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Distributed and collaborative monocular
simultaneous localization and mapping
for multi-robot systems in large-
scale environments

Hui Zhang, Xieyuanli Chen , Huimin Lu and Junhao Xiao

Abstract
In this article, we propose a distributed and collaborative monocular simultaneous localization and mapping system
for the multi-robot system in large-scale environments, where monocular vision is the only exteroceptive sensor.
Each robot estimates its pose and reconstructs the environment simultaneously using the same monocular simul-
taneous localization and mapping algorithm. Meanwhile, they share the results of their incremental maps by
streaming keyframes through the robot operating system messages and the wireless network. Subsequently, each
robot in the group can obtain the global map with high efficiency. To build the collaborative simultaneous locali-
zation and mapping architecture, two novel approaches are proposed. One is a robust relocalization method based
on active loop closure, and the other is a vision-based multi-robot relative pose estimating and map merging
method. The former is used to solve the problem of tracking failures when robots carry out long-term monocular
simultaneous localization and mapping in large-scale environments, while the latter uses the appearance-based place
recognition method to determine multi-robot relative poses and build the large-scale global map by merging each
robot’s local map. Both KITTI data set and our own data set acquired by a handheld camera are used to evaluate
the proposed system. Experimental results show that the proposed distributed multi-robot collaborative monocular
simultaneous localization and mapping system can be used in both indoor small-scale and outdoor large-scale
environments.
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Introduction

As the monocular camera is much cheaper, physically

smaller and lower powered than other vision systems, for

example, stereo and RGB-D cameras, it has been widely

applied in the fields of computer vision and robotics. The

state-of-the-art monocular simultaneous localization and

mapping (SLAM) algorithms have achieved remarkable

performance in rich featured, static indoor environments.

However, when it moves to multi-robot platforms carrying
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out long-term SLAM in large-scale environments, there are

still many challenges to be addressed. The first of all is the

tracking failure problem. Since it is difficult to calculate the

accurate depth of observed features using only one camera,

most existing monocular SLAM systems are less robust

than those based on stereo or RGB-D cameras.

When tracking failure happens, the most effective solu-

tion is to add an image-to-map relocalization module,

because a large amount of measurements in the map can

be used to mitigate the side effect of outliers and higher

accuracy can be achieved in pose estimation.1 However,

most of the image-to-map approaches are resource-

consuming and normally designed for small workplace or

indoor scenarios.1–3 They are obviously inapplicable for

mobile robots to perform long-term tasks. Inspired by

Strasdat et al.4 and Mur-Artal et al.,5 our system only per-

forms feature matching in a local map when the tracking

fails, so the computational complexity is up-bounded.

Thus, real-time relocalization can be realized in relative

larger environments.

After the relocalization, the drift of SLAM may

increase, since during the tracking failure period, the robot

is not able to collect enough information to accurately

localize itself and build the map. It is well known that

loop closure can effectively eliminate the accumulated

error. However, most current research only focus on how

to detect and close a loop passively but not to control

robots to actively create loop closures to correct the

SLAM drift. In this article, we propose an active loop

closure approach, which uses the information of the

robot/camera pose obtained from the relocalization to

navigate robots finding a loop actively and, therefore,

eliminate the accumulated drift.

Another problem of robots carrying out large-scale

SLAM is that the computing capacities of a single robot

are normally limited. Naturally, we think of using a multi-

robot system to solve this problem. A multi-robot system

allows parallel execution of tasks, and, in addition, is more

efficient and robust compared against a single-robot sys-

tem. Considering a scenario of employing a multi-robot

team to map a large unknown environment, the task can

be divided among all the team members who can collabora-

tively build a global map to reduce the overall execution

time. In a group of robots, each robot should not only rely

on its own information but also the information provided by

the others. This is not an easy task since the robots in

general do not have any prior information about each oth-

er’s location. To allow the robots working cooperatively,

relative pose estimation and map merging are two funda-

mental issues.

To calculate the relative pose of the robots, relative

localization methods impose the least limitation on both

the motion of the robots and the prior information.6 In

addition, this method can realize the merging of local maps

without large overlaps. In this article, a cooperative

appearance-based place recognition method is employed

to enable the robots to identify similar scenes in their visual

perception and then compute their relative poses. The sim-

ilar scenes are identified by performing image-to-image

place matching, which is usually employed for loop closure

in single-robot SLAM.

The main contributions of our work can be concluded

as follows:

� An image-to-map relocalization method based on

local map is proposed, which limits the calculation

burden and realizes the unvisited place relocaliza-

tion in large-scale scenes.

� A robust relocalization system based on active loop

closure is proposed, where the pose information

obtained from the latest relocalization is utilized to

navigate the robot to find a loop actively and in turn

eliminate the drift caused by the tracking failure.

� A distributed multi-robot collaborative SLAM based

on the robust monocular SLAM is proposed, by

which a team of robots can cooperatively map the

large-scale environment with high efficiency.

� A relative pose calculation and map merging method

is proposed, by which the multi-robot collaborative

SLAM can be realized without any prior knowledge

and large map overlaps.

Related work

Monocular SLAM

Monocular SLAM was initially solved by filtering,7 and

now it has been developed into two main branches:

feature-based approaches and direct approaches.

Feature-based approaches. These methods include two steps:

features are first extracted from the images, and then the

robot pose is calculated and the environment is mapped

based on these features. Early versions of these approaches

are based on filters,7,8 using all the measurements to update

the probability distributions of features and poses, which

are less accurate and can only be used in small-scale

scenes. In order to better realize modern applications,

feature-based monocular SLAM methods are now mostly

based on keyframes and bundle adjustment (e.g. ORB-

SLAM5), which can have high accuracy and low computa-

tion cost.

Direct approaches. Direct methods can achieve high accu-

racy and robustness by optimizing the geometry directly on

the image intensities.9–11 However, either some of the

direct methods mainly focus on visual localization (e.g.

DSO11), or some others’ maps are too dense to be used for

outdoor large-scale multi-robot collaborative mapping sys-

tem (e.g. LSD-SLAM9 and DTAM10). Considering the lim-

ited bandwidth of robots’ communication, we, therefore,

choose the feature-based ORB-SLAM as the
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implementation basis, which has a lightweight map repre-

sentation and, meanwhile, can also achieve high accuracy

and robustness after adding the proposed relocalization

module.

Relocalization

The relocalization problem can be traced back to global

self-localization in given maps and was first realized by

Dellaert et al.12 With robots gradually applied to real

scenes, the relocalization became a tracking recovery prob-

lem, and three types of approaches were proposed13: map-

to-map, image-to-image and image-to-map.

Map-to-map. It was first implemented by Clemente et al.14

They found matches between landmarks in two submaps,

which are very complex and time-consuming. Also,

because the sparse map built by monocular SLAM does

not always provide enough mappoints, this method is less

accurate and unreliable for monocular SLAM.

Image-to-image. With the monocular SLAM developed from

the initial filtering approaches to keyframe-based

approaches, the image-to-image method has been explored

rapidly. It was first realized by Reitmayr and Drummond15

and Klein and Murray.16 Then, Sivic and Zisserman17 pro-

posed bag of words (BoWs) using visual words for place

recognition, which was widely used in the relocalization

and loop closure for its high accuracy. For example, Eade

and Drummond18 used BoW with SIFT19 to determine the

current submap. Cummins and Newman20 used it with

SURF21 to achieve high robustness to perceptual aliasing.

