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Hierarchical dynamic depth projected
difference images–based action
recognition in videos with convolutional
neural networks

Hanbo Wu, Xin Ma and Yibin Li

Abstract
Temporal information plays a significant role in video-based human action recognition. How to effectively extract the
spatial–temporal characteristics of actions in videos has always been a challenging problem. Most existing methods acquire
spatial and temporal cues in videos individually. In this article, we propose a new effective representation for depth video
sequences, called hierarchical dynamic depth projected difference images that can aggregate the action spatial and tem-
poral information simultaneously at different temporal scales. We firstly project depth video sequences onto three
orthogonal Cartesian views to capture the 3D shape and motion information of human actions. Hierarchical dynamic
depth projected difference images are constructed with the rank pooling in each projected view to hierarchically encode
the spatial–temporal motion dynamics in depth videos. Convolutional neural networks can automatically learn dis-
criminative features from images and have been extended to video classification because of their superior performance.
To verify the effectiveness of hierarchical dynamic depth projected difference images representation, we construct a
hierarchical dynamic depth projected difference images–based action recognition framework where hierarchical dynamic
depth projected difference images in three views are fed into three identical pretrained convolutional neural networks
independently for finely retuning. We design three classification schemes in the framework and different schemes utilize
different convolutional neural network layers to compare their effects on action recognition. Three views are combined
to describe the actions more comprehensively in each classification scheme. The proposed framework is evaluated on
three challenging public human action data sets. Experiments indicate that our method has better performance and can
provide discriminative spatial–temporal information for human action recognition in depth videos.
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Introduction

Human action recognition has attracted increasing attention

throughout the computer vision community over the past

years. The traditional methods based on the red, green and

blue (RGB) data for action recognition usually focus on

body shape feature,1 key poses2 and son on. Although they

may have achieved high performance in some specific
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contexts, however, RGB action recognition methods are

sensitive to changes of lighting conditions and fail to recog-

nize actions in more challenging scenarios when there exist

occlusions and clutter backgrounds.

The introduction of low-cost integrated depth sensors

(such as Microsoft Kinect™, Redmond, Washington) that

can capture both RGB video and depth information has

significantly advanced the research of human action recog-

nition. Compared with conventional RGB cameras, Kinect

depth sensors provide us the 3D structural information of

the scene that is useful in facilitating the recognition task by

simplifying intra-class motion variations and removing

cluttered background noise. Furthermore, the depth infor-

mation can eliminate the effects of illumination and colour

variations. Therefore, researchers have put lot of attentions

to the depth-data-based human action recognition and pro-

posed effective features such as depth motion maps

(DMM),3 local occupancy pattern (LOP),4 histogram of

oriented 4D normal,5 super normal vector (SNV),6 depth

cuboid similarity feature (DCSF)7 and {Xia, 2013

#8}range-sample depth feature.8

In the last decade, thanks to the significant advance-

ments in computational capabilities and the availability of

large amount of annotated data sets,9,10 deep learning has

gained a lot of focus and been widely used to address

various computer vision challenges. The most popular deep

neural network model is convolutional neural networks

(CNNs) introduced by LeCun et al.11 CNN can automati-

cally learn powerful and discriminative image features and

has been demonstrated as an effective model for under-

standing image content. An increasing number of research-

ers start to apply CNN in video-based action recognition

tasks.12–21 However, most of the existing action recogni-

tion works rely on RGB data or skeleton data, moreover,

currently existing public available action recognition data

sets that almost all deep neural network models are eval-

uated on are composed of RGB videos alone, such as UCF-

101,22 HMDB5123 and Kinetics.24 There are only few

researches on depth-based human action recognition using

CNN,25–28 because the depth training data are relatively

small-scale. Recently, a new large-scale benchmark data

set named NTU RGB þ D data set29 is proposed to over-

come the limitations of depth data-based human action

recognition with CNN.

In this article, we construct a CNN-based action recog-

nition framework with the proposed hierarchical dynamic

depth projected difference images (HDDPDI). HDDPDI

are presented as a simple and efficient descriptor to extract

the spatial–temporal motion information in depth videos.

For a depth video sequence, each depth frame is projected

onto three orthogonal Cartesian views. Then depth maps in

each projected view are sampled at several different tem-

poral scales. Depth projected difference image (DPDI) is

defined as the absolute difference image between two con-

secutive depth maps. We compute DPDI sequences at dif-

ferent temporal scales for each projected view, which can

reflect the spatial motion and variation of an action more

comprehensively. Dynamic image is introduced as a simple

and powerful representation for a video. Bilen et al.30

applied rank pooling31 that is an effective temporal pooling

method on the raw image pixels of a RGB video sequence

to produce the RGB dynamic image. Inspired by this idea,

we extend dynamic image to depth data and propose that

utilizing rank pooling encodes a DPDI sequence to gener-

ate the dynamic depth projected difference image

(DDPDI). DDPDI integrates the whole changing process

of an action into a single dynamic image in time order and

captures the spatial–temporal variations of a depth video

effectively. DDPDIs at different temporal scales in each

view form HDDPDI. Finally, the HDDPDI in three views

for depth videos are fed into three identical CNNs indepen-

dently. Three CNNs pretrained on ImageNet are finely

retuned using HDDPDI in corresponding view, respec-

tively. To fully verify the validity of the proposed HDDPDI

video representation as well as to compare the influences of

different CNN layers on action recognition, we design three

classification schemes in the recognition framework where

different CNN layers are used. Since three projected views

can offer complementary characteristics for human actions,

multimodal information fusion32–34 is applied in each clas-

sification scheme and results of three views are combined

for action recognition. The proposed action recognition

framework is described in Figure 1.

