is given by

|ψ−
ν 〉 = ξ l/2e−(ξ/2)Lk

n(ξ). (36)

Substituting the exceptional Laguerre polynomial solu-
tion and Laguerre polynomial solution into eq. (34)
determines the superpotential W(x):

W(x) = − l

2ξ
− 1

2
− 2

2ξ + k
, (37)

Here we take k = 2l + 1. We recover the results of
Quesne [7]. In supersymmetry, the superpotential W(x)
is defined in terms of the intertwining operators Â and
Â† as

Â = d

dx
+ W(x), Â† = − d

dx
+ W(x). (38)

The superpotential, W(x), can be obtained by replacing
d/dx in Â in terms of Ô:

Â = d

dx
− l

2ξ
− 1

2
− 2

2ξ + k
. (39)

By taking ξ = 1
2 x

2 one obtains

W(x) = − l

x
− x

2
− 2x

x2 + k
, (40)

then one obtains

W2(x) + W ′(x) = V+
l (x) = 1

2
x2 + l(l + 1)

x2 − E

and

W2(x) − W ′(x) = V−(x) = V+
l−1(x) + Ve(x).

In our case of the harmonic oscillator Wigner function
m = 0, then the potential will be

Ve(x,m) = −1

x
(41)
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and differential eq. (27) will become

−x f ′′(x)+[(x+1) f ′(x)− f (x)] = (n−1) f (x). (42)

The solution to the differential eq. (42) is given in
terms of the Laguerre polynomials {L−2

n }∞n=2. It has
been proved in [29] that the differential equation of the
form (42) is an exceptional differential equation for the
special case m = 0 and their solutions are given in
terms of the Laguerre polynomials {L−2

n }∞n=2 as eigen-
functions form a complete orthogonal set in the Hilbert
space.

3. Conclusion

In this paper, we construct isospectral Hamiltonians
without shape invariant potentials for the harmonic
oscillator Wigner function. In this case, we actually
removed the ground state. We have also shown that
the solutions of the second Hamiltonian are also the
Laguerre polynomials and the Laguerre differential
equation forms a special case, m = 0, of the excep-
tional Laguerre differential equation. We expect this to
have application in the field of quantum optics.
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