Mur-Artal and Tardós22 used it with ORB23 and built the

well-known ORB-SLAM.5 Although it has become popular

to use image-to-image method in the relocalization, this

method is only effective when robots run in the previously

visited places where keyframes exist. This assumption does

not hold for mobile robots when running in large-scale

environments exploring unvisited places.

Image-to-map. This problem can be solved by image-to-map

approaches which were first proposed by Pupilli and Cal-

way.24 They built a short-distance tracking recovery system

by exploring multiple hypotheses with a particle filter. To

realize a global image-to-map approach, Se et al.25 used

SIFT features in two-dimensional (2D) scenario. Williams

et al. proposed a three-dimensional (3D) relocalization

based on a filtering approach and feature recognition.1

They published a survey comparing different types of relo-

calization and loop closing approaches.13 According to the

survey, to deal with the relocalization in monocular SLAM,

image-to-map approaches perform best for higher accu-

racy, speed and robustness. Afterwards, Straub et al.3 used

locality sensitive hashing (LSH)26 to speed up the nearest

neighbour searching. Feng et al.2 improved this work using

online learning process to construct the hash key, which

made the relocalization more robust.

Active loop closure. Loop closure is another important prob-

lem in SLAM, which can correct the accumulated error of

the map and the robot trajectory. Traditional loop closure

methods are passive and normally performed by human or

on the pre-planned trajectories. However, robots’ motions

can strongly affect the SLAM performance, which has

become a hot topic named active SLAM coined by Feder

et al.27 Active SLAM can be described as controlling the

robot’s motion to minimize the uncertainty of its map and

localization. Our system introduces this idea into the relo-

calization, which aims to correct the drift and finally

achieve higher accuracy and robustness.

Multi-robot collaborative monocular SLAM

There are many solutions for the single-robot SLAM, but

when it moves to multiple robots platforms, another layer of

challenges will be introduced. Especially for the monocular

SLAM, the estimation of relative poses and the map merging

problems are very challenging, as the monocular vision can-

not obtain the accurate depth information and the scales of

robots’ maps are usually different from each other.

Relative poses estimation and map merging. One of the most

important steps to realize multi-robot collaborative SLAM

based on monocular vision is to calculate the relative poses

of the robots and then consolidate their local maps into a

large-scale global map. According to Rone and Ben-Tzvi,28

the proposed approaches can be classified into the follow-

ing four categories.

Known initial poses. In this case, the initial poses of the

robots are known, and thus the relative poses of the robots

can be determined at any time. The assumption of having

knowledge of the initial poses limits the application of

multi-robot SLAM.

Rendezvous. In the rendezvous method,29 robots meet at

a point. At the meeting point, the relative poses can be

calculated through the line-of-sight measurements. Once

the relative poses are known, maps can be merged. How-

ever, this approach will bring another challenge, which is

the coordination for the meeting.

Relative localization. A more advanced form of the rendez-

vous is the relative localization. In this method, one robot

localizes other robots in its own map30; thus, without rendez-

vous, the relative poses of the robots can be determined.31

Based on overlaps. In this approach, the overlaps between

the maps are used to calculate the relative transformation

between the maps and the poses.32 The challenge of this

approach is finding the overlaps; however, this method

does not need rendezvous and robots can be out of team-

mates’ maps at any time.

Multi-robot collaborative monocular SLAM. Recently, most of

multi-robot SLAM algorithms use combinations of various

Zhang et al. 3



types of sensors such as laser range finder and IMU.33–36

Very little work based on monocular vision has been done,

since it may cause many problems such as the lack of depth,

different scales and scale drift. It first appeared as the

multi-robot visual localization problem proposed by Fox

et al.37 and Martinelli et al.38 or multi-robot mapping prob-

lem proposed by Vidal-Calleja et al.39 They proved that the

overall localization accuracy and mapping efficiency of

cooperative multi-robot SLAM are much higher than that

of single-robot SLAM. Later, Kaess and Dellaert40 realized

a system of multi-camera structure from motion (SfM),

while Sola et al.41 realized a multi-camera SLAM system,

both of which are the rudimentary form of multi-robot

monocular SLAM. Doitsidis et al.42 presented a two-step

centralized algorithm for surveillance coverage for multi-

ple micro aerial vehicles (MAVs), but the initial poses of

the robots are assumed to be known. Forster et al.43 first

proposed a real-time collaborative monocular SLAM algo-

rithm called collaborative SfM (CSfM). In CSfM, each

MAV generates a six degree of freedom (DOF) estimation

of its own pose using monocular visual odometry. Features

of selected keyframes are sent to a centralized ground sta-

tion where a global map is generated when the overlap

between the maps is detected. Based on CSfM, Chebrolu

et al.44 presented a similar framework for multi-robot

SLAM, but each robot is capable of performing complete

SLAM individually using full image information instead of

using only features. In addition, a feedback mechanism is

used to correct the local estimates continuously. Similar to

them, Schmuck45 recently proposed a multiple MAVs col-

laborative monocular SLAM, which employs MAVs as

agents to independently explore the environment running

limited-memory SLAM onboard.

The proposed robust relocalization method is based on

our previous work,46,47 and we give a more exhaustive

explanation in this article. Our work is similar to these

works,1–3 for using the image-to-map relocalization

method. However, their works are based on pre-trained

classifiers or hash methods, which need extra time to train

the classifiers and can only be used in small workplaces or

indoor scenarios. Differently, based on a local map and

ORB features, our work can be used in outdoor large-

scale environments with higher accuracy and efficiency.

The local map we used is similar to that of Strasdat

et al.4 and ORB-SLAM,5 while our method can be applied

in unvisited environments. Stachniss et al.48 and Rahimi

et al.49 also use active loop closure to reduce the drift.

Different from them, we here propose to combine the relo-

calization and active loop closure, which can simultane-

ously raise the accuracy of the relocalization result and

solve the well-known ‘when to use’ problem in active

SLAM. The combination system can overcome the short-

comings of both parts and achieve a good performance as

an integrated system.

Based on the proposed robust monocular SLAM, we

realize a novel multi-robot collaborative SLAM system.

The proposed multi-robot SLAM is different from these

works,37–39,42 because we do not need the initial relative

poses of the robots and not rely on the maps to determine

the relative poses. We utilize a place recognition method

based on image-to-image feature matching to identify

similar scenes and then calculate the relative poses.

Furthermore, different to the MAV-based server-agent

like centralized architectures,43–45 our system is fully dis-

tributed, which has higher reliability and better overall per-

formance when fulfilling an outdoor large-scale SLAM

task.