A major source of inspiration comes from DMM.3 Each

frame in a depth video sequence is projected onto three

orthogonal Cartesian planes to form three projected image

sequences. Under each projection view, the thresholded

absolute difference between two consecutive projected

maps is accumulated across an entire depth video sequence

forming DMM. DMM contain the motion change informa-

tion in a depth video; however, the accumulation operator

ignores the time sequence. Temporal order is an important

factor in videos and contributes significantly to the final

action recognition. Hence, to capture the temporal informa-

tion effectively, we apply rank pooling31 on DPDI

sequences in each projected view to get DDPDIs that

include the spatial–temporal variances of the whole video.

It’s worth mentioning that pseudocolour coding25 can

remap the spatiotemporal information of human actions.

Compared with this work, rank pooling models the evolu-

tion of appearance and dynamics over time in a video. It not

only captures the temporal dynamics in videos robustly but

also is easily implemented and fast computed. Therefore,

rank pooling method is utilized in this article to get the

dynamic representation for a depth video.

The major contributions of this article can be summar-

ized as follows: (1) HDDPDI are proposed as a represen-

tation of a depth video for extracting the spatial–temporal

dynamics. With the help of rank pooling and dynamic

image, this method overcomes the drawback of ignoring

video temporal information in original DMM3 and

improves the discrimination of human action recognition.
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(2) We extend the dynamic image to depth data by applying

rank pooling on DPDI sequences. DDPDIs of different

temporal scales can hierarchically describe the spatial–tem-

poral dynamics of an action. (3) We construct a HDDPDI-

based action recognition framework to demonstrate the

effectiveness of HDDPDI representation, where HDDPDIs

in three views are inputted into three CNNs independently

and three classification schemes are designed using differ-

ent CNN layers. The results of three views are fused for

action recognition. (4) State-of-the-art recognition perfor-

mance is achieved on three challenging action data sets.

The results are analysed in detail for more findings.

The rest of this article is organized as follows: The

second section briefly presents the related works. In the

third section, we elaborate the construction procedure of

the proposed HDDPDI. In the fourth section, we describe

the details of the action recognition framework. Experi-

mental results and analysis are reported in the fifth section.

The sixth section concludes the article.

Related works

Depth-based action recognition

Emergence of low-cost depth sensors makes depth data

available, which extends the researches for human action

recognition from RGB to depth. Various algorithms are

developed for depth video-based action recognition. We

review them from two aspects: handcrafted and deep learn-

ing approaches. More comprehensive surveys35–37 sum-

marize these works in detail.

Handcrafted algorithms. Many approaches for human action

recognition in videos are based on depth data. Yang et al.3

accumulated depth maps projected onto three orthogonal

planes to generate DMM. The histograms of the oriented

gradients (HOG) were used to extract features from DMM.

Chen et al.38 used local binary patterns (LBPs) to get

feature representations based on DMMs as well. Wang

et al.4 proposed a 3D LOP feature for capturing the local

depth appearance information based on the joint locations.

Oreifej et al.5 extended surface normals to 4D space and

constructed histogram of oriented 4D normals (HON4D)

as the feature descriptor. An action recognition scheme

was proposed to aggregate the low-level polynormals pro-

duced by clustering hypersurface normals in depth

sequences into the SNV.6 The spatial–temporal DCSF7

was presented to describe the local 3D depth cuboids

around the spatial–temporal interest points (STIPs)

extracted from depth videos. Lu et al.8 proposed a binary

range-sample feature that can exclude clutter background

and complex occlusion to capture shape and motion of the

human body in depth sequences.

Deep learning algorithms. A large amount of work12,21 based

on CNN has been done for human action recognition in

videos inspired by its remarkable performance. There are

some state-of-art achievements that perform well for action

recognition in RGB videos, for example, 3D convolutional

networks (C3D),12 two-stream convolutional networks,13

trajectory-pooled based deep-convolutional descriptors,15

temporal segment networks (TSN)16 and so on. However,

depth-based action recognition methods with CNN are rare.

Wang et al.25 used weighted hierarchical depth motion

maps (WHDMM) as the inputs of CNN and produced a

three-channel architecture to acquire the final classification

results. Dynamic depth images (DDI), dynamic depth nor-

mal images (DDNI) and dynamic depth motion normal

images (DDMNI) were proposed as three representations

for depth sequences and were fed into CNN for action

classification.26 Features learned from RGB videos are uti-

lized for depth videos directly by domain adaptation to do

action recognition.27 Motion history images (MHI) gener-

ated from RGB videos are added into DMM to construct a

four-channel deep CNN.28 In this article, we focus on

Figure 1. Overview of the proposed HDDPDI-based action recognition framework. (a) Depth videos are projected onto three
orthogonal views. (b) Depth maps in each view are sampled at different temporal scales with stride s. (c) DPDI sequence is generated by
computing absolute difference image for two consecutive images across a sampled depth map sequence. (d) Rank pooling is applied on
DPDI sequences at different temporal scales to produce HDDPDI in each view. (e) HDDPDIs of three views are used to train three
CNNs independently and results of three views are fused for action recognition in each classification scheme. HDDPDI: hierarchical
dynamic depth projected difference images; DPDI: depth projected difference images; CNN: convolutional neural network.
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human action recognition in depth videos with the purpose

of taking full advantage of the depth data.

Temporal order modelling

Different from the image classification tasks, action videos

are 3D and contain rich spatial–temporal information.

Since videos can be represented as image sequences, most

existing feature extraction algorithms3,8 are all frame-level,

so how to model the temporal structure within a video is a

considerable problem. Some early works used conditional

random fields (CRFs)39 and hidden Markov models

(HMMs)40 to model temporal information. These two

methods need a large amount of training samples to learn

model parameters. Wang et al.41 applied Fourier temporal

pyramid (FTP) to encode the temporal changes, which is

robust to the noisy data. Optical flow13 was also com-

monly used to capture the time variations. However, com-

putation of optical flow is heavy and time consuming. It is

not suitable for depth videos that lack the texture infor-

mation. Pseudocolour coding25 is another commonly used

approach to reflect the temporal order of a video. Pseudo-

colour coding maps indicate the motion temporal order by

colour intensity. Recurrent neural networks (RNN)42 is

proposed to handle the sequential data. It can display the

action time dynamics by internal states and is generally

combined with CNN for action recognition.43 As a new

efficient temporal pooling method, rank pooling31 cap-

tures temporal dynamics of the whole video by modelling

the evolution of appearance and dynamics over time. It is

easily implemented and fast computed serving as a robust

video representation.