Robust monocular SLAM

The overview of the robust monocular SLAM

The proposed monocular SLAM uses an active loop

closure-based relocalization system to make itself more

robust, which can detect and recover from tracking failures

automatically even in previously unvisited areas where no

keyframe exists. The proposed system is based on the state-

of-the-art real-time monocular SLAM, ORB-SLAM,5

which has a lightweight representation of the environmen-

tal map based on sparse feature points. This makes it pos-

sible for multiple robots to share their maps via wireless

communication. Furthermore, after adding the proposed

relocalization module, the improved monocular SLAM can

also be very robust and accurate when used in outdoor

environments. Figure 1 demonstrates the structure of the

proposed robust monocular SLAM, which is composed of

five parts: tracking, loop closing, local mapping, relocali-

zation and active loop closure. The first three modules form

the paradigm of the current appearance-based monocular

SLAM. Following the original ORB-SLAM, the tracking

thread localizes the camera in every frame and decides

when to insert a new keyframe; the local mapping thread

processes new keyframes and maintains the local map; and

the loop closing thread searches loops and corrects the

accumulated drift. The details of the monocular SLAM

implementation are introduced in ‘Experiments’ section.

When the tracking fails, the proposed robust monocular

SLAM will employ the relocalization module on each

incoming frame, which is explained in detail in ‘Relocali-

zation module’ section. To solve the drift problem caused

by tracking failures, the proposed system can actively cre-

ate loop closure to reduce the drift through path planning

and robot movements, which is explained in ‘Active loop

closure module’ section.

Relocalization module

In our relocalization module, the image-to-map method is

used based on local maps. Similar to most image-to-map

approaches, we estimate a six-dimensional pose from 2D

image to 3D maps, but the difference is that our method

only uses the simplest exhaustive nearest neighbour

4 International Journal of Advanced Robotic Systems



searching method to establish the associations between the

descriptors extracted from the current frame and the map-

points stored in the local map, while most other methods

are classifier-based, which are time-consuming and some-

times inaccurate.

Our method benefits from the ORB features and the

local map, as ORB features allow us to directly compute

the hamming distance between the respective binary

descriptors, very efficiently using low-level hardware oper-

ations; and the local map helps us reduce the searching

space in an efficient way. Once the tracking fails, the pro-

posed relocalization method will try to recover the tracking

process by finding the robot/camera pose in every incom-

ing frame which is summarized in algorithm 1. The steps

of the proposed relocalization method are described

as follows.

Feature extracting. The first step is to extract ORB features

in the current frame (line 3 of algorithm 1). Like ORB-

SLAM, we use the image pyramid of eight scale levels with

a scale factor of 1.2 and detect FAST keypoints in each

level to make the features invariant to the scale in a certain

degree. Furthermore, since ORB feature23 is made up of

oriented FAST corner and rotated BRIEF descriptor, it can

be extracted very fast and has a certain level of rotational

invariance. Therefore, we extract ORB features in every

incoming frame and utilize them in every module of our

SLAM system, which makes it possible to be used in large-

scale environments.

Descriptor matching. The second step is to find the matches

between the extracted features and mappoints stored in the

local map (line 4 of algorithm 1). Mappoints form the 3D

reconstruction of the environment. They are defined by two

coordinates Xi ¼ ðui; viÞ and correspond to textured planar

patches in the world whose position has been triangulated

from multiple views and refined by bundle adjustment. In

this work, the mappoints actually correspond to the ORB

features in several keyframes. Instead of using complex

classifier-based methods, we employ the simplest exhaus-

tive nearest neighbour searching built in FLANN50 to

establish the associations based on the local map, which

is fast and accurate. Once the number of matches exceeds a

certain threshold thN (line 5 of algorithm 1), it then enter

the next step.

Pose estimating. The third step is to estimate the robot/cam-

era pose from the set of 2D to 3D matches by solving a PnP

problem using an RANSAC scheme (line 6 of algorithm 1).

In practice, we use EPnP51 to randomly select four non-

coplanar points to calculate the camera pose and then use

RANSAC to iteratively verify the estimated camera pose.

Figure 1. The overview of the proposed robust relocalization system based on active loop closure. It includes five main parts: tracking,
local mapping, loop closing, relocalization and active loop closure.

Algorithm 1. Relocalization algorithm.

Zhang et al. 5



Once the number of the inliers exceeds a certain threshold,

we accept this pose as the new camera pose and recover the

SLAM process. Specifically, let the reference points, that

is, the n points whose 3D coordinates are known in the

world coordinate system, be pi, i ¼ 0; :::; n and the selected

four points be cj, j ¼ 1; :::; 4. Let A be the matrix of camera

intrinsic parameters and ui¼1;:::;n be the 2D projections of pi.

Then, we have

wi

ui

1

� �
¼ Apci ¼ A

X4

j¼1

aijc
c
j ; 8i ð1Þ

where wi is the vector of scalar projective parameters, and

we express each reference point as a weighted sum of the

selected points. aij is the vector of homogeneous bary-

centric coordinates, and
P4

j¼1 aij ¼ 1. We now expand this

expression by considering the specific 3D coordinate

½xc
j ; y

c
j ; z

c
j �

?

of each cj, the 2D coordinate ½ui; vi� of ui, the

focal length coefficients ½fu; fv� and the principal point

½uc; vc� that appear in the A matrix. Equation (1) then

becomes

wi

ui

vi

1

2
64

3
75 ¼

fu 0 uc

0 fv vc

0 0 1

2
64

3
75X4

j¼1

aij

xcj

ycj

zcj

2
64

3
75; 8i ð2Þ

The unknown parameters of this linear system are the 12

control point coordinates and the n projective parameters.

The last row of equation (2) implies that wi ¼
P4

j¼1 aijz
c
j .

Two linear equations for each reference point can be

acquired by substituting this expression in the first

two rows

X4

j¼1

aijfuxcj þ aijðuc � uiÞzcj ¼ 0 ð3Þ

X4

j¼1

aijfvycj þ aijðvc � viÞzcj ¼ 0 ð4Þ

Let x ¼ ½cc

?

1 ; cc

?

2 ; cc

?

3 ; cc

?

4 �

?

, which is a 12-dimensional

vector made up of the four selected points’ coordinates.

Arranging the coefficients of equations (3) and (4), we can

generate a 2n� 12 matrix M, and for each reference

point, we have a linear system

Mx¼ 0 ð5Þ

The solution, therefore, belongs to the null space or

kernel of M and can be expressed as

x ¼
XN

i¼1

bivi ð6Þ

where the set vi; i ¼ 1; :::;N ; is made up of the columns of

the right-singular vectors of M corresponding to the N null

singular values of M. They can be found efficiently as the

null eigenvectors of matrix M

?

M, which is of small con-

stant ð12� 12Þ size. Given that the solution can be

expressed as a linear combination of the null eigenvectors,

we can solve this problem by computing the appropriate

values for bi and then get four selected points’ coordi-

nates. The EPnP method uses the efficient Gauss–Newton

method to optimize bi, which can efficiently reduce the

calculation error. After that, it becomes a question of hav-

ing the coordinates of a set of points in two coordinate

systems and finding the pose transformation of these two

coordinate systems.

Let the transformation be

pi
w ¼ Rpi

c þ T; i ¼ 1; :::; n ð7Þ

To calculate the rotation matrix R and translation vector

t, we first centralize every point to the barycentre

pi
wo ¼ pi

w �
PN

i¼0 p
i
w

N
; pi

co ¼ pi
c �

PN
i¼0 p

i
c

N
ð8Þ

Then, we calculate the homography matrix H and solve

this problem by singular value decomposition

H ¼
XN

i¼0

pi
cop

i

?

wo ¼ ULV

?

ð9Þ

The rotation matrix R and translation vector t can be

calculated by

R ¼ VU

?

; t ¼ pi
c � Rpi

w ð10Þ

Pose optimizing. After estimating a raw camera pose, we use

the Levenberg–Marquardt-based bundle adjustment

method to refine the pose (line 7 of algorithm 1). In our

image-to-map relocalization module, the actual optimiza-

tion objects are the reprojection errors, and we use the

famous optimization library g2o52 to implement this

method. Taking two views as an example, also let the n

points whose 3D coordinates are known in the world coor-

dinate system, be pi, i ¼ 0; :::; n and A be the matrix of

camera intrinsic parameters. Let ui¼1;:::;n be the 2D projec-

tions of pi and x ¼ ½p;f�

?

2 R6 an element of seð3Þ be the

camera model, where p 2 R3 represents the translation and

f 2 R3; soð3Þ represents the rotation. We define x^ as

x^ ¼
f^ p

0

?

0

" #
2 R4�4 ð11Þ

where f^ 2 R3�3 is the skew-symmetric matrix of f.

Then, we have

wiui ¼ A expðx^Þpi;8i ð12Þ

where wi is the scalar projective parameters. In linear opti-

mization, people usually calculate the camera pose first and

then use the mappoints to refine the pose. However, in the

actual implementation of the nonlinear optimization, we set
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both of them the optimization variables and optimize them

at the same time. Since there are noises in the measure-

ments, we can calculate the reprojection errors as

ei ¼ ui �
1

wi

A expðx^Þpi; 8i ð13Þ

Thus, we sum the reprojection errors and build a least

square problem

x� ¼ arg min
x

k ui �
1

wi

A expðx^Þpi k2
2 ð14Þ

By minimizing the sum of reprojection errors, we can

find a more accurate camera pose x� to recover the tracking

process.

Active loop closure module

As discussed above, fast and long-distance tracking recov-

ery can be achieved using the proposed relocalization mod-

ule. However, because of the information missing during

the tracking failure, it is inevitable to have a larger drift

after the relocalization. We, therefore, employ an active

loop closure module to reduce the drift after the relocaliza-

tion and acquire more accurate maps, which is summarized

in algorithm 2. Once relocalizing successfully, the system

will enable the active loop closure module which includes

three steps.

Direction computing. We first calculate the robots movement

direction (line 3 of algorithm 2). After the relocalization,

we get an optimized pose and a camera pose* stored in the

last keyframe before the tracking failure. Their absolute

transformations in SE(3) are

pose : Tw ¼
R t

0 1

� �
; pose� : T�w ¼

R� t�

0 1

� �
ð15Þ

where for simplicity, we assume the scale factor to be 1,

which does not affect the calculation of the direction. We

then compute the relative transformation DT between the

current pose and the last pose*

DT ¼
DR Dt

0 1

� �
¼ T��1

w � Tw ð16Þ

where DR and Dt are, respectively, the differences of the

robots rotation and translation between the current pose and

the last pose*.

In this article, we only consider the case that robots

conduct the relocalization when travelling forwards into

unvisited environments, so the camera’s orientation is

almost constant. We, therefore, only take the translation

into consideration and compute the direction as follows

direction : d ¼ D t ð17Þ

Path planning. The second step is to plan a path using the

computed direction to realize a loop closure (line 5 of algo-

rithm 2). In fact, any path-planning algorithm which can

find a loop between the current pose and the last pose*

based on the calculated direction can be used in our system.

It is worth mentioning that only loop closure can eliminate

the accumulated error and the scale drift. Other path-

planning algorithms cannot deal with this situation even

thought they can find paths and re-collect the missing envi-

ronment information. For example, it is not a best solution

for the robot just moving backwards a few meters to revisit

previously seen areas, because the mappoints and the cam-

era poses stored in each node/keyframe are consistent.

Here, we give a simple example of using the calculated

direction and the tracking failure distance to realize the

active loop closure. Assuming the robot moving forwards

into unvisited environments with a constant speed Vrobot

during the tracking failure time Tfailure, we can compute the

tracking failure distance Dfailure as follows

Dfailure ¼ Vrobot � Tfailure ð18Þ

Taking Dfailure as the radius and the computed direction

as the initial normal vector, we can plan a semicircle path

for the robot to realize loop closure.

Action performing. The third step is to control the robot

moving along the planned path (line 6 of algorithm 2).

The active loop closure module will be performed by

repeating steps 2 and 3 until a loop closure is detected

successfully.

Multi-robot collaborative SLAM

Multi-robot SLAM is motivated by the fact that exploration

and mapping tasks can be done faster and more accurately

by multiple robots than by a single robot. In addition, in a

distributed system, the whole team is more robust since the

failure of one of the robots does not halt the entire mis-

sion.53 Based on the proposed robust monocular SLAM, we

realize a novel distributed multi-robot collaborative SLAM

system, which can employ a team of robots to map a large-

scale unknown environment.

Algorithm 2. Active loop closure algorithm.
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The overview of the multi-robot collaborative SLAM

In this distributed multi-robot collaborative SLAM, we

mainly solve two problems. One is the message format of

real-time multi-robot communication, and another is the

problem of relative poses estimation and map merging. For

the communication issue, we utilize bridges with robot

operating system (ROS) to realize a real-time AP-to-AP

wireless multi-robot communication. We use the ROS mes-

sage to design our own map representation, through which

the robots can incrementally share their maps among the

group. The details of multi-robot communication imple-

mentation are introduced in ‘Experiments’ section. For the

problem of estimating unknown relative poses, we utilize

the same method that is used for loop detection of single-

robot SLAM, which is exactly a kind of place recognition

method. Based on the proposed robust monocular SLAM,

we add another three modules, map processing, relative

pose estimation and map merging, to realize this multi-

robot collaborative SLAM, as shown in Figure 2. Each

robot conducts the same monocular SLAM, meanwhile

sharing their incremental maps with each other via wireless

network and ROS messages. The robots in the team use

map processing thread to maintain the maps received from

other robots. Once a robot creates a new keyframe, it will

traverse these maps to find whether it is in the same places

where other robots have visited. Once the similarity

between the current keyframe and another keyframe stored

in those maps is higher than a certain threshold, it then

confirms they are describing the same place. Subsequently,

the robot will use the relative pose estimation thread with

these two keyframes to calculate the relative pose and

combine the maps together. The map processing module

is described in ‘Map processing module’ section, the

relative pose estimation module is explained in ‘Relative

pose estimation’ section and the multi-robot map merging

module is explained in ‘Map merging’ section.