Hierarchical dynamic depth projected
difference images

To describe the human 3D spatial motion information and

temporal dynamics for actions in depth videos, we propose

HDDPDI as an effective video representation method. In

this section, we firstly introduce the depth video projection

and then we describe the sampling procedure on the pro-

jected depth maps under different temporal scales. Finally,

the construction of HDDPDI using rank pooling is

explained elaborately.

Depth video projection

Depth videos contain rich 3D structure and shape informa-

tion and can help to improve the human action recognition

performance significantly. Yang et al.3 proposed DMM to

capture the 3D motion information of human actions in

depth videos. Considering this advantage, we use the same

approach for depth video projection. Specifically, each

frame in a depth video sequence is projected onto three

2D orthogonal Cartesian planes where X-Y plane represents

front view, Y-Z plane represents side view and X-Z plane

represents top view. For a point (x, y, z) in a depth image, its

pixel value in projected front\side\top view is z\x\y. There-

fore, we get depth maps in three projected views, respec-

tively, for each depth video sequence. Depth maps in three

views for some actions in NTU RGB þ D data set are

illustrated in Figure 2.

Scaled sampling of depth maps

Each frame of a depth video is projected onto three views

using the same method as DMM3 for capturing the 3D

human shape and motion information. Besides, we make

two extensions based on the projected depth maps. The first

one is that to describe the motion changes of human actions

from coarse to fine and suppress noise as well, the depth

map sequence in each projected view is scaled-sampled

progressively along the time dimension, which produces

a set of sampled sequences with different lengths named

as different temporal scales. This process can also be

regarded as a data augmentation method for increasing the

number of action samples.

For a depth video projected sequence V ¼
fmap1

v ; . . . ; mapN
v g, where N is the number of total

frames and v represents the front, side or top view. We

sample the depth map sequence with a stride s from

the start frame f. The sampling stride is s and besides that,

we set the stride of start frame to sf . The original depth

map sequence is named as the first temporal scale. Then we

initialize the start frame f ¼ 1 and get a sampled sequence

with [N/s] frames. [N/s] is the nearest integer larger than

N/s. We update f with its stride sf and sample the original

depth map sequence with the stride s iteratively. Consider-

ing that if a sampled sequence is too short, it won’t

contain the key information of an action. Therefore, we set

a ratio r and define that the start frame index should not

exceed r � N to guarantee the length of a sampled

sequence. Ratio r controls the lower limit of the start frame

offset and further ends up the sampling process. Finally, a

group of sampled sequences with different lengths are gen-

erated progressively along the time dimension, which can

capture the action information in a coarse-to-fine way. And

each sequence represents a temporal scale. The number of

temporal scales of a depth video in three projected views is

the same and related to the video duration (N); therefore,

different depth videos may have different numbers of

temporal scales. Suppose that one depth video has T tem-

poral scales, the scaled-sampling process is illustrated in

Figure 3. In this way, we get a set of coarse-to-fine depth

map sequences at multiple temporal scales in each pro-

jected view for a depth video.

HDDPDI construction with rank pooling

For a depth video, we have obtained a group of scaled depth

map sequences sampled at several time scales. The thre-

sholded absolute difference between two consecutive maps
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is accumulated across an entire depth map sequence in the

original DMM.3 Similarly, we compute the absolute differ-

ence without thresholding for two consecutive maps to

extract the motion changes, referred to as DPDI. It can be

expressed as equation (1). Let DPDI
j
vt be the jth DPDI at

temporal scale t in projected view v, v 2 ð front; side; topÞ

DPDI
j
vt ¼ jmap

jþ1
vt � map

j
vtj ð1Þ

Figure 2. Depth maps in three views for some actions in NTU RGB þ D data set.

Figure 3. Flow chart of the scaled sampling. The original depth map sequence has N frames. T is the number of temporal scales.
Sampling stride is s and start-frame stride is sf. [X] represents the nearest integer larger than X.
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where map
j
vt is the j th depth map of temporal scale t in

view v. DPDIs across the sequence at each temporal scale

form a DPDI sequence, as shown in Figure 1(c).

Different from the original DMM,3 rather than accumu-

lation, we then apply rank pooling on a DPDI sequence

temporally to get a single dynamic image for encoding the

spatial–temporal information of human motion changes

effectively. Rank pooling31 is a new temporal pooling

method which not only captures the temporal changes of

videos robustly but also is easily implemented. It utilizes

pairwise linear ranking machines to learn a linear function

whose parameters can encode the frame order within a

video and be used as a new video representation. We con-

sider the chronological order of one DPDI sequence and

aggregate the motion changing information into a dynamic

image using rank pooling.