Map processing module

For simplicity, we assume that there are two robots involved

in this cooperative SLAM task, robotA and robotB (see

Figure 2). When robotA receives a keyframe, called keyfra-

meB, if it is the first keyframe received from robotB, robotA
will create a new map structure mapB and add this keyframe

to the map as the start point. Otherwise, robotA will add a

new node for keyframeB in mapB and update the edges result-

ing from the shared mappoints with other previous key-

frames. Then, we use the same local bundle adjustment,

which has been described in ‘Relocalization module’ sec-

tion, to optimize the current keyframeB, all the keyframes

connected to it in the covisibility graph and all the map

points seen by those keyframes. In order to realize a real-

time and life-long multi-robot collaborative SLAM system,

we must reduce the amount of the maps’ calculation and

storage. Therefore, we will not maintain all the messages

received from other robots. The map processing module will

try to detect the redundant keyframes and mappoints and

delete them. We discard all the keyframes where 90% of the

map points have been seen in at least other three keyframes

in the same or finer scale and discard the mappoints if less

than three keyframes have observed them.

Relative pose estimation

From the perspective of robotA, after it has received key-

frames from other robots and built the map structures, it

will try to match its every incoming keyframe with the

Figure 2. Taking two robots as an example, each robot conducts the same monocular SLAM, in which we add another three new
modules, map processing, relative pose estimation and map merging, to realize a distributed multi-robot collaborative SLAM. SLAM:
simultaneous localization and mapping.
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keyframe databases of all other robots’ maps. The key-

frame matching is done using the place recognition method

which can recognize the same place that has been observed

by other robots. In this work, we use a specific BoW

method, DBoW2,54 which uses the bags of binary words

to realize fast place recognition in image sequences. Algo-

rithm 3 summarizes the proposed method which is con-

ducted to determine the relative poses and merge the maps.

For the first step, we calculate the visual word of the

current keyframeA and try to find the candidates of the

relative pose estimation in other robots’ maps using

DBoW2 (line 2 of algorithm 3). In DBoW2, a vocabulary

tree is built by discretizing the binary descriptor space to

speed up the correspondences for geometrical verification.

We traverse all the keyframes in each map comparing their

visual words to those of keyframeA and select the best

match, which can be described as follows

K�B ¼ arg min
KB2MB

BoWðKA;MBÞ ð19Þ

where BoWðKA;MBÞ means searching the match candi-

dates of keyframeA in mapB.

Wrong place match hypotheses can lead to serious fail-

ures to the multi-robot collaborative SLAM. In practice, we

employ a spatial continuity check to provide a constraint,

which requires several continuous matches to find stronger

matching hypotheses. Empirically, we find that it is suit-

able to confirm a candidate of relative pose estimation after

three continuous matches, which can not only raise the

robustness of the whole SLAM system against the wrong

matches but also not too strict to find a candidate.

Besides the continuous matches check, we also verify

each candidate in the geometry level. We compute the

transformation from the current keyframe camera coordi-

nate system to the loop candidate one. Using this verifica-

tion, we can compute the relative scale factors for each

robot and correct the drift of accumulated error. Since the

monocular SLAM has no absolute scale and the scale fac-

tors in each robot’s SLAM process are different from oth-

ers, we use the geometry verification to uniform the scale

factors, which is the core of the proposed relative pose

estimation algorithm. We compute a similarity transforma-

tion, Sim(3),55 from the current keyframe KA to loop can-

didate KB (line 3 of algorithm 3)

SKA;KB
¼

lKA;KB
RKA;KB

tKA;KB

0 1

� �
ð20Þ

where lKA;KB
2 Rþ is the scale factor, RKA;KB

2 SO(3) is a

rotation matrix and tKA;KB
2 R3 is a translation vector. If it

is successful, we continue to calculate the relative pose;

otherwise, we reject this candidate.

To compute the transformation, we also need to solve a

PnP problem. Different from the method used for the relo-

calization module, in the relative pose estimation module,

we use an image-to-image method with an RANSAC

scheme to calculate the transformation. We first compute

correspondences between ORB features associated with the

mappoints connected to the current keyframe KA and the

candidate KB. Then, we have 3D to 3D correspondences for

each candidate and can directly use the RANSAC scheme

to solve a P3P problem, which is very fast and has a certain

degree of rotational invariance. Once the number of inliers

is beyond a certain threshold (line 4 of algorithm 3), we

stop the RANSAC process and enter the next step.

Map merging

Based on the relative pose estimation, we can then combine

the maps of multiple robots (line 5 of algorithm 3). First, we

convert all keyframes’ poses from SE(3) absolute transfor-

mation Ti;A into a similarity Sim(3), Si;A, maintaining the

rotation and translation and setting the scale to be 1. Then,

we compute the transformation between one keyframe and

the next keyframe, merging the map with the relative pose

SKA;KB
calculated in last section. Next, we use a global

bundle adjustment, to minimize the residual error ri;j

between the keyframe i with its pose Si;A and keyframe j

with its pose Sj;A. The relative transformation between Si;A

and Sj;A is DSi;j. We use it as the constraint, and the opti-

mization process in the tangent space simð3Þ can be repre-

sented as follows

ri;j ¼ ð log Simð3ÞðDSi;j�ÞSj;A � S�1
i;A ÞÞ

^

simð3Þ ð21Þ

where log Simð3Þ : Simð3Þ ! simð3Þ maps from the over-

parameterized representation of the transformation to the tan-

gent space, and ð�Þ

^

simð3Þ : simð3Þ ! R7 is the vee-operator

that maps from the tangent space to the minimal representation

with the same elements as the DOFs of the transformation.56

Initially, all the residuals are zero, except for the map

junction part. We then optimize the poses of keyframes to

distribute this error along the graph. The cost function to

minimize is defined as follows

w2 ¼
X

i;j

r

?

i;jLi;jri;j ð22Þ

Algorithm 3. Relative pose estimation algorithm.
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where Li;j is the inverse covariance of the residual ri;j and is

set to be the identity. We exclude the loop keyframe pose

from the optimization to fix the seven DOFs of the solution.

We also use the Levenberg–Marquardt method implemen-

ted in the graph optimizer g2o to solve this problem (line 6

of algorithm 3).

After poses have been optimized, we need to correct the

3D points associated with them. For each point xj, we select

a source keyframe Ti;A and map the point using the opti-

mized Scor
i;A as follows

xcor
j ¼ ðScor

i;A Þ
�1 � Ti;A � xj ð23Þ

The last step is to convert the corrected similarity trans-

formations Scor
i;A back to 3D rigid body transformations Tcor

i;A .

Map point scale has been corrected in equation (23), so we

just get rid of the scale factor in the similarity and maintain

the rotation as it is not affected by the scale. However, the

translation is computed for the scale factor of the similarity

and we need to rescale it

Scor
i;A ¼

lR t

0 1

� �
! Tcor

i;A ¼
R

t

l

0 1

2
64

3
75 ð24Þ

The robots’ maps can be merged into a global map, so

the multi-robot collaborative SLAM is realized.