Rank pooling is applied directly on the pixels of DPDIs

in this article. Let a DPDI sequence with k frames at tem-

poral scale t in projected view v be represented as

DPDIvt ¼ fDPDI1
vt ; . . . ; DPDI

j
vt ; . . . ; DPDIk

vtg. DPDI
j
vt

is the vectorized DPDI
j
vt. Time varying mean vector oper-

ation31 is applied as equation (2) to capture the temporal

information from the independent DPDI frames

mi ¼
1

i

Xi

j¼1

DPDI
j
vt

di ¼
mi

k mi k

8>>>>><
>>>>>:

ð2Þ

The smoothed vector sequence d ¼ fd1; . . . ;
di; . . . ; dkg still remains the time order of k frames in

original DPDI sequence. A linear rank function is defined

as ’ðd;aÞ ¼ aT � d, where a 2 RD. a is a parametric vec-

tor of the rank function that can preserve the relative

orderings of frames. That is, if 8 ti > tj, the rank value

satisfies ’ðdti
;aÞ > ’ðdtj

;aÞ. The objective function of

rank pooling is defined with structural risk minimization

as equation (3)

min
a

1

2
jjajj2 þ C

X
8ti>tj

eij

s:t: aT � ðdti
� dtj
Þ � 1� eij

eij � 0

8>>>><
>>>>:

ð3Þ

where eij is a slack variable. a � is the found optimal para-

metric vector and can be used as a descriptor of the DPDI

sequence. We transform vector a � into an image called

dynamic DPDI (DDPDI) that aggregates the spatial–

temporal motion information of the whole video.

In each projected view for a depth video, DPDI

sequences of all temporal scales are processed using rank

pooling to form DDPDIs, as shown in Figure 1(d). Part of

DDPDIs along the different temporal scales in the front

view for some actions in NTU RGBþD data set are shown

in Figure 4. Since the original depth map sequences are

sampled progressively along the time, so DDPDIs are also

dynamically progressive along the temporal scale for

human actions. These DDPDIs at different temporal scales

in each projected view for a depth video are named as

HDDPDI, which can be used as an effective representation

for the video.

HDDPDI-based action recognition
with CNN

CNN training

After the construction of HDDPDIs in three views,

VGG1644 is adopted as the basic network structure of our

action recognition framework in this article. VGG16 con-

tains five convolutional layers, three fully connected (FC)

layers and a softmax classifier layer. We train a VGG16

network independently for each view, seen in Figure 1.

Three VGG16 networks pretrained on the ImageNet data

set are fine-tuned to avoid training a lot of parameters from

scratch. The implementation is completed using Pytorch.45

During the training process of each view, HDDPDIs are

human-centric cropped to 224� 224 as the inputs of CNN.

Output of the last FC layer is adjusted to C, which is the

number of action categories. Based on cross-entropy loss

function, the stochastic gradient descent algorithm is used

to learn network weights with a mini-batch size of 32 sam-

ples, momentum of 0.9 and weight decay of 10�3. The

initial learning rate is set to 10�4 and will be decreasing

as the training goes on. Iteration number of the training is

100 epochs. Random horizontal flip and rotation are

applied for data augmentation.

Classification schemes

To verify the effectiveness of the proposed HDDPDI rep-

resentation, we construct a CNN-based action recognition

framework. CNN features at different layers encode differ-

ent levels of information. So with the purpose of comparing

the influences of different CNN layers on action recogni-

tion, three classification schemes are designed in the frame-

work, with the last convolutional (LC) layer, the FC layer

and the softmax layer of CNN, respectively. In this article,

LC layer is defined as the fifth convolutional layer in

VGG16. FC layer is the second FC layer in VGG16. Soft-

max layer is the final classification function of VGG16. In

the classification schemes with LC layer and FC layer,

HDDPDIs of a depth video in three views are fed into three

corresponding CNNs, respectively, for feature representa-

tion. Features of three views are fused to capture the com-

plementary characteristics of human actions. For the

scheme with softmax layer, we use CNN in an end-to-

end mode and fuse the prediction scores of three views for

recognition. We describe the classification schemes in

detail as follows.
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Recognition with LC layer. Convolutional features focus on

spatial structure information of actions in HDDPDIs, such

as colour, edge and texture. The LC layer in VGG16 has a

larger receptive field and encodes more complex spatial

features. Therefore, for each view we, extract the LC layer

feature maps for HDDPDI of a depth video to get the

corresponding feature representation. Take the front view

as an example, we assume that the LC layer feature maps

of HDDPDI of a depth video in this view are represented

as a 4D tensor F LC 2 RH �W �C� T , where H and W are

both 7 denoting height and width of the LC layer feature

map, C is 512 denoting the number of channels (filters),

T is the number of temporal scales of HDDPDI. Consid-

ering that HDDPDI are dynamic representations of a

depth video under different time scales, we accumulate

the feature maps of all temporal scales in each channel

for feature enhancement. The accumulation operator is

shown in equation (4)

F̂
i

LC ¼
XT

t¼1

F LCðH ;W ; i; tÞ ð4Þ

where F̂
i

LC is the accumulated feature map of the channel i.

F̂ LC ¼ fF̂
i

LCgi¼1...C; 2 RH�W�C is normalized with

channel normalization.15 And we apply max pooling on the

normalized convolutional feature maps to get the max fea-

ture response in each channel. The LC layer feature

descriptor of a depth video in front view is represented

as V Front
LC ¼ fvi

LCgi¼1...C;2 RC , where vi
LC is the max

response value on the normalized accumulated feature map

in channel i. The generation flow chart of the LC layer

feature descriptor is described in Figure 5. In the same way,

we can get the feature descriptors in side view and top

view. LC layer features of three views of a depth video are

concatenated as the final feature representation. A multi-

class linear SVM is used for action recognition in this

classification scheme.

Recognition with FC layer. Compared with convolutional fea-

tures, FC layer features pay more attention to the abstract

semantic information. HDDPDIs of three views of a depth

video serve as inputs to the three trained CNNs and then

we obtain the FC layer feature descriptor for each view.

For a depth video, FC layer output of HDDPDI in front

view is represented as a 2D tensor F FC 2 RT�D;where T is

the number of temporal scales in HDDPDI and D is the

dimension of FC layer output in VGG16. Since HDDPDI

represent dynamic images of a depth video at different

Figure 4. DDPDIs along the temporal scale in the front view for some actions in NTU RGB þ D data set. DDPDI: dynamic depth
projected difference images.
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temporal scales, we accumulate the FC layer features of

all-time scales for feature reinforcement, as shown in

equation (5)

F̂ FC ¼
XT

t¼1

F FCðt;DÞ ð5Þ

where F̂ FC 2 RD is the accumulated FC feature and is nor-

malized with min-max normalization. Finally, the normal-

ized F̂ FC is used as the FC layer feature descriptor of a

depth video in front view and is reformulated as

V Front
FC 2 RD. We illustrate the generation flow chart of the

FC layer feature descriptor in Figure 6. And the FC layer

feature descriptors in side view and top view are calculated

with the same method. We combine the FC layer feature

descriptors in three views as the final FC feature represen-

tation for a depth video. A multi-class linear SVM is also

applied for action recognition.

Recognition with softmax layer. CNN is a deep neural network

which can capture features and make classification auto-

matically for images by end-to-end learning. Output of

softmax layer in CNN represents the class probability. For

each view, we take HDDPDI of a depth video as the input

and get the softmax output denoted as a 2D tensor

P 2 RT�A; where T is the number of temporal scales in

HDDPDI, A is the number of action categories.

P ¼ fpi
tgt¼1...T ;i¼1...A, pi

t is the probability of i th action

class at temporal scale t. We then apply max operator,

average operator and multiply operator, respectively, for

probabilities of each action class in all scales, as shown

in equations (6) to (8).

pi
max ¼ max

t¼1...T
pi

t ð6Þ

pi
ave ¼

1

T

XT

t¼1

pi
t ð7Þ

pi
mul ¼

YT

t¼1

pi
t ð8Þ

pi
max, pi

ave and pi
mul are the prediction probabilities of ith

action class under three operators named as softmax–max,

softmax–average and softmax–multiply. We then average

the prediction class probabilities of three views of a depth

video for each operator as the final prediction class prob-

ability under the corresponding operator. Index of the max

probability of all action classes corresponds to the recog-

nized class label. The generation flow chart of the class

probabilities of a depth video in each view under three

operators is described in Figure 7.

Figure 5. The generation flow chart of the LC layer feature descriptor in each view for a depth video. LC: last convolutional.

Figure 6. The generation flow chart of the FC layer feature
descriptor in each view for a depth video. FC: fully connected.
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Experiments and discussions

We evaluate the proposed HDDPDI-based action recogni-

tion framework on three challenging data sets. In this sec-

tion, we first introduce the three human action data sets and

the basic experimental settings. Next, we present and ana-

lyse the recognition results on the three data sets. Further-

more, we also conduct the experiments separately on each

single- view to demonstrate the fusion advantages that

three projected views can provide complementary informa-

tion for action recognition. Finally, we show the compar-

isons with the state-of-the-art methods.

Data sets

In our experiments, we evaluate the proposed HDDPDI video

representation with three CNN-based classification schemes

on the following publicly available human action data sets:

SDUFall,46 MSRAction3D47 and NTU RGB þ D.29

The SDUFall data set46 was built by our Robot Research

Center in Control Science and Engineering College,

Shandong University. The data set is collected by a Kinect

camera installed 1.5 m high in a laboratory environment. It

contains six action classes: bending, falling, lying, sitting,

squatting and walking. Each action is performed 10 times

by 20 subjects, and there are total 1200 samples. Further-

more, SDUFall data set contains rich variations such as

illumination, direction and position changes.

The MSRAction3D data set47 was built by the Advanced

Multimedia Research Lab in University of Wollongong. It

contains 20 action types performed by 10 subjects. Each sub-

ject performs each action 2 or 3 times. There are 567 depth

sequences in total. The 20 actions are high-arm wave,

horizontal-arm wave, hammer, hand catch, forward punch,

high throw, draw X, draw tick, draw circle, hand clap, two-

hand wave, side boxing, bend, forward kick, side kick, jogging,

tennis swing, tennis serve, golf swing and pick up and throw.

The NTU RGB þ D dataset29 was built by the ROSE Lab

in the Nanyang Technological University. It is the largest

RGB-D action recognition data set till now. This data set is

captured by three Microsoft Kinect v.2 cameras concurrently.

NTU RGBþD action recognition data set consists of 56,880

action samples, containing 60 different action classes per-

formed by 40 volunteers. The 60 actions are drinking, eating,

brushing teeth, brushing hair, dropping, picking up, throwing,

sitting down, standing up (from sitting position), clapping,

reading, writing, tearing up paper, wearing jacket, taking off

jacket, wearing a shoe, taking off a shoe, wearing on glasses,

taking off glasses, putting on a hat/cap, taking off a hat/cap,

cheering up, hand waving, kicking something, reaching into

self-pocket, hopping, jumping up, making/answering a phone

call, playing with phone, typing, pointing to something, tak-

ing selfie, checking time (on watch), rubbing two hands

together, bowing, shaking head, wiping face, saluting, putting

palms together, crossing hands in front, sneezing/coughing,

staggering, falling down, touching head (headache), touching

chest (stomach ache/heart pain), touching back (back-pain),

touching neck (neck-ache), vomiting, fanning self, punching/

slapping other person, kicking other person, pushing other

person, patting other’s back, pointing to the other person,

hugging, giving something to other person, touching other

person’s pocket, handshaking, walking towards each other

and walking apart from each other. This data set is challen-

ging due to a large number of action samples and classes as

well as rich intraclass variations.

Experimental settings

Since the proposed HDDPDI representation is based on depth

videos, we project all depth video sequences in a data set onto

three 2D orthogonal Cartesian planes to get depth map

sequences with the same method as the original DMM.3 The

depth map sequence of a video in each projected view is

scaled-sampled at different temporal scales. The start frame

stride sf, sample stride s and ratio r are different for different

data sets in the sampling process. We empirically select these

parameters depending on characteristics of different data sets.