Experiments

We test our system using KITTI data set57 and our own data

set acquired by a handheld camera in outdoor large-scale

and indoor small-scale real-world environments where

man-made shakes and interruptions were added. For KITTI

data set, we use a part of its 3D visual odometry/SLAM

data set, which contains six sequences with a total length of

14.6 km and GPS-IMU-derived ground truth. Rectified

images are provided in each sequence with 10 Hz and the

resolution of 1240� 376 pixels. These sequences are

recorded in real-world large-scale driving situations along

urban, residual and countryside roads, with driving speeds

up to 80 km/h. KITTI data set is very challenging because

of its low frame rate, fast driving speed, various scenarios

and outdoor large-scale environments, so we can test the

proposed method comprehensively. Our experiments can

be divided into two categories. One is conducted to test the

robustness of the proposed monocular SLAM, and the other

is to realize a distributed multi-robot collaborative SLAM

based on this proposed robust monocular SLAM. All the

experiments were conducted on laptop computers equipped

with a 2.4 GHz i7 CPU and 4 GB memory. The bridges we

used are LF-P681, which follow the IEEE 802.11 b/g/n/ac

5.8 GHz standard and can realize long-distance commu-

nication up to 8 km. The cameras we used are

Figure 3. The proposed relocalization system dealing with tracking failure caused by image interruption. While conducting SLAM ffi, we
introduced a tracking failure manually by suspending the tracking thread and keeping on moving for 15 s (25 m). After that, we resumed the
tracking thread and the tracking failure happened ffl. The proposed system enables the relocalization module automatically and recovered
the tracking successfully �, where a pose was computed and a keyframe was inserted. However, due to the missing data, the scale drift
became larger (the space between keyframes became smaller) and the accuracy of pose estimation decreased greatly (there was an obvious
deviation between the newly computed camera pose and the previous trajectory) Ð. SLAM: simultaneous localization and mapping.
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ELP-USBFHD01 M, which can provide HD images in

MJPEG at 30 fps.

Robust monocular SLAM

In the real application of monocular SLAM, the localiza-

tion or the robot pose tracking is easy to fail, because not

enough correspondences of the landmarks can be extracted

between the current frame and that stored in keyframes or

maps. This situation is usually caused by the image inter-

ruption, image blur and sudden motion of cameras. In this

section, we conducted several experiments using handheld

cameras and KITTI data set to simulate these situations and

validated whether the proposed robust monocular SLAM

could deal with them or not. We used a handheld camera to

simulate the robot, which is actually more challenging

because of strong shakes and high speeds. The real-time

performance was also tested and compared with other relo-

calization methods.

Monocular SLAM implementation. The state-of-the-art

appearance-based monocular SLAM normally includes

three main threads: tracking, local mapping and loop clos-

ing. The underlying SLAM system used in this article is

based on ORB-SLAM with the following differences:

The tracking. The tracking thread contains five steps:

ORB features extraction, tracking initialization, pose track-

ing, relocalization and new keyframe decision. The resolu-

tion of the image used is 640� 480; 2000 corners for

indoor environments, and 4000 corners for outdoor envir-

onments are extracted. The original relocalization step is a

kind of image-to-image method, which can only be used in

the previously visited places. Therefore, it is replaced with

an image-to-map relocalization module (see details in sec-

tion ‘Relocalization module’), which enables the monocu-

lar SLAM to detect and recover from tracking failures

automatically even in previously unvisited areas where

no keyframe exists.

The local mapping. The local mapping thread also con-

tains five steps, including inserting keyframes, selecting

mappoints, creating new mappoints, local bundle adjust-

ment and selecting local keyframes. After these five steps,

the local mapping thread will maintain a local map, which

in fact consists of two sets of keyframes K1 and K2. The

keyframes in K1 share the same mappoints with the current

frame, while the keyframes in K2 are the neighbours of

those in K1. Different to tracking the whole local map,Figure 4. Drift correction results by active loop closure. (a) The
corresponding Google map of this outdoor environment. (b) The
mapping results of the monocular SLAM after the relocalization,
where the black points represent the fixed mappoints, red points
represent the mappoints which are currently seen by the robot,
blue boxes represent the keyframes and the green line represents
the trajectories of the robot. After the relocalization (b), we can
see an error of the camera’s pose estimation, zoomed in (c),
where there is an obvious deviation between the newly computed

Figure 4. (Continued). camera pose and the previous trajectory.
Then, we compared active loop closure (d) (zoomed in (e)) and
moving backwards a few meters (f) (zoomed in (g)). We can see
that the trajectory of active loop closure shown in (e) is straight
and corrected without any deviation, while in the trajectory of
just moving backwards a few meters shown in (g), the deviation
still exists. SLAM: simultaneous localization and mapping.
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we only employ K1 as the map for our image-to-map relo-

calization module, which can reduce the searching time and

will not affect the accuracy and success rate.

The loop closing. The loop closing module is made up of

four steps, including loop candidate detection, similar

transformation computing, loop fusion and essential map

optimization. Since the proposed active loop closure mod-

ule will try to detect loops within every incoming frame

after the relocalization, it is vital to have a good keyframe

selection policy, which should not ignore any potential

Figure 5. The SLAM results with strong shakes caused by camera’s high-speed motion. While conducting SLAM (a), tracking failure
happened due to the strong shake caused by camera’s high-speed motion (b). Our system can rapidly recover the tracking (c), which
illustrates that our system has strong robustness even in such challenging situations. (d) The corresponding LiDAR map of the office
environment, where the triangle represents the start points, the circle represents the endpoints and the arrows represent the robot’s
moving directions. (e) and (f) The mapping results of the monocular SLAM, where the black points represent the fixed mappoints, red
points represent the mappoints which are currently seen by the robot, blue boxes represent the keyframes and the green line
represents the trajectories of the robot. (e) The result without loop closure. (f) The result with a loop closure. The better performance
shown in (f) verifies again that our system can perform better after integrating active loop closure module. SLAM: simultaneous
localization and mapping.

Figure 6. Successful rates of the relocalization on the KITTI data set. The solid lines represent the results in large-scale environments
with a lot of bends, while the dashed lines represent the results in the environments without many bends.
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match but also not be too open to raise the computation

burden. This policy checks four conditions: (1) more than

20 frames must have passed after the latest relocalization,

(2) at least 50 points are tracked in the current frame,

(3) less than 90% mappoints are tracked in the current

frame in comparison to last keyframe and (4) at least 10

frames have passed from last keyframe insertion; local

mapping has processed the last keyframe; and a signal is

sent to local mapping to finish local bundle adjustment.

To keep the localization accuracy, we use a more strict

policy which requires the tracked points doubled from 50 to

100, since we increase the number of extracted features.

Meanwhile, we raise the similarity rate from 90% to 95% to

keep the same inserting threshold, which in fact makes it

easier to realize the active loop closure.

Dealing with tracking failure caused by image interruption. The

first experiment was conducted in an outdoor campus road.

As illustrated in Figure 3, we introduced a tracking failure

manually by suspending the tracking thread and keeping on

moving for a distance. After that, we resumed the tracking

thread and validated whether the proposed monocular

SLAM could recover the SLAM process or not. What we

want to simulate in this experiment is the tracking failure

caused by the image interruption, which can normally inter-

rupt the SLAM from feature extraction for a while. Com-

bining Figure 3-� and Figure 3-Ð, we can see that the

tracking can be recovered using the proposed system after

a long distance failure (about 25 m with 1.67 m/s walking

speed and 15 s interruption) in previously unvisited envir-

onments where no keyframe exists. After the relocalization,

robots can continue the SLAM process. However, we can

also see that we conducted the SLAM on a straight campus

road (the reference Google map shown in Figure 4(a)), but

there is a huge bias in the trajectory shown in Figure 3-Ð. It

is because even though our algorithm can recover the

SLAM process quickly, the data missing during the

tracking failure is irreversible, which will cause the drift

becoming larger and the accuracy of pose estimation

decreasing greatly.

To solve the accumulated error and scale drift problem,

we proposed an active loop closure method, which has

been described in the ‘Active loop closure module’ sec-

tion. Our system realized the active loop closure using the

pose information computed by the relocalization module,

and the robot can find a loop actively to correct the drift.

We perform the active loop closure module after each

relocalization and stop it when finding a loop closure.

As a comparison, we also performed the experiment of

moving the robot backwards a few meters to revisit miss-

ing areas after the relocalization. Comparing the experi-

mental results of these two methods (shown in Figure 4(d)

and (f)), we can conclude that active loop closure per-

forms much better in correcting the drift than just moving

backwards a few meters.

Dealing with tracking failure caused by image blur. In this

experiment, we moved the camera at a high speed and

shook it greatly to make the tracking fail during the SLAM

process in an indoor office environment to validate that

whether the proposed monocular SLAM is robust to the

tracking failures caused by the image blur. The experimen-

tal results (in Figure 5) show that after combining the relo-

calization module and active loop closure module, the

proposed system works well even in such challenging sit-

uation, while the original ORB-SLAM cannot deal with it.

Dealing with tracking failure caused by camera sudden motion.
In this experiment, we used the image sequence from 00 to

05 from the KITTI data set to test the proposed system. To

simulate the tracking failures caused by sudden motion of

camera, we randomly chose 50 positions in each sequence,

took out image frames close to them and then set the track-

ing failure manually (by setting the flag tracking lost ¼
true). We tested the relocalization performance on each

position by taking out different numbers of frames from 1

to 10. The test results (shown in Figure 6 and Table 1)

illustrate that our system can be employed on high-speed

Table 1. Results on the KITTI data set.

Sequence
Length of

trajectory (km)
Maximal taken out

frames (distance, m)a

KITTI00 3.7 61 (29)
KITTI01 2.6 90 (240)b

KITTI02 5.1 28 (37)
KITTI03 0.4 46 (38)
KITTI04 0.6 31 (46)
KITTI05 2.2 104 (9)c

aThe distance means the length of the trajectory during the tracking fail-
ures computed from ground truth.

bIn sequence 01, the car runs on a highway environment with small
changes, which is not a common situation.

cIn sequence 05, since the car runs very slowly, it moves only 9 m during
the taken out 104 frames.

Table 2. The computation time needed in relocalization process.

Steps

Different methods
(number of features, ms)a

Ours
(2000)

Ours
(4000)

ORB-
SLAM

(1000)5
Williams
(145)1

LSH-
based
(216)3

Feature extractionb 18.2 29.0 14.4 14.0 122.9
Matching 2.1 4.7 6.4 0.3 50.0
Pose estimation 2.1 2.5 14.9 0.7 10.0
Pose optimization 0.8 1.3 / 4.0 4.0
Total 23.2 37.5 35.7 19.0 183.4

LSH: locality sensitive hashing.
aWe quoted the data of other methods from their publications.1,3,5

bThe time consumed by the step of feature extraction includes the time of
feature classification.
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cars in large-scale environments (with the total length of

14.6 km) with longest success distance (up to 46 m) and

high successful rate of the relocalization (higher than 40%).

Real-time performance. We evaluated the real-time perfor-

mance of the proposed system and other systems by com-

paring the computation time needed in each step of the

relocalization process. As shown in Table 2, our system

(23.2 ms) is faster than those in LSH-based method3

(183.4 ms) and ORB-SLAM5 (35.7 ms) and is slightly

slower than that in Williams et al.’s work.1 Furthermore,

considering that 2000 features were extracted in our system

while only 145 features were extracted in Williams et al.’s

work, the real-time performance of our system is quite

good. Apart from feature extraction, our system only needs

5.0 ms (the same as Williams et al.’s work) for the

relocalization, which is the best among all relocalization

methods.

Precision analysis. Following the original ORB-SLAM, we

used the KITTI data set with the relative position error

(putting errors in context of space scales) comparing to the

given ground truth to evaluate the relocalization accuracy

of the proposed system, as shown in Figure 7. We can see

that the errors on the KITTI sequences 00 and 05 are obvi-

ously smaller than those on the sequences 03 and 04,

because there are many loops in the former two sequences.

We are surprised to find that with loop closure, our system

has the same accuracy (within 6%) as the original ORB-

SLAM, even when hundreds of frames were taken out from

the image sequence. It verifies again that by combining

active loop closure, our system can achieve more robust

Figure 7. (a) to (d) The experimental results of our system conducted on the KITTI sequences 00, 03, 04 and 05 when different
numbers of frames from 1 to 10 were taken out, respectively. (e) The comparison of the fraction of their errors (the estimated position
error comparing to the given ground truth) in the context of space scales.
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and accurate relocalization for the monocular visual

SLAM.

Multi-robot collaborative SLAM.

In this section, two data sets were used: indoor office data

set collected by ourselves using handheld cameras and

KITTI data set. We used two ELP-USBFHD01 M mono-

cular cameras to perform SLAM simultaneously in each

half of the office environment. For the KITTI data set,

although it is usually used for single-robot SLAM, con-

cerning the multi-robot mission, we divided the image

sequences into several smaller segments and simulated

the multi-robot collaborative SLAM by performing

SLAM within each segment simultaneously. Map mer-

ging cannot be realized with these segments only using

overlap-based methods.

Multi-robot communication

Sharing data among robots is a key requirement in multi-

robot collaborative SLAM.58 In this work, we use bridges

with ROS to realize a real-time AP-to-AP wireless multi-

robot communication. The bridges have many advantages,

such as small size and strong penetration, which enable

them to achieve long-distance communication and can be

used on mobile robots with limited loading capacity. For

the format of the shared information, there are two main

approaches, sharing raw sensor data59 and processed

data.32 Sharing raw sensor data is more flexible but requires

high bandwidth and reliable communication between

robots as well as more processing power. In contrast, shar-

ing maps uses less bandwidth and there is no need to pro-

cess raw data redundantly. Therefore, we choose to share

maps among the group of robots. Considering that the pro-

posed robust monocular SLAM is based on keyframes, we

use the basic ROS message elements to design a new map

representation, which contains all the information of a key-

frame and the relative mappoints. Each robot in the team

conducts the same monocular SLAM and, at the same time,

shares this kind of message through the wireless network

once they create a new keyframe. The communication of

multiple robots is shown in Figure 8. From the perspective

of robotA, it receives the environment information from

FrameA and other robots’ incremental maps, and mean-

while, sharing its own incremental map through keyframeA.

As a distributed system, all the robots in the proposed col-

laborative SLAM system are conducting the same process

and sharing the same format of map information. There-

fore, every robot can have input topics for all robots in the

network, or just communicate with a subset of the robot

team. It depends on the number of the robots and the trade-

off between the bandwidth and efficiency. We can set the

communication topological relations using the ROS topics

before each mission according to the demand. We only give

an example of realizing the proposed distributed

framework using ROS system. However, it does not rely

on a specific communication mechanism and, of course,

can also be realized on other systems like ROS2.