For SDUFall data set, sf¼ 5, s¼ 3 and r¼ 0.7. For MSRAc-

tion3D data set, sf¼ 2, s¼ 3 and r¼ 0.3. For NTU RGBþD

data set, sf ¼ 5, s ¼ 3 and r ¼ 0.3. In our experiments, the

number of temporal scales in HDDPDI representations of

depth videos in different data sets ranges from 3 to 20, which

is far less than the number of total frames. Therefore, the

HDDPDI representation can not only capture the informative

spatial–temporal dynamics for human actions but also help to

reduce the computation complexity.

In each projected view, we take HDDPDIs of depth

videos as inputs of VGG16 for finely retuning. To avoid

overfitting, drop out ratio after FC layer is adjusted to 0.5.

Moreover, data augmentation methods such as horizontal

flip and rotation are also applied. For action recognition, we

design three classification schemes based on CNN, with LC

layer, FC layer and softmax layer, respectively. The spatial

size of the feature map in LC layer is 7� 7. The dimension

of the feature in FC layer is 4096. Softmax output size is

Figure 7. The generation flow chart of the class probabilities of a
depth video in each view under three operators.
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related to the number of action classes, which is 6 for SDU-

Fall, 20 for MSRAction3D and 60 for NTU RGB þ D.

HDDPDI performance evaluation with three
classification schemes

SDUFall data set. We evaluate the proposed HDDPDI-based

action recognition framework with CNN on the SDUFall

data set. In our framework, HDDPDI are used as a new

representation of a depth video and then fed into CNN for

action recognition with three classification schemes. Three

views are fused for recognition in each scheme. Three-fifth

of subjects in the SDUFall data set are selected randomly for

training and the remaining for testing. Three CNNs pre-

trained on ImageNet are retuned independently using the

corresponding HDDPDIs of depth videos in the training set.

Table 1 shows the recognition accuracies of the pro-

posed method with different classification schemes. The

FC layer gets the best recognition result with the highest

accuracy of 97.08%. Compared with the LC layer, it

achieves an improvement of 3.44%, demonstrating that

high-layer features in CNN are more effective for action

recognition. Figure 8 is the confusion matrix of six actions

in SDUFall data set with the FC layer classification

scheme. From Figure 8, we observe that all actions are

classified extremely correctly. The action lying and the

action falling are also well classified although these two

actions have great similarity. The superior experimental

results prove that the proposed HDDPDI representation is

effective and discriminative for human actions in the SDU-

Fall data set. Moreover, action characteristics in three

views are fused for recognition, which is helpful to improve

the recognition performance by capturing the 3D motion

information for actions.

MSRAction3D data set. We test the HDDPDI representa-

tion with the three classification schemes on MSRAc-

tion3D data set. For this data set, the cross-subject

setting is used to get the training set and the testing set:

samples of subjects 1, 3, 5, 7, 9 for training and samples

of the remaining subjects for testing. The experimental

results are shown in Table 2. From the table, it can be

seen that the FC layer classification scheme also

achieves the best recognition accuracy on MSRAc-

tion3D data set, which illustrates that the HDDPDI can

Table 1. Recognition accuracies on the SDUFall data set with different classification schemes in the proposed HDDPDI-based action
recognition framework.

Data set

Classification scheme

LC layer FC layer Softmax-max Softmax-average Softmax-multiply

SDUFall 93.64% 97.08% 95.83% 96.25% 96.04%

Bold values denote the highest recognition accuracy and the corresponding classification scheme in SDUFall. HDDPDI: hierarchical dynamic depth
projected difference images; LC: last convolutional; FC: fully connected.

Figure 8. Confusion matrix on the SDUFall data set for the FC layer classification scheme. FC: fully connected.
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effectively capture the spatial–temporal dynamics of

actions for improving the recognition performance sig-

nificantly. The accuracy 96.15% demonstrates that

abstract high-level features in FC layer are more discri-

minative for actions in this data set, and features fusion

of three views is more effective compared with the clas-

sification results fusion in softmax layer.

The confusion matrix of the best classification scheme

on MSRAction3D data set is shown in Figure 9. We can see

that the most actions are recognized well except for several

confused actions such as ‘draw circle’, ‘draw tick’ and

‘draw X’. Accuracies of these actions are relatively lower

due to their similar HDDPDI representations.

NTU RGB þ D data set. There are two evaluation criteria on

the NTU RGB þ D data set: cross-subject and cross-view.

We evaluate the proposed HDDPDI video representation

with three classification schemes on these two baselines,

respectively. The training and testing sets are the same with

the original protocol.29 The results are shown in Table 3.

From the table, we can conclude that the HDDPDI-based

FC classification scheme still achieves the highest recog-

nition accuracies of 82.43% in the cross-subject evaluation

and 87.56% in the cross-view evaluation.

Figure 10 presents the confusion matrix of the FC clas-

sification scheme in the cross-subject evaluation. From the

confusion matrix, we can see that most actions are

Table 2. Recognition accuracies on the MSRAction3D data set with different classification schemes in the proposed HDDPDI-based
action recognition framework.

Data set

Classification scheme

LC layer FC layer Softmax-max Softmax-average Softmax-multiply

MSRAction3D 91.56% 96.15% 86.12% 86.12% 85.43%

Bold values denote the highest recognition accuracy and the corresponding classification scheme in MSRAction3D. HDDPDI: hierarchical dynamic depth
projected difference images; LC: last convolutional; FC: fully connected.

Figure 9. Confusion matrix on the MSRAction3D data set for the FC layer classification scheme. FC: fully connected.

Table 3. Recognition accuracies on the NTU RGB þ D data set with different classification schemes in the proposed HDDPDI-based
action recognition framework.

Data set Baseline

Classification scheme

LC layer (%) FC layer (%) Softmax-max (%) Softmax-average (%) Softmax-multiply (%)

NTU RGBþD Cross-subject 78.47 82.43 78.73 80.00 78.92
Cross-view 83.11 87.56 84.19 86.00 84.76

Bold values denote the highest recognition accuracies and the corresponding classification scheme in NTU RGB+D. HDDPDI: hierarchical dynamic
depth projected difference images; LC: last convolutional; FC: fully connected.
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recognized correctly including the mutual actions. And even

for some close actions such as ‘wearing jacket’ and ‘taking

off jacket’, ‘putting on a hat’ and ‘taking off a hat’, the

proposed HDDPDI video representation with the FC classi-

fication scheme still achieves good results although only time

orders are reversed for these actions. This demonstrates that

the HDDPDI representation can well capture the temporal

dynamics for actions in videos. However, our method cannot

distinguish some actions that have similar motion changes,

such as ‘clapping’ and ‘rubbing two hands together’. More-

over, since the objects in the actions are difficult to be recog-

nized for depth videos and the HDDPDI representation is not

discriminative enough for actions that contain fine-grained

small motion changes, actions such as ‘reading’ and ‘writing’

are easily confused. Such cases may be improved by combin-

ing the information extracted from the RGB modality.

The proposed HDDPDI-based action recognition frame-

work achieves the best experimental results with the FC clas-

sification scheme on all three data sets, which verifies the

effectiveness of the HDDPDI video representation. Com-

pared with the results of the LC classification scheme, it can

be seen that the FC layer features of CNN are more discrimi-

native for action recognition. Furthermore, since the

HDDPDI representation of a depth video in one projected

view contains several dynamic images at different temporal

scales, and the softmax classification scheme processes the

prediction class probabilities of all these dynamic images,

misclassification of one dynamic image will affect the recog-

nition result in this view. Therefore, the softmax classification

scheme may cause misclassification more easily than the FC

scheme that aggregates features for effective action recogni-

tion. Besides, Tables 1 to 3 show that the advantages of FC

layer scheme over other mechanisms are bigger on MSRAc-

tion3D and NTU than on SDUFall. The main reason is that

SDUFall data set is relatively small and contains only six

simple human actions that have discriminative features. So,

differences among the results of three classification schemes

in SDUFall data set are small. However, actions in other two

data sets are more complex and, especially in MSRAction3D,

some human actions are similar and easily confused, which

may increase the misclassification possibility of the softmax

scheme that aggregates the recognition results directly.

Contribution evaluation of three projected views

For the construction of the HDDPDI video representation,

we firstly project a depth video onto three views to capture

the human 3D structure and shape information. Depth

Figure 10. Confusion matrix on the NTU RGB þ D data set for the FC layer classification scheme in the cross-subject evaluation. FC:
fully connected.
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maps in three views describe the human motion from dif-

ferent perspectives. In the proposed HDDPDI-based

action recognition framework, feature descriptors or soft-

max prediction results of three views are fused in different

recognition schemes for expressing the spatial–temporal

dynamic information of human actions more comprehen-

sively. However, in this section, we evaluate the contri-

bution of each projected view to the action recognition.

We use the three classification schemes without fusion

and conduct the recognition separately in each view. The

training set and the testing set remain unchanged for the

three data sets. We present the recognition results on the

three data sets with different classification schemes for the

single-view recognition and the fusion-view recognition

in Table 4.

From Table 4, we can see that for the three data sets, action

recognition with the three-view fusion outperforms the single

view in each classification scheme. Since HDDPDIs in three

projected views can describe the spatial–temporal motion

dynamics from different perspectives and offer the comple-

mentary characteristics for human actions, multimodal infor-

mation fusion is necessary and plays an important role for

improving the recognition performance. For the single-view

experiments, because most of the human actions are facing

the camera, recognition results in the front view are the best

for the three data sets in each classification scheme. HDDPDI

in the front view are more discriminative for the most human

actions, while the side view and the top view are more effec-

tive for actions such as ‘forward punch’ and ‘forward kick’. In

the NTU RGBþD data set, recognition accuracies in the top

view are much lower than that in the side view. This is

because the ground background of this data set produces

much noise in depth maps of the top view.

Comparison with the state of the arts

Tables 5, 6 and 7 compare the performance of the proposed

method with the previous works, respectively, on the SDU-

Fall data set, the MSRAction3D data set and the NTU RGB

þ D data set. From the tables, we can conclude that the FC

layer classification scheme in the proposed HDDPDI-based

action recognition framework outperforms those previous

methods for all three data sets. The possible reasons are

summarized as follows: (1) The HDDPDI representations

of depth videos can describe the spatial–temporal motion

dynamics for human actions from different temporal scales

and contain rich action changing information that is effec-

tive for recognition. (2) FC layer in CNN provides the

discriminative abstract features for different actions. (3)

Three CNNs are finely retuned based on the pretrained

models on ImageNet, which can ensure that the model

parameters are well initialized for action classification.

(4) HDDPDIs in three projected views offer 3D human

motion information and the complementary features for

Table 4. Comparisons of recognition accuracies on the three data sets with different classification schemes for the single-view
recognition and the fusion-view recognition.

Dataset

Classification scheme

LC layer (%) FC layer (%)
Softmax-
max (%)

Softmax-
average (%)

Softmax-
multiply (%)

SDUFall Front 89.08 94.77 94.79 95.62 95.20
Side 82.10 91.12 91.87 91.87 91.87
Top 88.70 90.41 90.83 90.62 91.66
Fusion 93.64 97.08 95.83 96.25 96.04

MSRAction3D Front 80.17 86.41 80.37 80.94 80.94
Side 72.15 79.68 73.92 73.04 72.15
Top 74.68 81.82 79.30 79.73 79.30
Fusion 91.56 96.15 86.12 86.12 85.43

NTU RGB þ D (cross-subject) Front 76.59 78.89 78.54 78.52 78.81
Side 59.06 66.64 66.62 67.02 67.21
Top 39.03 47.00 43.82 44.52 44.77
Fusion 78.47 82.43 78.73 80.00 78.92

NTU RGB þ D (cross-view) Front 78.56 83.56 83.61 83.76 83.91
Side 57.33 67.31 68.84 69.74 69.76
Top 42.06 46.92 40.77 41.90 42.29
Fusion 83.11 87.56 84.19 86.00 84.76

Bold values denote the highest recognition accuracies achieved by fusion-view method in different datasets. FC: fully connected; LC: last convolutional.