Realizing multi-robot SLAM in indoor scenarios. In the first

experiment, we used two monocular cameras to simulate

two robots performing collaborative SLAM in the office

environment. The local maps of each robot were shared

through the wireless network using bridges and ROS mes-

sages. Figure 9 shows the perspective of robotA. Figure 9(a)

is the SLAM result of robotA, while Figure 9(b) is the map

received from robotB maintained in the map processing

module before map merging. In order to show the differ-

ence, we used black and red points to represent the map-

points created by robotA itself and used purple points to

represent the mappoints received from other robots.

Once the same place is detected, the relative pose esti-

mation module will determine the relative poses, and the

map merging module will combine these local maps into a

global map, as shown in Figure 10. Figure 10(a) illustrates

the general map of the indoor office built by a 2D LiDAR,

and Figure 10(b) shows the SLAM result after merging the

maps of these two robots. In Figure 10(a), the blue line and

the red line represent the approximate trajectories of robotA
and robotB, respectively. The triangles represent the start

points, and the circles represent the endpoints. The overlaps

between these two maps are very small, and we can see that

the two robots never see each other directly. In other words,

there is no direct line-of-sight observations. These experi-

mental results show that our multi-robot SLAM system can

be realized in the indoor office environment using two

handheld monocular cameras with little overlaps.

Realizing multi-robot SLAM in outdoor large-scale scenarios. In

this experiment, we used KITTI data set to realize a large-

scale multi-robot collaborative SLAM. Although the data

Figure 8. The wireless communication between multiple robots.
From the perspective of robotA, it is receiving the environment
information from FrameA and other robots’ incremental maps,
meanwhile, sharing its own incremental map through keyframeA. As
a distributed system, all the robots in the proposed collaborative
SLAM system are conducting the same process and sharing the
same format of map information, which enable the robot not only
communicate with another robot but also with a subset of the
robot group. SLAM: simultaneous localization and mapping.
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set was collected by one vehicle, we split the sequences

into several segments and used two computers to simulate

two robots performing collaborative SLAM at the same

time, or simultaneously conducted SLAM on different

sequences and eventually obtained a global map. The

images in the KITTI data set were converted into ROS bag

files at 10 fps and played in real time.

Experiment on KITTI sequence 00. Taking two robots as an

example, Figure 11(a) and (b) shows the SLAM results

from the perspective of robotA before map merging.

Figure 11(a) shows the local map built by robotA itself and

Figure 11(b) shows the local map received from robotB.

Figure 11(c) shows the corresponding Google map of this

experimental environment. Approximately, robotA travels

750 m (shown in blue) and robotB travels more than 1 km

(shown in red). Figure 11(d) shows the final global map

Figure 10. The experimental result of the multi-robot colla-
borative SLAM conducted in the indoor environment. (a) The
general map of the indoor office in 2D. (b) The SLAM result after
merging the maps of these two robots. In (a), the blue and red
lines represent the trajectories of robotA and robotB, respectively.
The triangles represent the start points, and the circles represent
the endpoints. SLAM: simultaneous localization and mapping.

Figure 9. The perspective of robotA conducting multi-robot
SLAM in the indoor environment. (a) The SLAM result of robotA.
(b) The map received from robotB maintained in the map pro-
cessing module. In (a), black points represent the fixed mappoints
while red points represent the mappoints which are currently
seen by the robot. In (b), the purple points represent the map-
points received from robotB. The blue boxes represent the key-
frames, while the green lines represent the edges of the pose
graph. SLAM: simultaneous localization and mapping.

Figure 11. Experimental results on KITTI sequence 00. (a) and
(b) The SLAM results from the perspective of robotA before map
merging. (a) The local map built by robotA itself and (b) the local
map received from robotB. (c) The corresponding Google map of
this experiment. The blue and red lines represent the approxi-
mate trajectories of robotA and robotB, respectively. (d) The final
global map after map merging. SLAM: simultaneous localization
and mapping.
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acquired by the proposed multi-robot collaborative SLAM.

This experiment shows the advantage of the proposed

method over other methods that rely on the overlaps of the

maps to determine the relative poses. Clearly, in this

experiment, the overlap of the maps is very small compared

to the size of the maps.

Experiment on KITTI sequences 00 and 07. In this experi-

ment, we simultaneously conducted the SLAM on KITTI

sequences 00 and 07 to simulate two robots. The image

sequences were collected by one vehicle at different time.

Therefore, the environment is dynamic which makes it more

challenging to realize an outdoor large-scale collaborative

SLAM. Figure 12 shows the frames we used to determine the

relative poses in these two sequences. It is clear that there is a

significant difference between these two images. Figure

13(a) shows the Google map related to these two sequences.

The red line represents the approximate trajectory of robotA
carrying out the SLAM on sequence 00, while the blue line

represents the approximate trajectory of robotB carrying out

the SLAM on sequence 07. robotA travels about 3.7 km,

while robotB travels 700 m. Figure 13(b) and (c) shows the

maps of sequence 07 maintained in the map processing mod-

ule of robotA and the original map built by robotB, respec-

tively. Figure 13(d) shows the map of sequence 00 built by

robotA before map merging, and Figure 13(e) shows the

global maps after merging the maps of sequences 00 and

07. This experiment also confirms the ability of the proposed

algorithm in performing collaborative SLAM in large-scale

environments with little overlaps. It also validates that the

proposed system can be used in the real world with moving

pedestrians and vehicles.

Figure 12. Frames which were successfully used for the
appearance-based place recognition. (a) The current keyframe of
robotA. (b) The matched keyframe of robotB.

Figure 13. Experimental results on KITTI sequences 00 and
07. (a) The Google map related to these two sequences. (b)
and (c) The maps of sequence 07 maintained in map processing
module of robotA and the original map built by robotB. (d) The
map of sequence 00 built by robotA before map merging. (e)
The global map after merging the maps of sequences 00 and
sequence 07.

Zhang et al. 17



Conclusion

In this article, we proposed a robust monocular SLAM

based on image-to-map relocalization and active loop clo-

sure to solve the well-known tracking failure problem in the

monocular SLAM. Based on the robust monocular SLAM,

we realized a distributed multi-robot collaborative SLAM

system in both indoor small-scale and outdoor large-scale

environments. The experimental results show that better

robustness can be achieved by our system than other relo-

calization systems, and the proposed robust monocular

SLAM system can be employed in most challenging situa-

tions even in previously unvisited places. By combining the

active loop closure with the relocalization, high accuracy

and efficiency can be achieved simultaneously, which also

provides a good example to answer the ‘when to use’ prob-

lem in the active SLAM. Based on the robust monocular

SLAM, the proposed multi-robot collaborative SLAM sys-

tem can well address the relative pose estimation and map

merging problem with least requirements on the motion of

the robots and the overlaps of the local maps obtained by

each robot. The experimental results show that our multi-

robot collaborative SLAM system can be realized in real

time in both indoor and outdoor large-scale environments.

In this work, we just give a simple example of using the

pose information estimated by the proposed relocalization

method to realize an active loop closure. In the future, it

would be desirable to run our system on real robots with

advanced path planning and robot controlling algorithms.

Also, we will use more real robots to test our system and

find a better way to represent the map to further reduce the

amount of calculation and storage.
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