Table 5. Performance comparison of the proposed HDDPDI-
based action recognition with the FC layer classification scheme
with the state-of-the-art methods on the SDUFall data set.

Method Modality Accuracy (%)

Shape feature encoding48 Depth 64.67
Slow feature analysis49 RGB 81.33
Silhouette orientation volumes50 Depth 89.63
HDDPDI-based recognition with FC

layer classification scheme
Depth 97.08

Bold value denotes the highest recognition accuracy achieved by our
method for SDUFall. HDDPDI: hierarchical dynamic depth projected dif-
ference images.
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actions. Therefore, fusion of three views can improve the

action recognition performance significantly.

For the SDUFall data set, human actions change signifi-

cantly. HDDPDI can well capture the large body motion

changes, so the recognition results in this data set are extremely

superior. From the Table 7, we can see that our method

outperforms the previous works significantly in the NTU RGB

þ D data set, which verifies that the proposed video represen-

tation is effective for describing the spatial–temporal informa-

tion. However, in the MSRAction3D data set, our method is

only slightly higher than the range sample.8 This is because that

our method is limited to differentiate some similar actions

containing fine-grained small motions, such as ‘draw tick’ and

‘draw X’. Besides, our method is applied on depth videos

where the absence of colour and texture may reduce the dis-

criminative power of CNN models which are more suitable for

texture-based feature learning and classification.

Conclusion and future work

In this article, we propose the HDDPDI representation for a

depth video to describe the spatial–temporal dynamics of

human actions from different temporal scales. We project a

depth video sequence onto three orthogonal planes to cap-

ture the 3D human shape and motion information.

HDDPDI are produced in each projected view by applying

rank pooling on DPDI sequences at different sampling tem-

poral scales. In addition, we construct a HDDPDI-based

action recognition framework that contains three classifi-

cation schemes to verify the effectiveness of the HDDPDI

representation. Information of three views is fused for rec-

ognition in each scheme. We test the framework on three

publicly available data sets and compare the recognition

results of the three classification schemes. Presented

experimental results show that the HDDPDI representation

is efficient and practicable for human action recognition.

Although the proposed HDDPDI-based action recogni-

tion with the FC classification scheme has achieved out-

standing results, there are some limitations of the work that

need to be solved in the future. Firstly, HDDPDI represen-

tation performs better for actions containing significant

human motions. For some similar actions that have tiny

motion variations such as ‘read’ and ‘write’, HDDPDI rep-

resentation is not discriminative enough. Therefore, to dif-

ferentiate these actions, colour and texture features

extracted from the static RGB images are considered to

be combined with the HDDPDI representation. Secondly,

feature descriptors in the three views for the LC\FC clas-

sification scheme or prediction results for the softmax clas-

sification scheme are fused for action recognition. But how

to fuse multimodal information effectively is still a chal-

lenging problem in our future work.
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Table 6. Performance comparison of the proposed HDDPDI-
based action recognition with the FC layer classification scheme
with the state-of-the-art methods on the MSRAction3D data set.

Method Modality Accuracy (%)

Bag of 3D Points47 Depth 74.70
Actionlet ensemble4 Depth 82.22
DMM3 Depth 88.73
HON4D5 Depth 88.89
SNV6 Depth 93.09
Range sample8 Depth 95.62
HDDPDI-based recognition with FC

layer classification scheme
Depth 96.15

Bold value denotes the highest recognition accuracy achieved by our
method for MSRAction3D. HON4D: histogram of oriented 4D normal;
DMM: depth motion map; SNV: super normal vector; FC: fully connected;
HDDPDI: hierarchical dynamic depth projected difference images.

Table 7. Performance comparison of the proposed HDDPDI-
based action recognition with the FC layer classification scheme
with the state-of-the-art methods on the NTU RGBþ D data set.

Method Modality

Cross-
subject

accuracy (%)

Cross-
view

accuracy (%)

SNV6 Depth 31.82 13.61
HON4D5 Depth 30.56 7.26
Lie group51 Skeleton 50.08 52.76
HBRNN42 Skeleton 59.07 63.97
Skeletal quads52 Skeleton 38.62 41.4
Dynamic skeletons53 Skeleton 60.23 65.2
Two-layer RNN29 Skeleton 56.29 64.09
Two-layer LSTM29 Skeleton 60.69 67.29
Part-aware LSTM29 Skeleton 62.93 70.27
ST-LSTM54 Skeleton 69.20 76.10
DSSCA-SSLM55 RGB þ

depth
74.86 —

Different skeleton
features encoding20

Skeleton — 82.31

Clips þ CNN þ MTLN18 Skeleton 79.57 84.83
HDDPDI-based

recognition with FC
layer classification
scheme

Depth 82.43 87.56

Bold values denote the highest recognition accuracies achieved by our
method in cross-subject and cross-view respectively for NTU RGB+D.
RNN: recurrent neural network; HBRNN: hierarchically bidirectional
RNN; LSTM: long-short term memory; ST-LSTM: spatio-temporal LSTM;
DSSCA-SSLM: deep shared-specific component analysis-structure sparsity
learning machine; MTLN: multi-task learning network; HON4D: histo-
gram of oriented 4D normal; HDDPDI: hierarchical dynamic depth pro-
jected difference images; FC: fully connected; CNN: convolutional neural
network; SNV: super normal vector.
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